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1. Introduction 

Erythrocytes are the most abundant cells (around 5 million/mm3) in the body. The main 
function of these specialized cells is transport of oxygen (O2) and mediation of 
carbondioxide (CO2) production (Volpe, 1993). Mature erythrocytes have no capacity for cell 
division, protein synthesis, and mitochondrial-based oxidative reactions (Bunn, 1991; Benz, 
2010). The erythrocyte possesses more membrane surface area than is needed to encase the 
volume of its cytoplasm. This allows for biconcave disc geometry. This shape can be 
stretched, twisted, distended, and compressed without permanent damage (Benz, 2010). 

Erythrocytes are a highly specialized O2 carrier system in the body. More than 95% of 
cytoplasmic protein is hemoglobin (Telen & Kaufman, 1999). Hemoglobin is the protein 
responsible for the oxygen-carrying capacity of erythrocytes. It provides the binding to O2 to 
heme, while keeping iron in the +2 oxidation state to assure the reversibility of this binding. 
Hemoglobin also facilitates exchange of CO2 (Nohl & Stolze, 1998; Telen & Kaufman, 1999). 
Under normal conditions, 95% of hemoglobin is saturated with oxygen in the lungs, 
whereas under physiologic conditions in peripheral blood stream only 25% of oxygenated 
hemoglobin becomes deoxygenated. Thus, the major fraction of oxygen bound to 
hemoglobin is recirculated with venous blood. The use of this fraction has been suggested 
for the treatment of oxygen deficiency. 2,3-Diphosphoglycerate (2,3-DPG) is a natural 
effector of hemoglobin. The binding affinity of hemoglobin for oxygen changes reversibly 
with the concentration of 2,3-DPG in the intracellular compartment. This compensates for 
changes in the oxygen pressure outside of the body, as the affinity of 2,3-DPG to oxygen is 
much higher than that of hemoglobin (Guyton & Hall, 2000). The oxygen transport function 
of erythrocytes depends on the membrane being deformable and the components of the 
membrane play important roles in this function. 

The erythrocyte membrane is composed of proteins (52% in weight), lipids (40%), and 
carbohydrates (8%). Membrane elasticity depends on the structural interactions between the 
outer plasma membrane and the underlying protein skeleton (Desouky, 2009). The 
membrane comprises a lipid bilayer, integral membrane proteins and a membrane skeleton 
(Fig. 1). Integral proteins (glycophorin and Band 3 proteins) are tightly bound to the 
membrane through hydrophobic interactions in the bilayer (Lux, 1979; Mohandas, 1991; 
Mohandas & Chasis, 1993). A filamentous network of proteins is anchored to the bilayer by 
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the integral proteins. This network has three principal components: spectrin, actin, and 
protein 4.1 (Mohandas & Chasis, 1993). The membrane skeleton proteins interact with the 
lipid bilayer and transmembrane proteins to give the red cell membrane its strength and 
integrity (Tse & Lux, 1999). The peripheral membrane proteins are located on the 
cytoplasmic surface of the lipid bilayer and can be readily released from the membrane by 
simple manipulation of the ionic strength of the milieu or variation in the concentrations of 
other proteins (Mohandas & Chasis, 1993). Besides control of cell shape, the cytoskeletal 
proteins have also roles in organization of specialized membrane domains, and attachment 
to other cells and substrates (Cimen, 2008). 

 

Fig. 1. The structure of erythrocyte membrane. 

All lipids in the mature erythrocyte are found in the membrane bilayer and consist of 
phospholipid and cholesterol in 1.2:1 molar ratio. Approximately one-half of the fatty acids 
in the membrane are unsaturated (Telen & Kaufman, 1999). Interestingly, outer surface 
lipids exchange freely with the plasma lipid compartment (Bunn, 1991). In addition, the 
structure of the lipid bilayer is critical to the cytoskeletal network organization within the 
erythrocyte (Smith et al., 2005). Disruption of the interaction between components of the red 
cell membrane skeleton at any contact point may cause loss of structural and functional 
integrity of the membrane. There accepted to be two types of interactions: vertical 
interactions between the membrane skeleton and the lipid bilayer, and horizontal 
interactions among components that form the membrane skeleton meshwork. The 
important links in the vertical interaction involve band 3, ankyrin, spectrin and protein 4.2. 
The critical horizontal interactions occur between the ┙ and ┚ spectrins, ┚ spectrin and 
protein 4.1, and protein 4.1 and actin (Morris & Lux, 1995). 

Spectrin functions like a coiled spring able to stretch and snap back as the erythrocyte 

squeezes through capillaries, swells and shrinks, and is distorted by shear stresses. Spectrin 

attaches to the membrane via protein 4.1R and ankyrin. This confers sufficient tensile 

strength to withstand mechanical stresses and adequate flexibility to change shape as 

needed (Eber & Lux, 2004). The flexible, biconcave shape enables erythrocytes to squeeze 

through narrow capillaries. The erythrocytes need to endure both the micro and 
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macrocirculatory environment. The rheological properties of erythrocytes microstructure 

play important roles in microcirculation, and also blood flow in large arteries. Microscopic 

mechanisms can be connected to the macroscopic behaviors of the blood and transferred by 

means of a blood viscosity model based on blood structure to the macroscopic behaviors of 

the blood (Yilmaz & Gundogdu, 2008).  

Glucose, the only fuel utilized by erythrocytes, is primarily metabolized via anaerobic 
glycolysis. Following facilitated diffusion, glucose is immediately converted to glucose-6 
phosphate. Approximately 80–90% percent is then converted to lactate via the glycolytic 
pathway. The remaining 10% undergoes oxidation via the pentose phosphate shunt. 
Glucose metabolism effectively maintains glutathione in the reduced form thereby 
protecting hemoglobin sulfhydryl groups and erythrocyte membranes from oxidation. A 
significant portion of the adenosine triphosphate (ATP) generated by glycolysis is spent in 
operating the sodium potassium pump necessary to reserve the cytoplasmic ionic milieu 
thus preventing colloidal osmotic lysis. In addition, some metabolic energy is expended on 
maintenance and repair of the red cell membrane (Bunn, 1991). 

2. Erythrocytes, oxidative stress and aging 

Mature, circulating erythrocytes have a finite life span. Each day, less than 1% of these cells 

are destroyed and replaced by virtually identical numbers of new cells. The molecular 

mechanism that determines removal of aged or damaged erythrocytes from the circulation 

remains unknown, but probably involves recognition of senescence antigens by phagocytes 

(Volpe, 1993). It has proposed that the major senescence antigen in aged erythrocytes is 

derived from the band 3 protein, the main transmembrane glycoprotein in erythrocytes. 

Other possible mechanisms for erythrocyte aging include mechanical fatigue, ATP 

depletion, calcium accumulation, and the generation of reactive oxygen species (ROS) (Feher 

et al., 2006). Erythrocytes experience continuous oxidative insult by being exposed to 

endogenous and exogenous ROS. ROS, which damage proteins and initiate lipid 

peroxidation, can be generated either inside erythrocytes through the hemoglobin oxidation 

pathway or outside. Although the erythrocyte contains an extensive antioxidant defense 

system, oxidative damage of membrane proteins and lipids contributes to the senescence of 

normal erythrocytes and results in a shorter life span for pathological cells.   

The major source of intracellular ROS in the erythrocyte is autoxidation of oxyhemoglobin, 
which generates superoxide and produces hydrogen peroxide (H2O2). Catalase and 
glutathione peroxidase (GSHPx) scavenge most of the H2O2 generated in the cells. Degradation 
of the heme moiety takes place in conjunction with the reaction of H2O2 with hemoglobin. In 
addition, even small concentration of H2O2 generated during the autoxidation of 
oxyhemoglobin contributes to heme degradation. Heme degradation is, therefore, expected to 
take place in the erythrocyte when the antioxidant enzymes are not able to eliminate all the 
H2O2 (Snyder et al., 1985; Prokopiva et al., 2000; Feher et al., 2006).   

One of the well established mechanisms of mechanical impairment of the erythrocyte is 
oxidative damage (Fig.2). Erythrocyte deformability is determined by cellular geometry, 
cytoplasmic viscosity of erythrocyte (hemoglobin concentration), and viscoelastic properties 
of the erythrocyte membrane. Membrane viscoelasticity is in turn determined by erythrocyte 
membrane skeleton, which is mainly a spectrin network attached to the integral proteins. 
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Oxidative reactions that start in the lipid components (i.e. lipid peroxidation) lead to the 
formation of cross-linkages within the membrane skeletal proteins or hemoglobin, 
increasing membrane viscosity. Additionally, oxidative damage may affect transport 
processes through the erythrocyte membrane, affecting the cell geometry and cytosolic 
viscosity (Feher et al., 2006; Aydogan et al., 2008). 

 

Fig. 2. Free radical metabolism in human erythrocytes. 

The general consensus appears to be that the aging process is multifactorial and that ROS 
are a contributing factor. Particularly two phenomena are of particular concern: the 
deleterious effects of ROS and the formation of reactive carbonyl compounds related to the 
glycation reaction, involved in the acceleration of molecular and tissue aging processes. The 
ROS theory of erythrocyte aging has been widely accepted, yet it lacks direct supporting 
evidence, and the extent of ROS contribution remains uncertain.  

The balance between ROS production and antioxidant defences determines the degree of 
oxidative stress. Unfortunately, the activity of these systems declines during aging, so the 
consequences of this stress include modification to to cellular components. Following the 
ROS mediated oxidation of sugar and membrane lipids through a complex and still unclear 
cascade of reactions. Carbonyl compounds are very reactive small molecules which can be 
considered a key oint in the propagation and amplification of the aging process. Carbonyl 
reactive compounds are able to form adducts commonly known as CO-proteins (proteins 
bearing carbonyl groups) with structural proteins lipoproteins, enzymes and with DNA, 
causing alterations in their biological activity thrugh a whole of chemical raction steps in all 
known as glycation reaction.  

Glycation (or glycosylation) reaction is a reaction between reducing sugars, or other 
carbonyl group bearing molecules, and free amino groups of protein, leading to the 
formation of abnormal products, namely Advanced Glycation End Products (AGEs, cross-
linked proteins). AGEs are very toxic for the cells, as they are very rich in double bonds 
which can interact irreversibly with biological substrates, leading to a loss of their 
physiological function. The result of cross-linking is a loss of physiological function, loss of 
genome information, and consequently senescence.  
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3. General effects of carnosine 

L-Carnosine (B-alanyl-L-histidine) is a naturally occurring dipeptide and present in food. It 
is also commonly present in mammalian tissues. Carnosine is found naturally in the body. 
The highest concentrations are present in long-lived cells; particularly in skeletal muscles, 
followed by the heart, cerebellum and brain. No carnosine is detectable in plasma, liver 
kidney, and lung. It is formed by carnosine synthetase enzyme. It is kept in equilibrium by 
carnosinase enzyme. However its levels within the tissues decline with age.  

Its proper function still remains unknown, although many properties have been proposed 
including physiological buffer (helps maintenance of the pH balance in the muscles in heavy 
exercise), wound healing agent, antioxidant (prevents the modification of 
biomacromolecules thereby keeping their native functionality under oxidative stress), free-
radical and active sugar molecule scavenger (prevents glycation and carbonylation of 
proteins), heavy metal chelator (especially copper and zinc), immunomodulator and 
antitumor agent (e.g. suppresses of proinflammatory and carcinogenic cytokine IL-8), and 
anti-aging compound (Aruoma et al., 1989; Quinn et al., 1992; Gariballa & Sinclair, 2000). 

Carnosine is a naturally occurring antioxidant that is also an anti-glycating agent. It has the 
ability to suppress Advanced Glycation End Products (AGEs) and formation of reactive 
oxygen species (ROS). In a remarkable series of experiments, scientists have shown that 
carnosine rejuvenates cells as they approach senescence (McFarland & Holliday, 1994, 1999). 
As shown by experiments on fibroblast cultures, carnosine retains youthful appearance and 
growth patterns. Fibroblasts that went through many rounds of division, known as late-
passage cells, displayed a disorganized, irregular appearance before ceasing to divide. 
However fibroblasts cultured with carnosine lived longer, retaining youthful appearance 
and growth patterns. But, interestingly, when they transferred the fibroblasts back to a 
medium lacking carnosine, the signs of senescence quickly reappeared. The scientists 
switched late-passage fibroblasts back and forth several times between the culture media. 
They consistently observed that the carnosine culture medium restored the juvenile cell 
phenotype within days, whereas the standard culture medium brought back the senescent 
cell phenotype (McFarland & Holliday, 1994, 1999). Another group tested the effect of 
carnosine on life span and indicators of senescence in senescence-accelerated mice. 
Carnosine added to drinking water distinctly improved the appearance of the aged mice, 
whose coat fullness and color remained much closer to that of young animals The carnosine 
medium also increases life span, even for old cells. In the same study carnosine extended the 
life span of the treated mice by 20% on average, compared to the control mice. Carnosine 
did not alter the 15 month maximum life span of the senescence-accelerated mice strain, but 
it did significantly raise the number of mice surviving to old age (Boldyrev et al., 1999; 
Yuneva et al., 1999).  

The current knowledge about the mechanisms involved in the aging process and the defense 
mechanisms are described in some experiments. Particularly, two phenomena are of 
particular concern: The deleterious effects of reactive oxygen species and the formation of 
reactive carbonyl compounds related to the glycation reaction, involved in the acceleration 
of molecular and tissue aging processes. The powerful and effective action of carnosine is 
performed against all the elements that triggered the aging process and against all the 
phenomena that contribute to its propagation and amplification (Hipkiss & Chana, 1998; 
Tamba & Torreggiani, 1999). 
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The anti-aging actions of L-carnosine may be summarized as follows (Fig.3): Carnosine 

stops the oxidative damage acting as an antioxidant agent, a ROS scavenger agent, metal 

ions chelating agent and by expressing superoxide dismutase (SOD)-like activity. It inhibits 

the glycation reaction, by quenching carbonyl compounds and AGEs. It also prevents the 

cross-linking of the macromolecules and promotes modification in enzyme-mediated 

protein degradation.  

 
 

Fig. 3. The summary of sites of intervention of L-carnosine as anti-aging molecule. 

Carnosine is widely believed to be an antioxidant which stabilizes and protects the cell 

membrane, and an oxygen free radical-scavenger (Kohen et al., 1988; Aruoma, Laughton et 

al., 1989; Boldyrev, Song et al., 1999). Specifically, as a water-soluble free radical scavenger it 

prevents lipid peroxidation within the cell membrane (Tamba & Torreggiani, 1999). It is 

thought to be a natural counterpart to lipid-soluble antioxidants such as vitamin E. Many 

antioxidants prevent free radicals from entering the tissues, but have no effect after this first 

line of defense is broken. Carnosine is not only effective in prevention, but it is also active 

after free radicals react to form other dangerous compounds. So, it protects the tissues from 

these damaging 'second-wave' chemicals. For example, it blocks a highly reactive lipid 

peroxidation end-product called malondialdehyde (MDA) (Kohen et al., 1988; Aruoma et 

al., 1989; Hipkiss et al., 1997; Hipkiss et al., 1998; Boldyrev, Song et al., 1999). MDA, if left 

uncontrolled, can cause damage to lipids, enzymes and DNA, and plays a part in the 
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process of atherosclerosis, joint inflammation, cataract formation, and aging in general. 

Carnosine, by reacting and inactivating MDA, (Hipkiss et al., 1997) sacrifices itself in order 

to protect the amino acids on the protein molecule (Andrea et al., 2005). It has also the ability 

to reduce concentrations of thiobarbituric acid reactive substances (TBARS). Interacting with 

aldehydic lipid oxidation products, carnosine protects biological tissues from oxidation, 

since aldehydes can form adducts with DNA, proteins, enzymes, and lipoproteins, causing 

harmful alterations in their biological activity (Burcham et al., 2002). Many studies have 

demonstrated at tissue, cell and organel levels, that carnosine may prevent peroxidation of 

many model membrane system and also cell membrane, including erythrocytes (Boldyrev et 

al., 1997). Carnosine inhibits lipid oxidation by a combination of free radical scavenging and 

metal chelation. It has an ability to chelate prooxidative metals, such as copper, zinc and 

toxic heavy metals (lead, mercury, cadmium, nickel). Carnosine, as a dietary supplement, 

seems to have all the same chelating properties as EDTA (Hipkiss, 2005). 

Carnosine can claim different properties performed at different steps of the whole aging 

process. Specifically, as a water-soluble free radical scavenger carnosine prevents lipid 

peroxidation within the cell membrane. Carnosine is not only effective in prevention, but it 

is also active after free radicals react to form other dangerous compounds. So, it protects the 

tissues from these damaging “second-wave” chemicals. It stops the oxidative damage acting 

as an antioxidant agent, a ROS scavenger agent, metal ions chelating agent and by 

expressing a superoxide dismutase (SOD) - like activity. It inhibits the glycation reaction, by 

quenching carbonyl compounds and AGEs. It prevents the cross-linking of the 

macromolecules (Hipkiss & Chana, 1998; Tamba & Torreggiani, 1999). 

Age-related conditions that carnosine may be useful for: diabetes and its complications, 

neurological degeneration (Alzheimer´s, Parkinson´s, epilepsy, depression, schizophrenia, 

mild cognitive impairment, dementia and stroke), autistic spectrum disorders, cellular 

senescence in general cross-linking of the eye lens (cataracts), cross-linking of skin collagen 

(skin ageing), formation of AGEs, accumulation of damaged proteins, muscle atrophy, brain 

circulation deficit (stroke), and cardiovascular conditions (Boldyrev et al., 1997; Hipkiss, 

2005). 

One of the cardinal processes of aging, apart from the free-radical damage, is the process of 

glycosylation (or glycation). During normal metabolism, sugar aldehydes may react with the 

amino acids on the protein molecule, resulting in the formation of AGEs. AGEs are very 

toxic for the cells, which can react irreversibly with biological substrates leading to a loss of 

their physiological functions. Carnosine inactivates not only aldehydes and ketones, 

therefore reducing protein glycosylation and the formation of AGEs; but also already 

formed AGEs. Normally, AGEs are removed by scavenging macrophages which carry 

special receptors called RAGEs. Carnosine facilitates this process of elimination, by helping 

macrophages to better recognize the AGE molecules. Because of its anti-glycosylation 

actions, carnosine may be useful in treating or preventing diabetic complications such as 

cataract, neuropathy and kidney failure (Hipkiss & Chana, 1998). 

With regard to oxidative modifications and erythrocyte demise, recent insights come from 
studies on their senescence suggesting that they can undergo a sort of apoptosis (Boas et al., 
1998; Daugas et al., 2001). In particular, the apoptosis of erythrocytes was called eryptosis or 
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erythroptosis depending on the injury pathway. The biological meaning and relevance of 
erythrocyte senescence and apoptosis, characterized by glycophorin A loss or phosphotidyl 
serine externalization respectively. However, although these are mainly referred to as 
critical events responsible for erythrocyte removal at the end of their life span, that subject is 
still a matter of debate (Daugas et al., 2001; Head et al., 2005; Pietraforte et al., 2007). For 
instance, the plethora of changes occurring in senescent and apoptotic erythrocytes under 
oxidative/nitrosative stress definitely comprises even biophysical changes, e.g. the loss of 
cell plasticity with impaired deformability associated with changes of cytoskeletal network 
assembly (Marchesi, 1985; An et al., 2002). 

4. Effects of carnosine on erythrocyte rheology  

The rheological properties of erythrocytes play important roles in microcirculation, and also 

blood flow in large arteries. Microscopic mechanisms can be connected to the macroscopic 

behaviors of the blood and transferred by means of a blood viscosity model based on blood 

structure to the macroscopic behaviors of the blood (Yilmaz & Gundogdu, 2008). 

“Deformability” is the term generally used to characterize the erythrocyte’s ability to 

undergo deformation during flow (Mohandas & Chasis, 1993). The deformation response of 

an erythrocyte to fluid forces is a complex phenomenon that depends on a number of 

different cell characteristics including membrane material properties (Lux, 1979), cell 

geometry, and cytoplasmic viscosity (Mohandas, 1991). Erythrocyte deformability is an 

important determinant of blood rheology, either in bulk flow conditions or microcirculation. 

Normal erythrocyte deformability is essential for proper tissue perfusion and oxygenation, 

as well as the normal survival of erythrocyte in the circulation.  

Blood is a non-Newtonian fluid and its viscosity is therefore variable at any given 

temperature, depending on the shear rate. At low shear rate, erythrocytes can aggregate and 

form one-dimensional stacks-of-coins-like rouleaux or three-dimensional aggregates. This is 

because of the electrostatic repulsion of erythrocyte overcome by the present 

macromolecules which aggregate the cells. The process is reversible and particularly 

important in the microcirculation, since such rouleaux or aggregates can dramatically 

increase effective blood viscosity. Erythrocytes may also exhibit reduced deformability and 

stronger aggregation in many pathological situations, such as heart disease, hypertension, 

diabetes, malaria, and sickle cell anemia (Popel & Johnson, 2005). 

The resistance of erythrocytes to hemolytic action is an integral parameter characterizing 

their integrity and viability as well as a criterion of their physiologically native state 

(Arzumanyan et al., 2008). Various factors can cause hemolysis of the erythrocytes, 

including a decreased ambient osmotic pressure, decreased pH, and oxidants (Ivanov, 1999; 

Pribush et al., 2002). 

Oxidative damage in erythrocyte is one of the well established mechanisms of mechanical 

impairment. Erythrocytes are exposed to oxygen radicals continuously generated via the 

autoxidation of hemoglobin. In addition erythrocytes have relatively high levels of 

polyunsaturated fatty acids (PUFA), which are good substrates for peroxidation reactions. 

So due to the high iron content, relatively less antioxidant activities and high PUFA content 

the erythrocyte has a limited antioxidant defence.  
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Carnosine act as an antioxidant as well as a free-radical scavenger, which can protect and 
stabilize the cell membrane from non-enzymatic glycosylation and oxidation (Tamba & 
Torreggiani, 1999; Hipkiss & Brownson, 2000). In addition, carnosine also prevents protein 
glycation by using an enzyme that catalyses the splitting of interior peptide bonds in a 
protein (Quinn et al., 1992). Furthermore, the ability of carnosine to disintegrate the readily 
glycated protein was observed through the hydration and unfolding of deleterious 
reactions, such as the cross-linking of proteins (Seidler et al., 2004). 

The significant role of L-carnosine in maintaining erythrocyte physiology under oxidative 
stress has been demonstrated previously by Aydogan et al (Aydogan et al., 2008). In that study 
blood from 3 and 10 months old rats had been used. L-carnosine improved erythrocyte 
deformability significantly in healthy erythrocytes independent of age. L-carnosine also 
significantly improved deformability in damaged erythrocytes as well both in the young and 
old rats (Fig.4). This study provided the first evidence for importance of carnosine in 
maintaining normal erythrocyte properties and to protect them from oxidative damage 
induced by H202 administration under in vitro conditions. This observation was in favor of the 
idea that L-carnosine supplementation might be used to improve erythrocyte quality.    

 

Fig. 4. Erythrocyte elongation indexes (EI) in control, treated with H2O2 and different 
concentrations of L-carnosine (5–40 mM) groups. Values are presented as mean ± SD, n = 10 
for each group, * p < 0.05 when compared to H2O2, ** p < 0.05 when compared to control. 
“C” and “H” respectively indicates L-carnosine and H2O2 applications. The numbers 
following the letter “C” show carnosine concentrations. Reproduced from Aydogan et al. 
2008 (Aydogan et al., 2008). 

Another study from the same group showed that in vivo carnosine supplementation can be 
used to protect the erythrocytes from oxidative or peroxidative damage (Yerer et al., 2010). 
Sodium nitroprusside (SNP), which is a potent hypotensive agent, had been used to induce 
oxidative/nitrosative damage. Nitric oxide (NO) is a signaling molecule of major 
importance modulating not only the function of the vascular wall but also that of blood 
cells, such as platelets and leukocytes. The synthesis of NO in the circulation has been 
attributed mainly to the vascular endothelium. Erythrocytes have been demonstrated to 
carry a non-functional nitric oxide synthase (NOS) and due to their huge hemoglobin 
content have been assumed to metabolize large quantities of NO. However, more recently 
erythrocytes have been identified to reversibly bind, transport, and release NO within the 
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cardiovascular system. This function of erythrocytes on NO metabolism also reflects the 
importance of oxidative damage via peroxinitrite. Oxidative and nitrosative damage to 
membrane erythrocyte membrane leads to the impairment of biorheological properties of 
the blood (Yerer et al., 2010). It is already known that NO increased either in pathological 
conditions and treatments with NO derivatives increase lipid peroxidation in the membrane 
of the erythrocytes (Yerer et al., 2004). When L-carnosine was given to rats intraperitoneally 
before the induction of oxidative damage by sodium nitroprusside, this prevented the 
increase in malondialdehyde (MDA), glutathione peroxidase (GSH-Px), and superoxide 
dismutase (SOD) (Fig.5A,B,C) activities. The changes in erythrocyte elongation indexes were 
in parallel as expected with these observations (Fig.5D). Carnosine application also 
significantly increased the erythrocyte elongation indexes that had already decreased by 
sodium nitroprusside (Yerer et al., 2004).  

 

Fig. 5. A: Malondialdehyde (MDA) levels reflecting the lipid peroxidation. B: Glutathione 
peroxidase (GSH-Px) enzyme activity. C: Superoxide dismutase (SOD) enzyme activity. D: 
Elongation indexes (EI) reflecting erythrocyte deformability. *: significantly different from 
the control, #: significantly different from the sodium nitroprusside (SNP) group. 
Reproduced from Yerer et al 2010 (Yerer et al., 2010). 

Similarly Arzumanyan et al have demonstrated that homocysteic acid (HCA) provokes 

oxidative stress in erythrocytes and decreases their hemolytic resistance, whereas the 

natural antioxidant carnosine protects erythrocytes from its toxic effect (Arzumanyan et al., 

2008). Actually this should be taken into account when assessing the states of patients with 

chronic hyperhomocysteinemia. Homocysteine and the product of spontaneous 

homocysteine oxidation, namely HCA, are important risk factors for neurodegenerative and 

cardiovascular diseases (Jacobsen, 1998). The prooxidant effects of homocysteine and HCA 

on cell structures possibly occur via both the glutamate receptors (Vladychenskaya et al., 
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2006) and the activation of NO synthase or inhibition of Na+/K+ ATPase (Arzumanyan et 

al., 2008). It is known that erythrocytes are capable of accumulating homocysteine and 

excreting it into the extracellular medium (Preibisch et al., 1993; Schlussel et al., 1995). 

Changes in the ambient osmotic pressure, pH, and oxidant levels are among the various 

factors causing hemolysis of erythrocytes. The resistance of erythrocytes to hemolytic action 

is an integral parameter characterizing their integrity and viability as well as a criterion of 

their physiologically native state. The investigators determined the level of free radicals in 

erythrocytes flow cytometrically and observed again that carnosine has a preventive effect 

on the harmful effects of HCA. The group tested any possible effects on erythrocytes by 

both osmotic and acid hemolysis (caused by hydrochloric acid) methods. The maximal 

number of cells hemolyzed osmotically by the end of the process remained the same. HCA 

increased the rate of acid erythrocyte hemolysis by 18–25%, whereas carnosine decreased 

the hemolysis rate to 80% of the control value irrespective of the presence or absence of 

HCA in the sample. The data from the study of Arzumanyan et al provided evidence for: (a) 

the preincubation of erythrocytes with homocysteic acid (HCA) considerably increases the 

hemolysis rate, (b) whereas carnosine prevents the hemolytic effect of HCA. The authors 

claim that the protective effect of carnosine had a pronounced dose-dependent manner.  

Hemorheological properties are easily modified by glucose-induced oxidation and 
glycation. Carnosine prevents protein glycation by using an enzyme that catalyses the 
splitting of interior peptide bonds in a protein (Quinn et al., 1992). Furthermore, the ability 
of carnosine to disintegrate the readily glycated protein was observed through the hydration 
and unfolding of deleterious reactions, such as the cross-linking of proteins (Seidler et al., 
2004). Another hemorheological in vitro study, conducted by Nam et al. on erythrocytes 
incubated in glucose-rich media, revealed the beneficial effects after addition of carnosine 
(Nam et al., 2009). In that study erythrocytes were incubated in glucose-rich media with 
different concentrations of carnosine. Also, defective erythrocytes due to hyperglycemia 
were incubated in autologous plasma with different concentrations of carnosine. When there 
was no carnosine in glucose-rich solution, both the erythrocyte deformability and 
aggregability significantly decreased. The degree of impairment in erythrocyte 
deformability and aggregability was proportional to the glucose-concentration. However, 
through the addition of carnosine to glucose solutions, the impairment of erythrocyte 
deformability and aggregability gradually diminished. To examine the rejuvenating 
function of carnosine, same researchers incubated erythrocytes, which were exposed to 
hyperglycemia-associated oxidative stress, in plasma that was supplemented with 
carnosine. As the carnosine concentration increased, the deformability of impaired 
erythrocytes slightly increased. Nam et al. also suggested that by increasing the incubation 
time, the deformability could be further increased. However, an increase in the carnosine 
concentration could cause echinocytic change in the shape of erythrocytes due to 
hyperosmolarity. During the same experiment researchers also investigated the 
aggregability of the erythrocytes. As the carnosine concentration increased in plasma, the 
aggregation index (AI) of impaired erythrocytes increased in a concentration-dependent 
manner. In addition, the increase in erythrocyte aggregability was also strongly dependent 
upon the incubation time, and the effect of carnosine was more prominent on aggregation than 
deformability. Thus, longer incubation periods for erythrocytes might increase erythrocyte 
aggregability up to the value of the control. The results of mentioned study reveal that the 
presence of carnosine effectively prevented rheological alterations due to glucose-induced 
oxidation and glycation in a concentration-dependent manner (Nam et al., 2009). 
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Diabetes mellitus is a disease characterized by insulin deficiency. It is known that oxidative 
stress plays an important role in physiopathology of chronic complications in diabetes. Since 
the structure of carnosine closely resembles that of the preferred glycation sites in proteins, 
the glycated sites may be occupied by carnosine, which, in turn, results in the rejuvenation 
of hemorheological characteristics. It is commonly known that most anti-oxidants prevent 
free radicals from binding the proteins but have no effect after protein binds with the free 
radicals. Yapıslar and Aydogan have investigated the effects of experimental diabetes on 
erythrocytes in rats (Yapislar & Aydogan, 2011). In that in vivo study erythrocyte 
deformability indexes and NO levels were decreased and MDA levels were found to be 
increased in diabetic group. Erythrocyte deformability abilities are reduced as a result of 
lipid peroxidation in erythrocyte membrane under diabetic condition (Yapislar & Aydogan, 
2011; Nam et al., 2009). On the other hand, decrease in endothelium nitric oxide production 
might be responsible in endothelial dysfunction seen in diabetic vascular complications. NO 
is thought to cause oxidative and nitrosative damage to the erythrocyte. NO is a crucial 
component for erythrocytes which maintains different biological functions within the 
circulation. However, the excessive amounts of NO can trigger the oxidative and nitrosative 
damage especially to erythrocytes which leads to the impaired tissue perfusion (Yerer et al., 
2010; Yapislar & Aydogan, 2011). Recent findings on the ability of carnosine to interact with 
guanylate cyclase heme also reflect the importance of this molecule in endogenous 
regulation of this enzyme over heme molecule (Severina et al., 2000). The data from the 
above mentioned study (Yapislar & Aydogan, 2011) revealed that carnosine application to 
diabetic rats significantly reversed the erythrocyte deformability and reduced the lipid 
peroxidation under diabetic conditions (Fig.6).  

 

Fig. 6. Elongation indexes reflecting erythrocyte deformability after L-carnosine application 
in experimental diabetic rats at different shear stress rates. Reproduced from Yapislar and 
Aydogan 2011(Yapislar & Aydogan, 2011).  

Aydogan et al. also recently studied deformability, aggregability, and osmotic fragility 
properties of healthy rat erythrocytes following incubation with L-carnosine (Aydogan et 
al., 2010) (article submitted). The data revealed that L-carnosine has a dose dependent 
positive effect on RBC deformability and aggregability. In the presence of carnosine, 
erythrocytes showed also an increased ability to resist hemolysis. This dipeptide appears to 
be rejuvenating or to improve erythrocyte quality and mechanical properties. 

www.intechopen.com



 
Carnosine and Its Role on the Erythrocyte Rheology 

 

117 

5. Conclusion 

Carnosine is a natural and nontoxic compound. It has a high bio-availability and is lack of 
side effects. The beneficial properties of this dipeptide appear to be rejuvenating or to 
improve quality and mechanical properties of healthy erythrocytes. L-carnosine 
supplemention also can be used to protect them from several conditions or damages in 
survival of RBC in the circulation. Furthermore, use of carnosine after the pathology has 
occurred also helps to improve the deteriorated hemorheological status. These effects can be 
related to its antioxidant, free-radical scavenger, antiglycation and buffering properties. 

L-carnosine helps healthy erythrocytes to fight agains oxidative stress and improve their 
survival in microcirculation. Supplementation with carnosine has rejuvenating effects on the 
healthy erythrocytes. It protects erythrocytes from oxidative stress occurring due to 
exposure to harmful conditions, including nitrosative stress, and glucose-induced oxidative 
stress and glycation. These beneficial effects of L-carnosine are dose and possibly incubation 
time dependent. Besides, damaged erythrocytes, as in the condition of experimental 
diabetes, also seem to improve following carnosine application. Carnosine performs an 
apparent rejuvenating function for hemorheologically damaged cells.   

L-carnosine therefore seems to have crucial biological functions on erythrocytes which need 

to be identified with further investigations. In the light of the above mentioned studies in 

the literature it can be suggested that: 

a. Carnosine can be used as for maintaining normal erythrocyte properties in healthy 
subjects and to improve the erythrocyte quality and survival.  

b. L-carnosine can be used as a supplement in diabetes. It can recover microvascular 
circulation problems by increasing erythrocyte deformability, can reduce the risk of 
atherosclerosis and cardiovascular disease in diabetes by increasing NO levels, can 
protect cells and tissues against harmful effect of lipid peroxidation by decreasing lipid 
peroxidation and can be used as a multi-functional antioxidant in the treatment of 
diabetes mellitus to prevent the complications of diabetes. 

c. There is a possibility of L-carnosine to be used for its protective effects on nitric oxide 
donor pharmaceutical damages in the circulation. 

d. L-carnosine might be used as a pharmaceutical drug for treatment of malignant tumors, 
sepsis, asthma, migraine, i.e. pathologies which are associated with increasing the NO 
levels. 

e. Moderate concentrations of carnosine might be further explored as potential therapeutic 
agents for pathologies that involve hemorheological modification. 

f. Further experiments are in progress and it is expected that carnosine supplementation 
will become much more widespread during the next years. 

6. References 

An, X.; Lecomte, M.C.; Chasis, J.A.; Mohandas, N. & Gratzer, W. (2002). Shear-response of 
the spectrin dimer-tetramer equilibrium in the red blood cell membrane. J Biol 
Chem, Vol.277, No.35,pp.31796-31800. 

Andrea, R.G.; Andrea, C.; Paolo, R. & Gianfranco, B. (2005). Carnosine and carnosine-related 
antioxidants: A review. . Curr Med Chem., Vol.12, No.20,pp.2293-2315. 

www.intechopen.com



 
Hemodynamics – New Diagnostic and Therapeutic Approaches 

 

118 

Aruoma, O.I.; Laughton, M.J. & Halliwell, B. (1989). Carnosine, homocarnosine and anserine: 
could they act as antioxidants in vivo? Biochem J, Vol.264, No.3,pp.863-869. 

Arzumanyan, E.S.; Makhro, A.V.; Tyulina, O.V. & Boldyrev, A.A. (2008). Carnosine protects 
erythrocytes from the oxidative stress caused by homocysteic acid. Dokl Biochem 
Biophys, Vol.418,pp.44-46. 

Aydogan, S.; Artis, A.S. & Basaran, E. (2010). A possible new role of L-carnosine as 
rejuvenating agent for improvement of erythrocyte quality and mechanical 
properties. 3rd Antiaging Congress. Ankara, Turkey June 2010, pp.17. 

Aydogan, S.; Yapislar, H.; Artis, S. & Aydogan, B. (2008). Impaired erythrocytes 
deformability in H(2)O(2)-induced oxidative stress: protective effect of L-carnosine. 
Clin Hemorheol Microcirc, Vol.39, No.1-4,pp.93-98. 

Benz, E.J., Jr. (2010). Learning about genomics and disease from the anucleate human red 
blood cell. J Clin Invest, Vol.120, No.12,pp.4204-4206. 

Boas, F.E.; Forman, L. & Beutler, E. (1998). Phosphatidylserine exposure and red cell 
viability in red cell aging and in hemolytic anemia. Proc Natl Acad Sci U S A, Vol.95, 
No.6,pp.3077-3081. 

Boldyrev, A.; Song, R.; Lawrence, D. & Carpenter, D.O. (1999). Carnosine protects against 
excitotoxic cell death independently of effects on reactive oxygen species. 
Neuroscience, Vol.94, No.2,pp.571-577. 

Boldyrev, A.A.; Stvolinsky, S.L.; Tyulina, O.V.; Koshelev, V.B.; Hori, N. & Carpenter, D.O. 
(1997). Biochemical and physiological evidence that carnosine is an endogenous 
neuroprotector against free radicals. Cell Mol Neurobiol, Vol.17,No.2,pp.259-271. 

Bunn, H.F. (1991). Pathophysiology of the anemias. Harrison's Principle of Internal 
Medicine,pp.1514-1518. 

Burcham, P.C.; Kaminskas, L.M.; Fontaine, F.R.; Petersen, D.R. & Pyke, S.M. (2002). 
Aldehyde-sequestering drugs: tools for studying protein damage by lipid 
peroxidation products. Toxicology, Vol.181-182,pp.229-236. 

Cimen, M.Y. (2008). Free radical metabolism in human erythrocytes. Clin Chim Acta, 
Vol.390,No.1-2,pp.1-11. 

Daugas, E.; Cande, C. & Kroemer, G. (2001). Erythrocytes: death of a mummy. Cell Death 
Differ, Vol.8,No.12,pp.1131-1133. 

Desouky, O.S. (2009). Rheological and electrical behavior of erythrocytes in patients with 
diabetes mellitus. Romanian J. Biophys. , Vol.19,No.4,pp.239-250. 

Eber, S. & Lux, S.E. (2004). Hereditary spherocytosis--defects in proteins that connect the 
membrane skeleton to the lipid bilayer. Semin Hematol, Vol.41,No.2,pp.118-141. 

Feher, G.; Koltai, K.; Kesmarky, G.; Szapary, L.; Juricskay, I. & Toth, K. (2006). 
Hemorheological parameters and aging. Clin Hemorheol Microcirc, Vol.35,No.1-2, 
pp.89-98. 

Gariballa, S.E. & Sinclair, A.J. (2000). Carnosine: physiological properties and therapeutic 
potential. Age Ageing, Vol.29,No.3,pp.207-210. 

Guyton, A.C. & Hall, J.E. (2000). Transport of oxygen and carbon dioxide in the blood and body 
fluids. In: Textbook of medical physiology,pp.463-473, W.B. Saunders. Philadelphia, PA. 

Head, D.J.; Lee, Z.E.; Poole, J. & Avent, N.D. (2005). Expression of phosphatidylserine (PS) 
on wild-type and Gerbich variant erythrocytes following glycophorin-C (GPC) 
ligation. Br J Haematol, Vol.129,No.1,pp.130-137. 

Hipkiss, A.R. (2005). Glycation, ageing and carnosine: are carnivorous diets beneficial? Mech 
Ageing Dev, Vol.126,No.10,pp.1034-1039. 

www.intechopen.com



 
Carnosine and Its Role on the Erythrocyte Rheology 

 

119 

Hipkiss, A.R. & Brownson, C. (2000). Review: A possible new role for the anti-ageing 
peptide carnosine. Cell. Mol. Life Sci., Vol.57pp.747-753. 

Hipkiss, A.R. & Chana, H. (1998). Carnosine protects proteins against methylglyoxal-
mediated modifications. Biochem Biophys Res Commun, Vol.248,No.1,pp.28-32. 

Hipkiss, A.R.; Preston, J.E.; Himswoth, D.T.; Worthington, V.C. & Abbot, N.J. (1997). 
Protective effects of carnosine against malondialdehyde-induced toxicity towards 
cultured rat brain endothelial cells. Neurosci Lett, Vol.238,No.3,pp.135-138. 

Hipkiss, A.R.; Worthington, V.C.; Himsworth, D.T. & Herwig, W. (1998). Protective effects 
of carnosine against protein modification mediated by malondialdehyde and 
hypochlorite. Biochim Biophys Acta, Vol.1380,No.1,pp.46-54. 

Ivanov, I.T. (1999). Low pH-induced hemolysis of erythrocytes is related to the entry of the 
acid into cytosole and oxidative stress on cellular membranes. Biochim Biophys Acta, 
Vol.1415,No.2,pp.349-360. 

Jacobsen, D.W. (1998). Homocysteine and vitamins in cardiovascular disease. Clin Chem, 
Vol.44,No.8 Pt 2,pp.1833-1843. 

Kohen, R.; Yamamoto, Y.; Cundy, K.C. & Ames, B.N. (1988). Antioxidant activity of 
carnosine, homocarnosine, and anserine present in muscle and brain. Proc Natl 
Acad Sci U S A, Vol.85,No.9,pp.3175-3179. 

Lux, S.E. (1979). Dissecting the red cell membrane skeleton. Nature, 281, Vol.5731,No.pp.426-
429. 

Marchesi, V.T. (1985). Stabilizing infrastructure of cell membranes. Annu Rev Cell Biol, 
Vol.1,No.pp.531-561. 

McFarland, G.A. & Holliday, R. (1994). Retardation of the senescence of cultured human 
diploid fibroblasts by carnosine. Exp Cell Res, Vol.212,No.2,pp.167-175. 

McFarland, G.A. & Holliday, R. (1999). Further evidence for the rejuvenating effects of the 
dipeptide L-carnosine on cultured human diploid fibroblasts. Exp Gerontol, 
Vol.34,No.1,pp.35-45. 

Mohandas, N. (1991). The red blood cell membrane.In: Hematology: Basis, Principles and 
Practice. R. Hoffman, E. J. Benz, S. J. Shattil, B. Furie & H. J. Cohen,pp.264-269, 
Churchill-Livingstone.New York. 

Mohandas, N. & Chasis, J.A. (1993). Red blood cell deformability, membrane material 
properties and shape: regulation by transmembrane, skeletal and cytosolic proteins 
and lipids. Semin Hematol, Vol.30,No.3,pp.171-192. 

Morris, M.B. & Lux, S.E. (1995). Characterization of the binary interaction between human 
erythrocyte protein 4.1 and actin. Eur J Biochem, Vol.231,No.3,pp.644-650. 

Nam, J.H.; Kim, C.B. & Shin, S. (2009). The effect of L-carnosine on the rheological 
characteristics of erythrocytes incubated in glucose media. Korea-Australia Rheology 
Journal, Vol.21,No.2,pp.103-108. 

Nohl, H. & Stolze, K. (1998). The effects of xenobiotics on erythrocytes. Gen Pharmacol, 
Vol.31,No.3,pp.343-347. 

Pietraforte, D.; Matarrese, P.; Straface, E.; Gambardella, L.; Metere, A.; Scorza, G.; Leto, T.L.; 
Malorni, W. & Minetti, M. (2007). Two different pathways are involved in 
peroxynitrite-induced senescence and apoptosis of human erythrocytes. Free Radic 
Biol Med, Vol.42,No.2,pp.202-214. 

Popel, A.S. & Johnson, P.C. (2005). Microcirculation and Hemorheology. Annu Rev Fluid 
Mech, Vol.37,No.,pp.43-69. 

Preibisch, G.; Kuffner, C. & Elstner, E.F. (1993). Biochemical model reactions on the 
prooxidative activity of homocysteine. Z Naturforsch C, Vol.48,No.1-2,pp.58-62. 

www.intechopen.com



 
Hemodynamics – New Diagnostic and Therapeutic Approaches 

 

120 

Pribush, A.; Meyerstein, D. & Meyerstein, N. (2002). Kinetics of erythrocyte swelling and 
membrane hole formation in hypotonic media. Biochim Biophys Acta, 
Vol.1558,No.2,pp.119-132. 

Prokopiva, V.D.; Bohan, N.A.; Johnson, P.; Abe, H. & Boldyrev, A.A. (2000). Effect of 
carnosine and related compounds on the stability and morphology of erythrocytes 
from alcoholics. Alcohol and Alcoholism, Vol.35,No.1,pp.44-48. 

Quinn, P.J.; Boldyrev, A.A. & Formazuyk, V.E. (1992). Carnosine: its properties, functions 
and potential therapeutic applications. Mol Aspects Med, Vol.13,No.5,pp.379-444. 

Schlussel, E.; Preibisch, G.; Putter, S. & Elstner, E.F. (1995). Homocysteine-induced oxidative 
damage: mechanisms and possible roles in neurodegenerative and atherogenic 
processes. Z Naturforsch C, Vol.50,No.9-10,pp.699-707. 

Seidler, N.W.; Yeargans, G.S. & Morgan, T.G. (2004). Carnosine disaggregates glycated 
alpha-crystallin: an in vitro study. Arch Biochem Biophys, Vol.427,No.,1,pp.110-115. 

Severina, I.S.; Bussygina, O.G. & Pyatakova, N.V. (2000). Carnosine as a regulator of soluble 
guanylate cyclase. Biochemistry (Mosc), Vol.65,No.7,pp.783-788. 

Smith, C.; Marks, A.D. & Lieberman, M. (2005). Mark's Basic Medical Biochemistry 
(edition).Lippincott Williams & Wilkins, Philadelphia. 

Snyder, L.M.; Fortier, N.L.; Trainor, J.; Jacobs, J.; Leb, L.; Lubin, B.; Chiu, D.; Shohet, S. & 
Mohandas, N. (1985). Effect of hydrogen peroxide exposure on normal human 
erythrocyte deformability, morphology, surface characteristics, and spectrin-
hemoglobin cross-linking. J Clin Invest, Vol.76,No.5,pp.1971-1977. 

Tamba, M. & Torreggiani, A. (1999). Hydroxyl radical scavenging by carnosine and Cu(II)-
carnosine complexes: a pulse-radiolysis and spectroscopic study. Int J Radiat Biol, 
Vol.75,No.9,pp.1177-1188. 

Telen, M.J. & Kaufman, R.E. (1999). The mature erythrocyte.In. J. P. Greer & J. 
Foerster,pp.217-247, Lippincott Williams & Wilkins.Philadelphia. 

Tse, W.T. & Lux, S.E. (1999). Red blood cell membrane disorders. Br J Haematol, 
Vol.104,No.1,pp.2-13. 

Vladychenskaya, E.A.; Tyulina, O.V. & Boldyrev, A.A. (2006). Effect of homocysteine and 
homocysteic acid on glutamate receptors on rat lymphocytes. Bull Exp Biol Med, 
Vol.142,No.,1,pp.47-50. 

Volpe, E.P. (1993). Blood and circulation.In: Biology and Human Concerns. W. C. 
Dubuque,pp.253–265, William C Brown Pub 

Yapislar, H. & Aydogan, S. (2011 Vol.85,No.). Effect of carnosine on erythrocyte 
deformability in streptocotocin induced diabetic rats; relationship between 
carnosine and nitric oxide. ESCHM Congress. Munich, Germany, June 2011, pp:144. 

Yerer, M.B.; Aydogan, B. & Aydogan, S. (2010). Sodium nitroprusside-induced oxidative damage 
on erythrocytes: Protective role of carnosine. Series on Biomechanics, Vol.25,No.  
1-2,pp.194-198. 

Yerer, M.B.; Yapislar, H.; Aydogan, S.; Yalcin, O. & Baskurt, O. (2004). Lipid peroxidation 
and deformability of red blood cells in experimental sepsis in rats: The protective 
effects of melatonin. Clin Hemorheol Microcirc, Vol.30,No.2,pp.77-82. 

Yilmaz, F. & Gundogdu, M. (2008). A critical review on blood flow in large arteries; 
relevance to blood rheology, viscosity models, and physiologic conditions. Korea-
Australia Rheology J., Vol.20,pp.197-211. 

Yuneva, M.O.; Bulygina, E.R.; Galant, S.C.; Kramarenko, G.G.; Stvolinsky, S.L.; Semyonova, 
M.L. & Boldyrev, A.A. (1999). Effect of carnosine on age-induced changes in 
senescence accelerated mice. Journal of Anti-Aging Medicine, Vol.2,No.4,pp.337-342. 

www.intechopen.com



Hemodynamics - New Diagnostic and Therapeutic Approaches

Edited by Dr. A Seda Artis

ISBN 978-953-51-0559-6

Hard cover, 156 pages

Publisher InTech

Published online 25, April, 2012

Published in print edition April, 2012

InTech Europe

University Campus STeP Ri 

Slavka Krautzeka 83/A 

51000 Rijeka, Croatia 

Phone: +385 (51) 770 447 

Fax: +385 (51) 686 166

www.intechopen.com

InTech China

Unit 405, Office Block, Hotel Equatorial Shanghai 

No.65, Yan An Road (West), Shanghai, 200040, China 

Phone: +86-21-62489820 

Fax: +86-21-62489821

Hemodynamics is study of the mechanical and physiologic properties controlling blood pressure and flow

through the body. The factors influencing hemodynamics are complex and extensive. In addition to systemic

hemodynamic alterations, microvascular alterations are frequently observed in critically ill patients. The book

"Hemodynamics: New Diagnostic and Therapeuric Approaches" is formed to present the up-to-date research

under the scope of hemodynamics by scientists from different backgrounds.

How to reference

In order to correctly reference this scholarly work, feel free to copy and paste the following:

A. Seda Artis and Sami Aydogan (2012). Carnosine and Its Role on the Erythrocyte Rheology, Hemodynamics

- New Diagnostic and Therapeutic Approaches, Dr. A Seda Artis (Ed.), ISBN: 978-953-51-0559-6, InTech,

Available from: http://www.intechopen.com/books/hemodynamics-new-diagnostic-and-therapeutic-

approaches/carnosine-and-its-role-on-the-erythrocyte-rheology



© 2012 The Author(s). Licensee IntechOpen. This is an open access article

distributed under the terms of the Creative Commons Attribution 3.0

License, which permits unrestricted use, distribution, and reproduction in

any medium, provided the original work is properly cited.


