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1. Introduction  

Seismic stratigraphy and marine magnetics in the case histories of the Somma-Vesuvius 
volcanic complex, Phlegrean Fields offshore and Ischia and Procida islands offshore (Naples 
Bay, Southern Tyrrhenian sea) are here discussed. Detailed geo-volcanologic setting of these 
areas is presented to give a better framework of the presented data. Seismo-stratigraphic 
techniques and methodologies are discussed, focussing, in particular, on the Naples area, 
where the Quaternary volcanic activity prevented the application of classical stratigraphic 
concepts, due to the occurrence of interlayered sedimentary sequences and intervening 
volcanic bodies (volcanites and volcaniclastites). The onset of new technologies in marine 
data acquisition, processing and interpretation is also discussed taking into account some 
historical aspects.  

2. Seismo-stratigraphic techniques and methodologies 

The applied stratigraphic subdivision derives from the type of data utilized in marine geology 
(reflection seismics) and by the methods of seismic interpretation (high resolution sequence 
stratigraphy). The geological structures recognized through the seismic interpretation are the 
acoustically-transparent volcanic units, representing the rocky acoustic basement and the 
systems tracts of the Late Quaternary depositional sequence (Fabbri et al., 2002). The 
widespread volcanic activity, which controlled the stratigraphic architecture of the Naples 
Bay during the Late Quaternary, has disallowed the application of a classical stratigraphic 
approach, due to the occurrence of interlayered sedimentary sequences and intervening 
volcanic bodies (volcanites and volcaniclastites).  

In the Late Quaternary Depositional Sequence (SDTQ) the seismo-stratigraphic analysis has 
allowed to characterize depositional systems respectively referred to the sea level fall (FST; 
Helland Hansen & Gjelberg, 1994), to the sea level lowstand (LST) and related internal 
subdivisions (Posamentier et al., 1991), to the transgressive phase (TST; Posamentier & 
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Allen, 1993; Trincardi et al., 1994) and to the highstand phase of sea level (HST; Posamentier 
& Vail, 1988). A sketch stratigraphic diagram of the SDTQ and its components has been 
constructed in order to clarify the stratigraphic relationships between systems tracts (Fig. 1).  

 

Fig. 1. Sketch stratigraphic diagram as a function of both depth (upper diagram) and time 
(lower diagram) showing the geometric relationships between systems tracts and 
distribution of siliciclastic facies in unconformity-bounded depositional sequences 
(modified after Vail et al., 1977; Christie-Blick, 1991; Helland Hansen & Gjelberg, 1994).  

2.1 Main components of the Late Quaternary depositional sequence  

The main characteristics of the system tracts related to main phases of the last sea level 
glacio-eustatic cycle are here discussed, focussing, in particular, on the Naples Bay. The 
stratigraphic meaning and the map representation of each system tract are also resumed.  

2.1.1 Highstand deposits (HST) 

The highstand deposits are younger than the phase of maximum marine ingression 
happened at the end of the sea-level rise (about 4-5 ky B.P.) and show their maximum 
thickness in the inner shelf, next to the main deltas (i.e. Po, Tiber, Arno, etc.) along the 
Italian coast, while reduce to a few meters on the outer shelf (Fabbri et al., 2002). Highstand 
deposits of the Naples Bay have been intensively studied in the frame of research projects of 
marine geological mapping of the Campania Region (Aiello et al., 2001; D’Argenio et al., 
2004; Sacchi et al., 2005; Insinga et al., 2008; Molisso et al., 2010; Fig. 2).  

2.1.2 Transgressive deposits (TST) 

The transgressive deposits, originated in continental, coastal paralic or marine environment 
during the phases successive to the Late Quaternary sea level rise generally appear reduced 
in thickness and studied with very high resolution seismic profiles and piston cores. The 
Italian continental margins document the variability of facies, internal geometry, 
sedimentologic expression and marker horizons (Trincardi et al., 1994). In the Naples Bay 
the TST was deposited during the rising of sea level (18-6 ky). It has been widely 
documented by Milia & Torrente (2000; 2003) and consists of three minor stratigraphic units. 
The second of them corresponds to a thick progradational unit overlying the Neapolitain 
Yellow Tuff (18 ky B.P.), the Penta Palummo Bank and the Miseno Bank.  
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Fig. 2. Subbottom Chirp profile CsC-03 (b) across the Sarno prodelta highstand deposits 
(eastern Naples Bay) and corresponding geological interpretation (slightly modified after 
Sacchi et al., 2005).  

2.1.3 Lowstand system tract deposits (LST) 

The deposits originated in sea level lowstand during the last Quaternary glacial episode 
(isotopic stage 2; Martinson et al., 1987) may be separated in mass transport deposits, base of 
slope turbiditic systems and shelf margin progradational wedges. Each sector of continental 
margin does not include all the three types of deposits, but only one or two. The 
development of each of the three types of lowstand deposits is a function of the 
morphological setting and regime of clastic supply. The mass transport deposits usually 
have a great lateral extension and are characterized by chaotic reflections or acoustic 
transparence, erosional base and thickness from several meters (Marani et al., 1986; 
Mongardi et al., 1995; Trincardi & Normark, 1988; Trincardi et al., 1994).  

2.1.4 Falling sea level system tract deposits (FST) 

The Mediterranean continental margins show several examples of falling sea level deposits, 

which can be characterized by different geometries, thickness, areal extension and lithology 

(Tesson et al., 1993; Trincardi & Field, 1991; Hernandez Molina et al., 1994). They consist of 

progradational wedges emplaced through a mechanism of erosional or forced regression 

recognized through the progressive seaward and downward shifting of the coastal onlap. In 

the Naples Bay progradational units (FST and LST), the tops of which are located at depths 

ranging from – 130 m and – 150 m, occur at the seaward termination of the wide subaerial 

erosional surface that affects the volcanic banks (Milia & Torrente, 2000; 2003; Aiello et al., 

2005).  

www.intechopen.com



 
Stratigraphic Analysis of Layered Deposits 

 

24

2.1.5 Sequence boundaries (SB) 

Two sequence boundaries have been defined as a function of the ratio between the rate of 
sea level fall and the rate of subsidence at the shelf margin (Vail et al., 1984; Posamentier & 
Allen, 1993). Type 1 sequence boundaries form when the rate of eustatic sea level fall 
exceeds the rate of subsidence; as a consequence, the subaerial exposure of the whole 
continental shelf occurs. Type 2 sequence boundaries characterize the continental margins in 
which the rate of subsidence of the outer shelf is higher than the rate of sea level fall; more 
or less extended parts of the continental shelf rest submerged or subject to deposition. Type 
1 sequence boundaries are characterized by more extended phenomena of fluvial incision.  

2.2 Facies analysis and schematic representation of the depositional environments 

The system tracts of the Late Quaternary depositional sequence include deposits 
characterized by facies related to continental, paralic coastal, shelf and deep sea depositional 
environments. The marker horizons constituting the base and the top of the system tracts 
may be represented by variable sedimentological expressions due to the differences between 
the facies and the occurrence and entity of related erosional phenomena.  

2.2.1 Continental deposits 

The continental deposits may occur in shallow areas controlled by subaerial exposure 
during Quaternary glacial periods. They consist of alluvial plain deposits in which extended 
fluvial systems have been recognized, characterized by channel deposits with incised 
thalwegs and levees. The inter-channel zones are characterized by soil formation. The filling 
of the fluvial incisions may be characterized by sediments highly varying in grain-size and 
by filling geometries related to meanders or braided streams.  

2.2.2 Paralic and coastal deposits 

The coastal and paralic depositional systems greatly vary both in morphology and 
depositional style. This variability reflects different budgets between the available sediments 
(type and quantity) and the oceanographic regime (wave-dominated, tide-dominated or 
mixed). As a general rule, the Mediterranean is characterized by a microtidal regime; the 
most of the coastal systems on the Italian margins is dominated by the waves. Coastal and 
paralic deposits may theoretically form in each phase of a relative sea level fluctuation cycle, 
but are characterized by different facies; regressive systems form in condition of sea level 
fall (forced regressions; Posamentier et al., 1992) or when the siliciclastic supply counter-
balances the relative sea level rate.  

2.2.3 Continental shelf deposits 

The sediments of the actual continental shelves may be summarized into three main types 
(Fabbri et al., 2002):  

• Sediments deposited in a phase during which the shoreline was seaward advanced 
with respect to the present-day location and successively drowned (relic sediments). 

• Sediments deposited in a phase during which the shoreline was seaward advanced 
with respect to the present-day location and successively drowned, but then reworked 
due to currents, storm waves or tides (palinsest sediments).  
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• Sediments related to the Late Quaternary highstand in equilibrium with the present-
day depositional processes.  

The continental shelf of the Naples Bay has a variable width, ranging between 2.5 km (offshore 
the western sector of Capri island) and 10-15 km (offshore the Sorrento coast). Such a 
submarine topography is controlled by the interactions between subaerial and submarine 
volcanism, strongly involving the Gulf during the Late Pleistocene and the linear erosion and 
sediment drainage along main axis of Dohrn and Magnaghi canyons (Aiello et al., 2005; Di 
Fiore et al., 2011). The eruption centres occurring on the islands of Procida, Vivara and Ischia 
range in age between 150 kyr and historical times (Rosi & Sbrana, 1987; Vezzoli, 1988).  

2.2.4 Deep sea deposits 

Slopes, basins or submarine highs are less influenced by the sea level fluctuations during the 
Late Quaternary. Based on the piston core data acquired during the last 30 ky in all the 
Mediterranean sea it is clear that the last sea level rise and the successive sea level highstand 
are represented by drapes of clayey sediments (Holocene drapes). Under the Holocene 
drapes four main types of deposits occur (Fabbri et al., 2002):  

• Turbidite deposits having variable nature (referred to specific depositional elements as 
channel-levee systems, lobes and distal, not channellised deposits).   

• Mass gravity transport deposits.  

• Deposits originated by bottom currents and related erosional or condensed surfaces.  

• Pelagic drapes.  

Different types of turbiditic deposits, mass gravity transport deposits and pelagic drapes 
have been widely recognized on the sea bottom of the Naples Bay, in the frame of research 
programmes of submarine geological mapping (Aiello et al., 2001; 2008; 2009b; 2009c).  

2.2.5 Mass gravity transport deposits 

Mass gravity transport deposits, varying in nature, internal organization and areal extension 
have been recognized in the Late Quaternary successions of the Italian Peninsula. Their 
emplacement may happen under conditions of lowstand, relative sea level rise and highstand 
of the sea level (Galloway et al., 1991; Correggiari et al., 1992; Trincardi & Field, 1991; Trincardi 
et al., 2003; Aiello et al., 2009c; Di Fiore et al., 2011). Sketched tables of the geological 
interpretation of selected Subbottom Chirp profiles have been constructed in order to show 
significant instability processes occurring in the Naples Bay (Aiello et al., 2009c; Fig. 3).  

3. Geo-volcanologic setting  

The Campania Tyrrhenian margin is characterized by the occurrence of marine areas, 
strongly subsident during the Plio-Quaternary, sites of thick sedimentation, as the Volturno 
Basin, the Naples Bay, the Salerno Valley and the Sapri and Paola basins (peri-tyrrhenian 
basins; Argnani & Trincardi, 1990; Boccaletti et al., 1990; Tramontana et al., 1995; Gabbianelli 
et al., 1996; Aiello et al., 2000). Under the Plio-Quaternary sedimentary cover, the Campania 
continental margin is characterized by the occurrence of tectonic units of Apenninic chain, 
resulting from the seaward prolongation of corresponding units cropping out on the coastal 
belt of Southern Apennines (D’Argenio et al., 1973; Bigi et al., 1992; Fig. 4).  
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Fig. 3. Sketched table showing significant acoustic facies related to submarine gravity 
instability on the continental shelf of the Naples Bay (reported after Aiello et al., 2009c).  

The main structural trends of the Campania margin are NW-SE and NNW-SSE (Apenninic) 

and are characterized, on the continental slope and in the bathyal plain, by the occurrence of 

intra-slope basins and structural highs, showing hints of intense synsedimentary tectonics 

(Aiello et al., 2009a). Two main NE-SW (counter-Apenninic) trending lineaments, i.e. the 

Phlegrean Fields-Ischia fault and the Capri-Sorrento Peninsula fault, control the structural 

setting of the Naples Bay. These lineaments have controlled the emplacement of main 

morpho-structures on the continental slope and in the bathyal plain. In a time interval 

spanning from the Middle to the Late Pleistocene the synsedimentary tectonics has played a 

major role in triggering submarine gravity instabilities.  

3.1 Somma-Vesuvius volcanic complex  

The Vesuvius volcano has been intensively studied, mainly with respect to the eruptive events, 
the recent seismicity, the geochemistry and the ground movements of the volcano and the 
related volcanic hazard (Cassano & La Torre, 1987; Santacroce et al., 1987; Castellano et al., 
2002; Esposti Ongaro et al., 2002; Mastrolorenzo et al., 2002; Saccorotti et al., 2002; Scarpa et al., 
2002; Todesco et al., 2002).  

The eruption of the Campanian Ignimbrite pyroclastic flow deposits (37 ky B.P.; Rosi &  

Sbrana, 1987) covered the whole Campania Region and part of the adjacent offshore with grey 

tuff deposits, upon which the Somma edifice started to grow. The eruptive activity ranges 

from the “Pomici di Base” (18 ky) and the “Pomici Verdoline” plinian eruptions, enabling the 

collapse of the Somma edifice and the consequent calderization, with the formation of a new 

volcanic edifice, i.e. the Vesuvius. The period from 8000 B.C. to 79 A.D. was characterized by 
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Fig. 4. Tectonic sketch map of western Campania Apennines (modified after D’Argenio et 
al., 2004). Key. 1: Shallow water carbonate and deep basinal units (Mesozoic). 2: Piggy-back 
siliciclastic units (Tertiary). 3: Pyroclastic deposits and lavas (Quaternary). 4: Continental 
and marine deposits (Quaternary). 5: Normal fault. 6: Detachment faults (barbs indicate 
downthrown side).  

three main plinian eruptions: “Mercato” (7900 B.C.), “Avellino” (3800 B.C.) and the Pompei 
eruptions (79 A.D.). The activity continued with the Pollena eruption (472 A.D.) and the 
1631 A.D. eruption and then with several small energy, effusive and explosive, giving rise to 
lava flows along the western and southern slopes of the volcano (Sheridan et al., 1981; 1982; 
Sigurdsson et al., 1982; 1984; Santacroce, 1987). The variability in the eruptive behaviour of 
the Vesuvius volcano has been explained by volcanologists with an alternation between 
periods of open conduits and periods of closed conduits, the latter being characterized by a 
relative quiescence followed by Plinian eruptions. The periods with open conduits were 
characterized by a permanent strombolian activity, frequent lava flows and mixed 
eruptions, both effusive and explosive (Rosi & Santacroce, 1983; Rosi et al., 1983; Arnò et al., 
1987). Constraints on the sedimentary basement overlying the volcano and its stratigraphic 
relationships with the Phlegrean volcanic products can be explained by the deep geothermal 
well Trecase 1, drilled by the AGIP-ENEL joint venture on the south-eastern slopes of the 
volcano (Balducci et al., 1985; Brocchini et al., 2001). Sketch stratigraphy of the Trecase 1 
exploration well is reported in Fig. 5.  

The total magnetic field map of of Somma-Vesuvius volcano shows interpretative elements 
that have an indicated value for the trend of volcanites in the volcanic complex’s peripheral 
areas (Cassano & La Torre, 1987; fig. 6). From the main sub-circulary anomaly centred on the 
volcano, two positive appendages diverge towards SE and SW. They might correspond to a 
great thickness of lava products, possibly in pre-existing depressions of the sedimentary 
basement of the graben of the Campania Plain. This assumption might explain an elongated 
magnetized body, which tends to move towards Naples Bay from the Vesuvius volcano 
through Torre del Greco; an alternative explanation would be the presence of a strip of 
eruptive vents, settled on a system of NE-SW normal faults (Bernabini et al., 1971; Finetti & 
Morelli, 1973).  
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Fig. 5. Geological and structural sketch map of the Southern Campania Plain (after Aiello et 
al., 2010) . 1: Quaternary siliciclastic sediments. 2: Somma-Vesuvius volcanic deposits; 
Neapolitain-Phlegrean, Procida and Ischia volcanic deposits. 3: Pliocene and Miocene 
siliciclastic sediments. 4: Meso-Cenozoic carbonatic units. 5: faults. 6: caldera rims. 7: 
geological cross-sections. In the inset on the right: geological cross-section of the Somma-
Vesuvius volcanic complex (from Principe et al., 1987). In the other inset: stratigraphy of the 
Trecase 1 exploration well drilled on the Somma-Vesuvius volcanic complex.  

 

Fig. 6. Total magnetic field map of the Somma-Vesuvius area with sketch structural 
interpretation (slightly modified after Cassano & La Torre, 1987) 
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A new aeromagnetic map of the Vesuvian area has been recently produced (Paoletti et al., 

2005; fig. 7). It is dominated by a large dipolar anomaly related to the Somma-Vesuvius 

volcanic complex, having an elliptical shape elongated towards south. Main geological 

structures of the area are a narrow anomaly on the western flank of the edifice (A in fig. 7) 

and an irregular shape of the anomaly on the south-eastern slope of the volcano, where 

small anomalies have been observed (B, C and D). A double minimum at the top of the 

volcano is articulated in a bigger one placed north of Mt. Somma and a larger one next to 

Valle dell’Inferno. High frequency anomalies occur in the area surrounding the edifice, 

related to the high cultural noise of this densely inhabitated area.  

 

Fig. 7. Aeromagnetic map of the Vesuvian area (after Paoletti et al., 2005). The red lines 
show the railway lines, the blue line shows the coastline (see the text for the description of 
the magnetic anomalies).  

3.2 Phlegrean Fields volcanic complex  

The Phlegrean Fields are a volcanic district surrounding the western part of the Gulf of 

Naples, where volcanism has been active since at least 50 kyr (Rosi & Sbrana, 1987). They 

correspond to a resurgent caldera (Rosi & Sbrana, 1987; Orsi et al., 2002) with a diameter of 

12 km (Phlegrean caldera) and resulting from the volcano-tectonic collapse induced from 

the eruption of pyroclastic flow deposits of the Campanian Ignimbrite (37 ky B.P.). Coastal 

sediments ranging in age from 10.000 to 5300 years crop out at 50 m altitude on the sea level 

in the marine terrace of “La Starza” (Gulf of Pozzuoli), indicating a volcano-tectonic uplift of 

the caldera center (Rosi & Sbrana, 1987; Dvorak & Mastrolorenzo, 1991).  

Monogenic volcanic edifices, probably representing the offshore rim of the caldera center 

(Banco di Pentapalummo, Banco di Miseno, Banco di Nisida) are well known from a 

geological and volcanological point of view (Latmiral et al., 1971; Pescatore et al., 1984; Fusi 

et al., 1991; Milia, 1996; Aiello et al., 2001; 2005; Fig. 8).  
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Fig. 8. Sparker seismic profiles showing the Banco di Nisida (upper inset) and the Banco di 
Ischia (lower inset) relic volcanic edifices (modified after Latmiral et al., 1971). The vertical 
scale is of 250 msec (twt).  

The geological setting of the Phlegrean Fields and their stratigraphy have been discussed by 
Rosi & Sbrana (1987). The Quaternary volcanic area of the Phlegrean Fields is located in a 
central position within the graben of the Campania Plain.  

The main structural element is represented by a wide caldera (the Phlegrean caldera; fig. 9), 
individuated after the volcano-tectonic collapse following the emplacement of the 
Campanian Ignimbrite (Barberi et al., 1991), a large pyroclastic flow, which covered the 
whole plain about 37 ky ago. Within the Phlegrean caldera and along its margins, the 
volcanic activity continued since to historical times (Rosi & Sbrana, 1987).  

 

Fig. 9. Volcano-tectonic sketch map of the Phlegrean Fields volcanic complex (modified after 
Rosi & Sbrana, 1987).  
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Main volcano-tectonic structures are the Starza marine terrace, the Miseno-Baia area., the 
Mofete area and the central zone of Pozzuoli-Solfatara-Agnano (Rosi & Sbrana, 1987; fig. 9). 
The Starza terrace is a marine erosional terrace placed near the centre of the caldera, composed 
of littoral deposits overlain by thin subaerial pyroclastic deposits. It is articulated in two levels 
separated by a step; the upper one, on which the town of Pozzuoli is superimposed, reaches a 
height of 50-54 m, while the lower one develops at heights of 40 m. The Miseno-Baia area is 
characterized by an active fault at the Bacoli harbour, downthrowing the tuffs of the Bacoli 
volcano. Contemporaneous eruption in different sectors of the caldera have been suggested 
(Isaia et al., 2009).  

Gravimetric and magnetometric informations available for Phlegrean Fields have been 
summarized (Cassano and La Torre, 1987) focussing on volcanological and structural 
reconstruction of the area. From north to south, the most important gravimetric elements are 
the positive anomaly related to the carbonatic horst of Massico Mt., the negative anomaly of 
the Volturno graben, the positive gravimetric anomalies of Villa Literno and Parete, a marked 
gravimetric gradient with a counter-Apenninic trend, crossing the Somma-Vesuvius volcanic 
complex, and, to the south, separating the Acerra graben from the Pompei graben and finally, 
the gravimetric gradient corresponding to the Sorrento Peninsula. The total magnetic field 
map (Cassano & La Torre, 1987; fig. 10) has evidenced a strong positive anomaly in the area of 
Monte di Procida, related to the weaker anomalies of the Procida Channel, Procida and Ischia. 
It may be related to considerable volumes of lavas, confirmed by the presence of trachybasaltic 
and latitic eruptive centres at Procida. Another large magnetic anomaly characterizes the 
Astroni-Agnano volcanic area, probably the result of the overlapping of several lava bodies. 
Positive anomalies have been found at Camaldoli, probably related to pre-calderic lavas. The 
absence of magnetic anomalies in the Bagnoli-Posillipo area may be due to several factors, 
such as the limited presence of buried lavas or hydrothermal phenomena.  

 

Fig. 10. Total magnetic field map of the Phlegrean Fields area (after Cassano and La Torre, 
1987).  

A new aeromagnetic map supplement of the northern sector of the Phlegrean Fields allows 
for a better geological interpretation of the structural patterns and morpho-structural 
features of the Volturno Plain and the Gulf of Pozzuoli and its offshore areas (fig. 11). Main 
magneto-structural features are the caldera rims of the Neapolitain Yellow Tuff (fig. 11; A) 
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and the Torregaveta anomaly (fig. 11; B). A small anomaly corresponds to an isolated 
volcanic body (fig. 11; C). The Patria Lake anomaly (fig. 11; D) has a sub-circular shape and 
a diameter of about 10 km. A complex pattern of magnetic anomalies (fig. 11; E) coincides 
with the Parete volcanic complex (Aiello et al., 2011), while another isolated anomaly (fig. 
11; F) corresponds to the Volturno river.  

 

Fig. 11: Map of the horizontal derivative plotted in the gray scale of the southern Volturno 
Plain (reported from Paoletti et al., 2004). The letters A-F indicate the main magnetic 
anomalies recognized in the area.  

3.3 Ischia and Procida volcanic complexes 

The Ischia island represents an alkali-trachytic volcanic complex, whose eruptive activity 
lasted from the Late Pleistocene up to historical times (Vezzoli, 1988). A resurgent caldera, 
about 10 km wide, where the eruptive activity and tectonics gave rise to the uplift along faults 
of the Mount Epomeo block (Orsi et al., 1991). The main eruptive events of the Ischia-Procida-
Phlegrean Fields system suggest at least five eruptive cycles, ranging in age from 135 ky to 
prehistorical and historical times. On the Ischia island volcanic deposits, resulting from both 
effusive and eruptive eruptions, extensively crop out and have constructed volcanic edifices; 
some of them are already well preserved, other ones are completely dismantled or buried 
(Forcella et al., 1981; Gillot et al., 1982; Luongo et al., 1987; Vezzoli, 1988). On the island 
landslide deposits, derived from the accumulation and fragmentation of pre-existing volcanic 
rocks, extensively crop out (Guadagno & Mele, 1995; Mele & Del Prete, 1998; Calcaterra et al., 
2003; De Vita et al., 2006; 2007; Di Maio et al., 2007; Di Nocera et al., 2007).  

Many geo-volcanologic studies have been carried out on the island, starting from the syntheses 
of Rittmann (1930; 1948) and then on the specific aspects of the eruptive activity of the island 
and related geological processes (Forcella et al., 1981; Gillot et al., 1982; Chiesa et al., 1985; 1987; 
Poli et al., 1987; 1989; Civetta et al., 1991; Orsi et al., 1991; Luongo et al., 1997). Particular 
meaning is covered by the aspects concerning the geochronology of the volcanic deposits in the 
island (Orsi et al., 1996) and the time evolution of the magmatic system (Luongo et al., 1997).  
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The geologic and volcanologic history of the Ischia island has been characterized by a main 
event, represented by the eruption of the Green Tuff of the Epomeo Mt., which verified 55 
ky B.P. ago, allowing for the downthrowing of the central sector of the island consequent to 
a caldera formation (Orsi et al., 1991; Acocella et al., 1997; Acocella & Funiciello, 1999). 
Consequently, the volcanic activity of the island has been conditioned by a complex 
phenomenon of calderic resurgence, started from 30 ky B.P., allowing for the gradual uplift 
and emersion of the rocks deposited in the caldera, initially submerged under the sea level. 
The rate of uplift, indicating the caldera resurgence, has been evaluated in about 800-1100 m 
(Barra et al., 1992).  

The tectonic activity is characterized by systems of extensional faults, NW-SE and NE-SW 
trending, Plio-Quaternary in age (Acocella & Funiciello, 1999; Acocella et al., 2004). NW-SE 
and NE-SW systems of extensional fractures predominate in all the island and around the 
resurgent caldera block, suggesting a relationship with regional extensional structures. N-S 
and E-W trending normal faults have been found along the rims of the Epomeo block and 
interpreted as controlled by the caldera resurgence. The process of resurgence has locally 
substituted the volcanic activity during the last 33 ky, since the most of the pyroclastic 
products coeval with the resurgence has been erupted out of the uplifted area. 

Marine geological studies already showed that the Ischia island lies on a E-W trending 
volcanic ridge (Bruno et al. 2002; Passaro, 2005; de Alteriis et al., 2005). A Digital Elevation 
Model (DEM) of the Ischia island, based on Multibeam bathymetric surveys and integrated 
by onshore topography is shown in fig. 12. 

 

Fig. 12. DEM of the Ischia island resulting from the merging of different datasets of 
Multibeam bathymetry. The marine DEM has been merged with a Digital Terrain Model of 
the coastal area derived from topographic maps.  

The continental slope off south-western Ischia island is incised by a dense network of 
canyons and tributary channels, starting from a retreating shelf break, parallel to the 
coastline and located at varying depths. Large scars characterize the platform margin off 
south-western Ischia island, in particular the scar of the southern flank of the island, 
corresponding onshore to the Mount Epomeo block and probably at the origin of the Ischia 
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Debris Avalanche (Chiocci & de Alteriis, 2006).Volcanic banks, having irregular morphologies, 
have been identified on the south-western flank of the island, as the “Banco di Capo Grosso” 
and the banks “G. Buchner” and “P. Buchner” (Passaro, 2005; de Alteriis et al., 2006). A large 
field of hummocky deposits, named the Ischia Debris Avalanche has put in evidence by swath 
bathymetric surveys coupled with Sidescan Sonar imagery and seismic profiles. Detailed 
piston coring and tephrostratigraphy suggested that the volcano-tectonic collapse originating 
the avalanche occurred during prehistorical times (Chiocci & de Alteriis, 2006). A stratigraphic 
framework for the last 23 ky marine record in the southern Ischia offshore has been recently 
constructed based on AMS 14C dating and tephrostratigraphic analysis (de Alteriis et al., 2010).  

Previous studies on the stratigraphic sequences cropping out in the Procida island have been 
carried out (Rosi et al., 1988a; 1988b), improving the geological knowledge of the volcanic 
district (Di Girolamo & Stanzione, 1973; Pescatore & Rolandi, 1981; Di Girolamo et al., 1984). 
Five monogenic volcanoes (Vivara, Terra Murata, Pozzo Vecchio, Fiumicello and Solchiaro) 
have been active over the last 80 ky, producing pyroclastic deposits and lava domes. New 
stratigraphic data on Procida based on geochemistry of major and trace element of volcanic 
deposits older than 14 ky have been recently presented (De Astis et al., 2004).  

4. Marine seismic reflection and magnetic data in the Naples Bay: from old to 
new technologies 

Seismic exploration is commonly performed by means of sources that can generate elastic 
waves from a rapid expansion of underwater gas bubbles. This can generate many pulses 
that take the form of double exponential spikes of gradually decreasing amplitude (Cole, 
1965). Several technologies can be used in order to produce an acoustic pressure wave into 
water such as free-falling weights, chemical explosives, piezoelectric or magneto-resistive 
sources, sparkers, boomers, airguns and water-guns. Each of these sources has a precise 
signature and wave frequency that can be considered optimal in function of depth, 
resolution, etc. The main characteristic of a seismic source is to produce a single high-energy 
spike that is detectable, despite the presence of noise, after crossing the portion of the seabed 
that we wish to study. A broad range of frequencies can be reproduced, as well as a broad 
range of waveforms can be generated in function of frequency-dependent absorption of 
elastic waves and nearby boundaries presence.  

Seismic sources for offshore investigation may be impulsive, providing a short-lived burst of 
elastic wave energy and swept-frequency, producing a low-amplitude sinusoidal signal. 
Impulsive sources such as explosives can cause damages to marine flora and fauna; for this 
reason towed sources activated for only few seconds must be preferred. The type of source 
should be chosen depending on the required resolution and signal penetration. Vibration of 
piezoelectric and magnetic materials, electric pulses, or pressured fluid discharge, often 
organised into arrays, can be considered good seismic sources whose signature, spectra and 
energy output can vary considerably. Sparkers (Knott & Hersey, 1956) and Boomers 
(Edgerton & Hayward, 1964) systems are based respectively on an electrode array powered 
by high voltage capacitor bank and on an electromagnetic source. Sparkers and boomers can 
generate seismic energy to explore continental margin when there are near surface or deep-
towed (10-50 m off the sea), moreover boomers with pulse length of 0.1-0.2 ms can be used 
to explore very shallow waters. Sparker system can produce low-frequency acoustic wave 
(the maximum frequency contained in the spectrum of acoustic signal is approximately 2000 
Hz) that can penetrate several hundred meters of sediment.  
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The Multispot Extended Array Sparker (M.E.A.S.) is a seismic source consisting of sparker 

electrodes disposed on a square metal cage. This kind of system, patented by Institute of 

Oceanology of Istituto Universitario Navale of Naples (Italy) allows obtaining a good signal 

penetration and high resolution seismic data with relative small energy use. The M.E.A.S. 

signal is a short impulse with a large frequency spectrum content (fig. 13). 

Mirabile et al. (1991) tested the acquisition geometry in order to reduce a superimposing of 

source signal with return echoes that respect the “far field” condition and demonstrated the 

utility of some techniques for signal de-convolution in order to produce the so-called 

seismic profiles “deghosting”. Seismic reflection data require a complex series of numerical 

treatments to increase the signal/ noise ratio of a single profile as well as obtaining a high 

resolution seismic section to improve the geological interpretation. 

A more recent technology is the Sparker source SAM that is characterized by a varying 

number of electrodes that can be disposed as “dual-in line” (SAM96) and “planar array” 

multi electrode electro-acoustic source (SAM 400/800; fig. 14). 

         

Fig. 13. Signature and spectrum of Multispot Exended Array System (modified after 
Mirabile et al., 1991). 

        

Fig. 14. Left: Signal (received by a sub-surface hydrophone) generated by SAM system at 
firing energy 200 J duration of primary impulse 0.3 ms (from Corradi et al., 2009); Rigth: 
Square radiation diagram that shows the high system directivity. 
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Other seismic sources are the Airguns and Waterguns, recently used in the Naples Bay in 

submarine geological mapping and basin studies (D’Argenio et al., 2004; Aiello et al., 2005; 

2011). The former one produces high-energy seismic pulses short in duration by means of a 

discharge of compressed air into water (fig. 15), while the latter one produces the sudden 

collapse of a cavitation volume into water that is proportional to kinetic energy of the water 

plug. Airguns produce a wide range of pulse shapes and source spectra. 

 

Fig. 15. Example of water-gun signature in far field and the frequency spectum (modified 
after Ranieri & Mirabile, 1991). 

The seismic exploration of Naples Bay has been performed mainly through Sparker systems 

and Watergun sources. The evolution of sources capability in terms of technological 

advances together with processing techniques refinement allowed high resolution studies of 

main intermediate and deep geological structures in the Bay of Naples. Historically some of 

the first surveys were conducted by R/V Atlantis II (Woods Hole Ocean. Cruse 59) using an 

Airgun System. Subsequently, in 1970 R/V Dectra owned by Istituto Universitario Navale of 

Naples (Italy) obtained a densely-spaced seismic survey through SPARKER E.G.G. (8 

kjoules) and BOOMER systems in the Naples and Pozzuoli Bays (Latmiral et al., 1971; 

Bernabini et al., 1973).  

Since the 70's until now many attempts have been carried out in order to improve seismic 

technologies performance, data acquisition, and processing. In the practice of seismic 

prospecting, Sparker systems technologies were widely analyzed using different acquisition 

systems. Some ones consist of a single electrode hotter than a mass electrode, other ones of 

more electrodes over distributed mass (eg. Sparker Teledyne and Sparker EGG).  

De Vita et al. (1979) tried to identify, also based on experimental data, which one is more 

appropriate than the two configurations (single electrode or multi-electrode) based on the 

fundamental equations for the design of an "array". Sparker signals are the base band 

signals, transitory and continuous spectrum. Based on these measurements it has been 

demonstrated that energy should never exceed 400 joules/electrode to achieve the best 

compromise between resolution and electro-acoustic performance.  

Ranieri and Mirabile (1991) reported technical and scientific results obtained through the 

geophysical survey of the deep geological structure of the Phlegrean Fields volcanic 

complex. It was aimed at improving the knowledge on technologies and sources that are 

more appropriated for the investigation of the continental margins, particularly in complex 

volcanic areas like the Gulf of Naples (Fusi et al., 1991).  
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Among the sources tested in studies of the Gulf of Naples there are the explosives (Mirabile 
et al., 1989), the Sparker and the Watergun, while the details to study geomorphological 
data were analyzed through the Surfboom and the Side Scan Sonar. MEAS (Multispot 
Extended Array Sparker; Mirabile et al., 1991) seismic source (12 and 16 KJ), consists of an 
array of 36 (6x6) electrodes placed inside a metal cage in a square size 4.5x4.5 m, spaced 0.75 
m and fed in phase. The energy used by the MEAS has a pulse of short duration, the order 
of 10 milliseconds and a significant spectral content up to 1000 Hz, with maximum energy 
output around 150 - 200Hz. Each echo corresponds to an acoustic discontinuity (impedance 
contrast) that can generally be interpreted in geological terms.  

MEAS system has been largely used in order to acquire a large database of single channel 
reflection seismics in the Bay of Naples (Mirabile, 1969; Latmiral et al., 1971; Mirabile et al., 
1991).  

Recently, by means of Multi- tip SAM 96 (0.1-1kJ), SAM400 (1-4KJ) transducer it was 

possible to record high resolution seismic data in the Bay of Naples both in coastal and deep 

sea research (Corradi et al., 2009). Some evidences on magnetic field anomalies in the Gulf of 

Pozzuoli come from the magnetic map of Galdi et al. (1988) who reported a NE-SW 

interruption of main regional trend where some circular local anomalies are related to 

products of post-calderic volcanic activity (Rosi & Sbrana, 1987).  

Significant correlations between geophysical data come from the comparative analysis of 
seismic and magnetometric datasets. A magnetometer usually measures the strength or 
direction of the Earth’s magnetic field. This last can vary both temporally and spatially for 
various reasons, including discontinuities between rocks and interaction among charged 
particles from the Sun and the magnetosphere. Most technological advances dedicated to 
measure the Earth's magnetic field have taken place during World War II. Presently, the 
most common are: the fluxgate, the proton precession, Zeeman-effect, sensor suspended-
magnet, and satellite magnetometers. The fluxgate and the proton precession are effectively 
the most used for marine surveys, they are both cable drawn. The fluxgate magnetometer 
was the first ship-towed instrument, and it can measure vector components of the magnetic 
field. Its sensor consists of two magnetic alloy cores that are mounted in parallel 
configuration with the windings in opposition. The proton precession magnetometer 
consists of a sensor containing a liquid rich in protons surrounded by a coil conductor, the 
sensor is towed from the vessel through an armoured coaxial cable whose length depends 
on vessel length and seafloor depth. Circulating current within the coil generates a magnetic 
field of approximately two orders of magnitude the Earth's field, in this way 1 proton each 
10 will follow the coil positioning. Stopping the induced magnetic field, the protons will 
align according to the Earth's magnetic field through a movement of precession.  

The proton precession magnetometer is one of the most used for offshore surveys and it 
records the strength of the total field by determining the precessional frequency (f) of 
protons spinning about the total field vector (F) as follows: 

 f=γpF/2π (1) 

where γp is the gyromagnetic ratio of the proton uncorrected for the diamagnetic effect, so 
that knowing its from laboratory measurements, the total field in nanotesla can be 
calculated as: 
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 F=23.4866 x f   (2) 

The total field calculated by means of equation (2) is stored by magnetometer into a string of 
data containing position data that is displayed as an x,y chart. The signal frequency is 
measured on a time span of 0.5 seconds when the signal-noise ratio is highest. To ensure a 
maximum value of initial value of proton precession the angle between the axis of the coil 
and the Earth’s field it is necessary to use two orthogonal coils. The measured field must be 
corrected with respect to the regional field in order to evaluate the anomalies. 

The proton precession magnetometer was largely used to explore magnetic anomalies in the 
Bay of Naples. Interesting examples of magnetic data acquisition related in the Bay of 
Pozzuoli and Naples is reported in Galdi et al. (1988) and Aiello et al. (2004). As shown in 
Fig. 16 (modified after Galdi et al., 1988) both positive and negative anomalies were 
detected, using a magnetometer model Geometrics G-856, globally the area shows an 
interruption of the regional trend from NE-SW where circular anomalies are probably 
connected to a post-calderic activity of the Phlegrean Fields. Moreover, the internal area of 
the Pozzuoli Bay is characterized by a negative anomaly that increases towards the south. 
Conversely, in the external area there is mainly an alternance of positive and negative 
anomalies with a dominance of positive values near the area of Bagnoli. For a detailed 
analysis of the magnetic anomaly field of the volcanic district of the bay of Naples see 
Secomandi et al. (2003). Recently, Aiello et al. (2004) presented a high resolution map of the 
Bay of Naples based on data acquired during oceanographic cruise GMS2000-05 performed 
in October-November 2001 on board of the R/V Urania using the EG&G Geometrics proton 
magnetometer G-811. 

 

Fig. 16. Magnetic field anomalies in the Bay of Pozzuoli (modified after Galdi et al., 1988). 

5. Results 

Main results on seismic stratigraphy and marine magnetics of selected areas in the Naples 
Bay, i.e. Somma-Vesuvius volcanic complex offshore, Naples Gulf and Phlegrean Fields 
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volcanic complex offshore and Ischia and Procida volcanic complexes offshore are 
illustrated in the following paragraphs based on seismic and magnetic datasets.  

5.1 Seismic stratigraphy and marine magnetics of the Somma-Vesuvius volcanic 
complex offshore 

A three-dimensional reconstruction of a large volcanic structure located offshore the 

Somma-Vesuvius volcano, next to the town of Torre del Greco (Naples, Italy) has been 

recently carried out (Aiello et al., 2010). It represents the seaward prolongation of the 

Vesuvius volcano and has been carried out using integrated geological interpretation of 

densely spaced Watergun seismic profiles and magnetic data recorded on the same 

navigation lines. Magneto-seismic modelling makes available new information on the 

geological structure of the Vesuvius volcano, relatively to its offshore.  

In the study area the magnetic properties allow one to categorize the volcanic nature of 

seismo-stratigraphic units recognized through seismic interpretation. A semi-quantitative 

integrated interpretation of bathymetric and seismic data has been obtained resulting in a 

3D topographic and seismic reconstruction of the Torre del Greco volcanic structure.  

Significant results on the shallow crustal structure of the Vesuvius volcano and the 
relationships between seismic velocities and rock lithologies in volcanic environment 
have been recently obtained based on seismic passive tomography of the volcano (Zollo et 
al., 1996; 1998; 2003; Capuano et al., 2003). Onshore seismic reflection data on the volcano 
indicated a SW lateral collapse, which probably occurred between 35 and 11 ky ago 
(Bruno and Rapolla, 1999). Buried seismic units with reflection free interiors have been 
interpreted as volcanic deposits erupted during and since the formation of the breached 
crater of the Monte Somma volcano, preceding the growth of Vesuvius (Milia et al., 1998). 
Other features include the warping of lowstand marine deposits by undersea 
cryptodomes, normal faults indicating a seaward collapse of a volcano and a small 
undersea slump produced by Vesuvius eruption of 1631. The AD 79 Plinian eruption of 
Vesuvius that buried Pompei and Herculaneum began with pumice falls followed by 
pyroclastic currents (Milia et al., 2008). These currents reached Herculaneum and entered 
the sea, forming a fan.  

A belt of sharp magnetic anomalies has been already highlighted offshore the Vesuvius 

volcano (Aiello et al., 2004), suggesting the occurrence of a NNW-SSE structural alignment 

of magnetic anomalies and related seismic structures. This has not been mentioned by 

previous authors, who had suggested NE-SW trending normal faults (Bernabini et al., 1973; 

Finetti & Morelli, 1973; Cassano & La Torre, 1987). Slight magnetic anomalies, located 

offshore the town of Torre Annunziata, probably correspond to the seaward prolongation of 

the Vesuvian lavas.  

Seismic interpretation already enabled the identification of acoustically transparent, mound-

shaped volcanic structures. These correspond to sharp and delineated magnetic anomalies, 

overlying the top of a seismic unit, interpreted as Campanian Ignimbrite pyroclastic flow 

deposits (CI; 35 ky B.P.; fig. 17). The volcanic domes represent submerged or buried 

parasitic vents, genetically related to the activity of the Somma-Vesuvius volcano during 

recent times (Aiello et al., 2004; 2005).  
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Fig. 17. Multichannel seismic profile GPNA19 located offshore the Vesuvius and 
corresponding geologic interpretation (reported after Aiello et al., 2010). Two isolated 
buried volcanic mounds occur near the top of the Campanian Ignimbrite volcanic unit (in 
grey-blue in the profile). If we consider the CI unit as a stratigraphic marker (35 ky B.P.) the 
age of the establishment of the volcanic domes on the Naples Bay continental shelf is 
probably post 35 ky B.P.  

Several seismic units and related unconformities have been recognized (D, CI, BV, B, E units 
in the figures). The deepest one (D unit) is represented by the upper part of a Middle-Late 
Pleistocene prograding wedge, supplied by the Sarno river mouth, characterized by low 
angle dipping reflectors, indicating a NW-SE progradation. Its top is truncated by an 
erosional unconformity marking also the base of the CI unit.  

The CI represents an important seismic unit occurring in the eastern Naples Bay (Fig. 17). 

The CI pyroclastic flow deposits carpeted the whole Campania Plain during a major eruption 

related to the Phlegrean Fields about 35 ky B.P. (Rosi & Sbrana, 1987). This unit underlies 

both the Torre del Greco volcanic structure and buried and isolated mounds. Since the CI 

represents an important stratigraphic marker in the Naples Bay, it can be assessed that both 

the isolated domes and the Torre del Greco volcanic structure are younger than 35 ky B.P. 

(age dating of the CI deposits). Buried and isolated volcanic mounds, genetically related to 

the Vesuvius activity, have been distinguished through seismic interpretation (fig. 17).  
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The Torre del Greco volcanic structure extends for about 7.5 km offshore the Vesuvius and 
corresponds to a main magnetic anomaly (fig. 18) reaching intensity of 400 nT. It shows an 
acoustically transparent seismic facies and three main elevated peaks. 

 

Fig. 18. Multichannel seismic profile GRNA07 located offshore the Vesuvius and 
corresponding geologic interpretation (reported after Aiello et al., 2010). The Torre del Greco 
volcanic structure is depicted by the profile.  

The total magnetic field offshore the Somma-Vesuvius volcanic complex shows that the 
shape of the anomalies is dipolar; there is no apparent effect caused by the occurrence of 
remnant magnetization with a different direction to that of the present-day main field (fig. 
19). Three main anomalies are evident following a NW-SE direction, the most southern of 
which being the least intense, in a relatively magnetically quiet area. The volcanic structures 
recognized on seismic profiles are located in a complex magnetic anomaly area, which is 
made up of several anomalies, reaching a maximum intensity of 400 nT. This is one of the 
highest values detected in the whole Naples Bay. These volcanic bodies represent the 
seaward prolongation of the Vesuvius volcano. They are interpreted as a strip of volcanic 
vents, which have been settled on a system of NNW-SSE normal faults, as confirmed by the 
integrated interpretation of seismic, magnetic and bathymetric data. 

5.2 Seismic stratigraphy and marine magnetics of the Naples Bay and Phlegrean 
Fields volcanic complex offshore 

A grid of Sparker Multitip seismic profiles recorded in the Gulf of Pozzuoli in the frame of 
research projects of submarine geologic cartography has been interpreted to give new 
insights on seismic stratigraphy of Pozzuoli, ì.e. the submarine prolongation of the 
Phlegrean Fields volcanic complex. The navigation map of the interpreted sections in the 
Gulf of Pozzuoli is shown in fig. 20.  
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Fig. 19. Map of the total magnetic field offshore the Somma-Vesuvius volcanic complex. In 
the inset on the left map of the total magnetic field of the Naples Bay (reported after Aiello 
et al.., 2010). In the inset on the right detailed map of the magnetic anomalies off the 
volcano. Three intense and dipolar magnetic anomalies are aligned along a direction parallel 
to the Tyrrhenian coast, having settled along a system of NNW-SSE trending normal faults 
offshore the volcano.  

 

Fig. 20. Navigation map of interpreted seismic profiles in the Pozzuoli Bay  

The seismic profile L68_07 (fig. 21) running from the western continental shelf of the 
Pozzuoli Gulf and the Nisida island has been interpreted to show the main stratigraphic and 
structural features of the Pozzuoli Gulf, reported in the geological interpretation (in the low 
inset of fig. 21).  

A sketch stratigraphic table (Fig. 22) represents the key to the geological section of fig. 21 and 
describes the main characteristics and possible chronostratigraphic attribution of the seismic 
units (Milia, 1998). Large compressional features have been individuated on the seismic 
section, i.e. the Punta Pennata anticline, the central syncline of the Pozzuoli Gulf and the 
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Nisida anticline. These features involve intensively in deformation the volcano-sedimentary 
unit V3 (fig. 21) and have individuated during compressional events genetically related to 
main tectonic and magmatic events involving the Pozzuoli area during the Late Quaternary.  

 

Fig. 21. Seismic profile L68_07 in the Pozzuoli Gulf and corresponding geological 
interpretation  

Kilometer-scale folding deformed the Pozzuoli sequences during an important compressional 
event. In fact, the uplift of the marine terrace of “La Starza”, on which the Pozzuoli town is 
located (Colantoni et al., 1972; Dvorak & Mastrolorenzo, 1991; Barra, 1992) and the 
formation of an erosional platform on the inner Pozzuoli continental shelf are linked to an 
anticlinal crest, while the present basin depocenter is located on a syncline (fig. 21). These 
folds formed during the deposition of the seismic sequence G3 (fig. 21), characterized by 
wedging geometries thinning towards the hinge of the anticline. 

The seismo-stratigraphic analysis has allowed to distinguish eight main seismic units (figs. 27 
and 28). The oldest one (V3 figs. 21 and 22) is a volcano-sedimentary unit related to the 
northern margin of the Pentapalummo Bank, characterized by discontinuous seismic reflectors. 
The unit is intensively deformed in correspondence to Punta Pennata and Nisida  
anticlines, separated by the central syncline of the Pozzuoli Gulf. The overlying unit (G3 figs. 
21 and 22) is composed of clastic deposits, characterized by discontinuous to parallel seismic 
reflectors. It has deposited in the whole Pozzuoli Gulf and is characterized by wedging and 
growth due to synsedimentary deformation contemporaneous to the individuation of folds.  
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Fig. 22. Sketch table of the seismic units recognized in the stratigraphic sketch diagram of 
fig. 21 (Pozzuoli Gulf).  

The dk unit distinguishes volcanic dykes, characterized by acoustically transparent sub-

vertical volcanic bodies., locally bounded by normal faults. The G2 unit is composed of clastic 

deposits and is characterized by parallel seismic reflectors in the whole Pozzuoli Gulf.  

From the central Pozzuoli Gulf to Nisida a wedge-shaped seismic unit, genetically related to 

the Neapolitain Yellow Tuff (NYT; 12 ky B.P.; Scarpati et al., 1993) has been identified (fig. 

21). It interstratifies with the tuff cones of the Nisida complex, genetically related to the 

Nisida bank and the Nisida island (PC fig. 21). The NYT/PC unit is overlain by the G3 unit, 

the most recent one in the sedimentary filling of the Pozzuoli area (fig. 21). TST and HST 

deposits of the Late have also been identified off the Nisida island.  

The interpreted map of the magnetic anomalies in the Gulf of Pozzuoli is shown in fig. 23 

(modified after Galdi et al., 1988). It has allowed to distinguish both areas characterized by 

positive anomalies (represented in yellow) and areas characterized by negative anomalies 

(represented in light yellow). The inner continental shelf of the Gulf of Pozzuoli is regarded 

as negative magnetic anomalies. In particular, the area surrounding the Pozzuoli harbour 

(from the Caligola pier to the Pirelli jetty) does not show significant magnetic anomalies. On 

the contrary the area adjacent the resort Lucrino-Punta Pennata owns a negative anomaly 

increasing southwards up to the magnetic minimum at 600-700 m in correspondence to the  
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Fig. 23. Interpreted map of the magnetic anomalies of the Gulf of Pozzuoli (modified after 
Galdi et al., 1988). The positive anomalies are represented in yellow and the negative 
anomalies in light yellow.  

Baia Castle ( - 100 nT). On the outer shelf of the Gulf of Pozzuoli it is possible to observe 
alternating magnetic maxima and minima. In particular, an area of magnetic maximum is 
located on a belt long about 1.7 km, NE-SW oriented. At the same time, the inner continental 
shelf of the Gulf of Pozzuoli, from Bagnoli to the Rione Terra of Pozzuoli shows two strong 
magnetic anomalies, separated by a thin belt having a normal magnetic value. Proceeding 
seawards, in the offshore surrounding Bagnoli, two magnetic minima (- 40 nT and – 60 nT) 
are positioned, which result slightly E-W elongated, culminating with the absolute magnetic 
minimum (-100 nT) in correspondence to the Baia Castle. Four magnetic sections, 
respectively NE-SW and NW-SE oriented have also been constructed (fig. 24; modified after 
Galdi et al., 1988). On the vertical axis the magnetic anomalies (nT) and the depths (m) have 
been reported on the same scale, while on the horizontal axis the distances, expressed in 
meters have been reported (fig. 24).  

The magnetic section A-A’ (in the upper inset of fig. 24) runs from Punta Pennata to the 
Pozzuoli town (Via Napoli). The total magnetic intensity shows a trending with a magnetic 
minimum of – 80 nT in the central area (corresponding to a depth of the sea bottom of – 90 
m) and a magnetic maximum of 70 nT in correspondence to the Pozzuoli shoreline. The 
magnetic section B-B’, translated of 2.4 km towards south-east, shows, starting from south-
west a monotonous magnetic trend up to the offshore surrounding Nisida, where a strong 
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increase of the gradient occurs. The magnetic highs occurring nearshore appear to be related 
not to the geology, but to the occurrence of the industrial systems of Bagnoli.  

 

Fig. 24. Magnetic sections of the iso-anomalies NE-SW oriented in the Pozzuoli Gulf 
(modified after Galdi et al., 1988).  

5.3 Seismic stratigraphy and marine magnetics of Ischia and Procida volcanic 
complexes offshore 

Marine geophysical data, in particular Multibeam bathymetry and reflection seismics have 
allowed to study the submerged sectors of the Ischia island (Naples Bay; Aiello et al., 2009c; 
Passaro, 2005). They are the site of submarine instability processes, having both catastrophic 
(instantaneous) and continuous characteristics (accelerated erosion along submarine 
canyons or channels, debris fluxes along channels and creeping). The geological 
interpretation of the marine DEM of Ischia island, already shown in fig. 12 has put in 
evidence an articulated topography of the sea bottom. A complex stratigraphic architecture, 
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with intercalations between volcanic and sedimentary units is revealed by the interpretation 
of high resolution seismic reflection profiles.  

A sketch stratigraphic scheme has been constructed in the northern Ischia offshore (fig. 25). 
Forced regression prograding wedges (FST), pertaining to the Late Quaternary depositional 
sequence, appear on the continental shelf off the northern Ischia island. Debris avalanche 
deposits, having a wedge-shaped external geometry and chaotic facies are arranged in two 
distint, superimposed bodies (H1 and H2). The wedges are characterized by facies 
hetheropy with the upper seismic unit of the basin filling. The lower seismic unit has 
parallel reflectors and shows bidirectional onlaps in correspondence to depressions eroding 
the top of the underlying seismic unit. The intermediate unit is characterized by parallel to 
sub-parallel seismic reflectors. It shows a strong wedging in correspondence to a normal   

 

Fig. 25. Seismic profile L27 offshore northern Ischia and corresponding geological 
interpretation (modified after Aiello et al., 2009).  

 

Fig. 26. Total magnetic field map of the Ischia Bank (south-eastern Ischia offshore) 
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fault (fossilized by an erosional unconformity located at the top of the unit) and stratigraphic 

relationships of facies hetheropy with the upper part of dome-shaped, buried volcanic 

structures. The upper unit is characterized by parallel to sub-parallel seismic reflectors and 

locally by prograding clinoforms. It appears to strongly downthrown in correspondence to a 

normal fault and shows facies hetheropy with the lower part of dome-shaped buried volcanic 

structures. Mounded volcanic edifices are in lateral contact with the lower seismic unit of the 

basin filling and partly, with the second one and are truncated by an erosional unconformity 

located at the top of the unit 3. An undetermined volcanic unit, having facies hetheropy with 

the unit 3 is eroded at the top by a subaerial unconformity and interpreted as volcanic acoustic 

basement. A total magnetic field map of the Ischia Bank is shown in fig. 26. 

6. Conclusions 

Seismic stratigraphy and marine magnetics in the case histories of Somma Vesuvius 
offshore, Phlegrean Fields offshore and Ischia and Procida offshore (Naples Bay) have been 
studied through the interpretation of seismic and magnetic data. The obtained results have 
improved the geological knowledge in an active volcanic area such as the Naples Bay, since 
they have disclosed and located several main volcanic bodies based on seismic 
interpretation, well constrained by the occurrence of significant magnetic anomalies.  

Offshore the Somma-Vesuvius volcanic complex, the integrated interpretation of seismic 
and magnetic data suggests a correlation of the anomalies with three main elevated peaks of 
the large volcanic structure located offshore the Torre del Greco town, along a NNW-SSE 
direction in water depths ranging from – 80 m to – 110 m.  

Seismo-stratigraphic evidence is represented by acoustically-transparent seismic facies and 
high contrasts of acoustic impedance compared to the overlying sediments, mound-shaped 
external geometry and average dimensions measurable in terms of kilometres. The base of 
the volcanic bodies is not acoustically evident, because they overlie the seismic unit 
correlated with the Campanian Ignimbrite pyroclastic flow deposits. The top of the 
structures is irregularly eroded and can show several culminations, as in the case of the 
Torre del Greco volcanic structure. The thickness of the overlying Holocene sediments is 
significantly reduced in correspondence to most structures, while other mounds appear to 
have fossilized by Late Pleistocene-Holocene sediments.  

The total magnetic field offshore the Somma-Vesuvius volcanic complex shows three main 
maximum values for the anomalies, dipolar in shape. These maximum values correspond to 
the culminations of the structure observed in the Torre del Greco offshore based on seismic 
stratigraphy. Other minor volcanic structures, identified by seismic interpretation and 
fossilized by sediments, do not correspond to any magnetic anomaly field. This is probably 
due to their composition, more similar to that of tuff cones (rather than lavas), which are not 
related to any magnetic anomaly field, similarly to the important seismic unit related to the 
Campanian Ignimbrite pyroclastic flow deposits. The rising of the Torre del Greco volcanic 
structure corresponds to the occurrence of topographic undulations of the sea bottom of up 
to ten metres. This is confirmed by the interpretation of seismic profiles, showing three main 
vertical culminations of the volcanic structure, where overlying sediment drape is 
significantly reduced. These culminations are linked to magnetic anomaly extremes, with 
values ranging between 250-350 nT.  
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Offshore the Phlegrean Fields volcanic complex significant magnetic anomalies are located 
in a belt of submarine volcanic banks located in the outer shelf of the Gulf of Pozzuoli (fig. 
27). Box 2 in fig. 27 shows that the Phlegrean Fields offshore represents a relatively complex 
magnetic anomaly area. Two dipolar anomalies, characterized by a maximum-minimum 
couple, have been identified. The first anomaly, E-W oriented and located in the northern 
area shows a minimum of – 200 nT, associated to a maximum of + 185 nT. These values may 
be associated with volcanic bodies not cropping out at the sea bottom, but buried by 
sediments. The second anomaly, NW-SE oriented and located in the eastern area, shows a 
maximum-minimum couple with a similar intensity. Other anomalies, not dipolar and of 
lower intensity, ranging between 40 and 135 nT are due to the occurrence of small volcanic 
edifices (fig. 27). A significant magnetic anomaly, in the order of 150 nT occurs at the 
Magnaghi canyon head (Box 3 in fig. 27), deeply eroding the volcanic deposits of the 
continental slope of Procida island. This confirms that the Magnaghi canyon is incised in 
volcanic deposits. On the contrary, the slope of the Gulf of Naples in correspondence to the 
Dohrn canyon, a kilometric feature crossing the Bay does not show magnetic anomalies, 
confirming that this canyon deeply erodes sedimentary units supplied by the palaeo-Sarno 
river mouth.  

 

 

Fig. 27. High resolution magnetic anomaly map of the Naples Bay (modified after Aiello et 
al., 2005). Box 1 represents a magnetic anomaly area located offshore the Somma-Vesuvius 
volcanic complex, while Box 2 represents another magnetic anomaly area located offshore 
the Phlegrean Fields volcanic complex. Box 3 represents a magnetic anomaly area located on 
the continental slope of the gulf, at the Magnaghi canyon’s head.  
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The interpreted map of the magnetic anomalies in the Gulf of Pozzuoli (fig. 23) has allowed 

to distinguish positive and negative magnetic anomaly areas. The inner continental shelf of 

the Gulf of Pozzuoli is regarded as negative magnetic anomalies and the correlation with the 

volcanic structures evidenced by the Sparker data is not clear. This is probably due to the 

necessity to record a densely-spaced magnetic survey, in order to identify on marine 

magnetics the volcanic dykes shown by seismic profiles. The volcaniclastic unit identified on 

seismic profiles does not seem to produce significant magnetic signatures, probably due to 

its composition (tuffs rather than lavas).  

In order to describe some morphological features of the study area, elevation versus average 

slope plots have been used, allowing to highlight where steep and flat areas occur (Moore & 

Mark, 1993). Such a plots have been derived by DEMs and slope maps through an 

opportunely built routine. Their use helps to identify morphological domains through the 

individuation of elevation/slope pairs, attributed to specific domains. The calculation has 

been carried out using a depth window of 1 m and then evaluating average slope value of 

all DEM cells, that fallen inside each window (fig. 28). A median filter (25 points window) 

was applied to smooth the progress of plot examination. The Ischia volcanic emerged and 

submerged volcanic edifice includes several morphological ranges, each one characterized 

by a well-defined elevation interval vs. average slope (fig. 28).  

 

Fig. 28: Sketch diagram showing elevation intervals versus average slopes offshore the 
Ischia island.  

The following morphological ranges have been identified (fig. 28):  
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A) The Ischia outcropping “central” edifice, at depth>0, characterized by a slope range of 
about 20°-40° on average;  

A2) An intermediate stage, that acts as an according layer towards the continental shelf;  

B) The continental shelf, between the coastline and the – 140-150 m (200 m in some cases) 
isobath (slopes 3°/8°, on average);  

C) The upper continental slope, located between the platform edge and the 650 m isobath 
(slopes 8°/20°, on average);  

D) The lower continental slope, deeper than 650 meters in depth (average slopes 0°/8°).  

These domains include several morphological elements, each representing a tectonic and/or 
sedimentary process or a volcanic event. On the shelf terraces of abrasion and/or 
deposition, relic morphologies of volcanic edifices, canyons and gullies can be recognized. 
The depositional shelf break is partially eroded at the head of some canyons. Contrary to 
what recorded in normal depth distribution, it has been outlined the increasing of dip 
angles in the lower portion of the A physiographic unit, probably due to basal faulting of 
the Mt. Epomeo resurgent block. Submarine canyons are present on A and C units, acting as 
a morphological link between ranges. Debris avalanches develop between these volcanic 
features both in the southern and in the northern sides; on the contrary lateral collapses that 
characterize this area seems to be originated within morphological protrusion.  
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