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1. Introduction

In this chapter, we are concerned with how a time-varying beta is linked to market condition
in capital asset pricing model (CAPM). This is a question that is related to the recent interest
in these large and unexpected swings in asset values, revived after the publication of Taleb’s
(2007) book, “The Black Swan: The Impact of the Highly Improbable", to explore the merits of
beta in the presence of large market fluctuations (c.f., Estrada and Vargas 2011).

It is well known that capital asset pricing model due to (Sharpe 1964) and (Lintner 1965)
conveys important information that individual securities are priced so that their expected
return will compensate investors for their expected risk. Symbolically, CAPM can be
expressed in a general non-expected form as

R; =a; + BiRy +¢;, (1)

where R; is the return on security i, Ry, is the return on the market portfolio and B; is the
measure of security i’s non-diversifiable risk relative to that of the market portfolio. Here
the return on individual security R; can be decomposed into the specific return, including
expected specific return «; and random specific return ¢;, and the systematic return, S;Ry,
owing to the common market return R;,. In this model, the quantity B; is of particular
importance, which is an alternative measure of the risk that an investor has to bear owing
to the systematic market movement.

In the traditional CAPM, B; is assumed to be constant. This assumption has been widely
documented to be untrue in the literature. Blume (1971) was among the first to consider the
time-varying beta market model, which showed that the estimated beta tended to regress
toward the mean; see also (Blume 1975). Earlier studies that attempted to apply random
coefficient model to beta include, among others, (Sunder 1980) and (Simonds, LaMotte
and McWhorter 1986) who suggested a random-walk coefficient model, and (Ohlson and
Rosenberg 1982) and (Collins, Ledolter and Rayburn 1987) who proposed an ARMA(1,1)
model for the beta coefficient. More recent literature has widely recognized that the systematic
risk of asset changing over time may be due to both the microeconomic factors in the level of
the firm and the macroeconomic factors; see (Fabozzi and Francis 1978; Bos and Newbold

www.intechopen.com



392 Risk Management for the Future — Theory and Cases

1984). Considerable empirical evidences have suggested that beta stability assumption is
invalid. The literature is abundant, see, for example, (Kim 1993), (Bos and Ferson 1992, 1995),
(Wells 1994), (Bos, Ferson, Martikainen and Perttunen 1995), (Brooks, Faff and Lee 1992) and
(Cheng 1997).

The time-varying beta models have also been investigate by using Australian stock market
data sets. Brooks, Faff and Lee (1992), and (Faff, Lee and Fry 1992) were among the
first to investigate the time-varying beta models. Faff, Lee and Fry (1992) employed a
locally best invariant test to study the hypothesis of stationary beta, with evident finding
of nonstarionarity across all of their analysis. The random coefficient model was further
suggested by (Brooks, Faff and Lee 1994) as the preferred model to best describe the systematic
risk of both individual shares and portfolios. However, (Pope and Warrington 1996) reported
that random coefficient model was appropriate only for a bit more than 10% companies in
their studies. Faff, Lee and Fry (1992) investigated the links between beta’s nonstationarity
and the three firm characteristics: riskiness, size and industrial sector, without finding the
strong pattern between firm size or industry sector and nonstationarity. Faff and Brooks
(1998) modelled industrial betas by different regimes based on market returns and volatility
of the risk-free interest rate, their univariate and multivariate tests providing mixed evidence
concerning the applicability of a time-varying beta model which incorporates these variables.
Groenewold and Fraser (1999) argued that the industrial sectors could be divided into two
groups: one of them has volatile and non-stationary betas and the other group has relatively
constant and generally stationary beta. Other recent studies include (Gangemi, Brooks and
Faff 2001), (Josev, Brooks and Faff 2001), and others. An interesting study recently made by
(Yao and Gao 2004) investigated the problem of choosing a best possible time-varying beta
for each individual industrial index using the state-space framework, including the random
walk models, random coefficient models and mean reverting models, which were examined
in detail by using the Kalman filter approach.

When testing the validity of asset pricing models, many studies account for market
movements, defined as up and down markets. For example, (Kim and Zumwalt 1979) used
the average monthly market return, the average risk-free rate and zero as three threshold
levels; when the realized market return is above (below) the threshold level the market is
said to be in the up (down) market state. Crombez and Vennet (2000) conducted an extensive
investigation into the risk-return relationship in the tails of the market return distribution;
they defined up and down markets with two thresholds: zero and the risk-free rate. Further,
to define three regimes for market movements, that is substantially upward moving, neutral
and substantial bear, different threshold points were used, such as: the average positive
(negative) market return, the average positive (negative) market return plus (less) half the
standard deviation of positive (negative) market returns, and the average positive (negative)
market return plus (less) three-quarters of the standard deviation of positive (negative)
market returns. The conditional beta risk-return relation has been found to be stronger if
the classification of up and down markets is more pronounced.

Galagedera and Faff (2005) has recently argued as in the finance literature and media that
high volatility leads to high returns. High volatility in equity prices in many situations
has been related to negative shocks to the real economy. On one hand, the volatility of
macro-economic variables may partially explain the equity market price variation. On the
other hand, the volatility in equity market prices may also be entrenched more in financial
market disturbances. In particular, when the market volatility becomes extreme, it could have
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an impact on financial markets. Some securities are more susceptible to market volatility than
others. Two interesting questions that arise in this setting were posed by (Galagedera and
Faff 2005): (i) Does the beta risk-return relationship depend on the various market volatility
regimes? (ii) Are the betas corresponding to these volatility regimes priced? There have been
empirical evidences raising concern about the ability of a single beta to explain cross-sectional
variation of security and portfolio returns. Security or portfolio systematic risk is known to
vary considerably over time, as documented in the literature in the above. It is further well
known that the volatility of financial time series, particularly in high frequency data, changes
over time.

In their pioneering work of three-beta CAPM, (Galagedera and Faff 2005) made an
assumption that the market conditions can play an important part in explaining a changing
beta and could be divided into three states specified as “low", “neutral" or “high" market
volatility. First, they fit a volatility model for daily market returns and obtain the estimates
for conditional variance. Then, based on the magnitude of these estimates, (Galagedera and
Faff 2005) classify daily market volatility %, into one of three market volatility regimes,

using appropriately defined indicator functions:

1 if o3, <o0?
Iy = S < @)
0 if otherwise

oo if 07 < 0% < 0F
Nt = . ; (©)
0 if otherwise

1 if o4 <o%
I = S < T (4)
0 if otherwise.

Here (7% and (71%1 are constants; Ir; represents the low market condition, In; represents the
neutral market condition, Iy; represents high market condition. By investigating empirically
on the single factor CAPM R;; = «; + BiRyut + €4 , to estimate the betas in the low, neutral and
high volatility markets, Galagedera and Faff extended the market model given in (1), in the
form:

Rit = i + Bir (ItRme) + Bin (INeRmt) + Bir (ImeRme) + &, ()
where Bir, Bin,Bi are three constants defined as the systematic risks corresponding to
the low, neutral and high market volatility regimes, respectively. This model is a richer
specification than the traditional single factor CAPM. It is a three-state regime-switching
model with the percentiles of market volatility used as threshold parameters. This model
raises an interesting question: How is the beta risk linked to the market condition measured
by the market volatility? Our main objective in this chapter is to investigate whether and how the
securities’ responses to the market vary depending on the changing market volatility.

We are making a careful investigation into this question in the following sections. In
Section 2.1, we shall extend the three-beta model (5) to a more general functional-beta CAPM
framework. Nonparametric estimation of the beta functional will be introduced in Section
2.2. We will use the data sets from the Australian stock market to empirically examine
the evidences of functional-beta structure in CAPM. An introduction into the data will be
provided in Section 3, where an estimation of the unobserved market volatility will be
established. Section 4 will carefully examine the linkage of the beta to the market volatility
by using both nonparametric and parametric approaches. Based on the findings from the
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nonparametric estimation, we can suggest reasonable regime switching thresholds, by which
a regime-switching threshold CAPM will be proposed and investigated. We will conclude in
Section 5.

2. Methodology: From a Three-Beta CAPM to a Functional-Beta CAPM

In this section, we will first propose a Functional-Beta CAPM that is a generalization of
the Three-Beta CAPM suggested by (Galagedera and Faff 2005) in Subsection 2.1, and
then introduce a nonparametric method to estimate the unknown functional beta in the
Functional-Beta CAPM in Subsection 2.2.

2.1 Model

Following the idea of (Galagedera and Faff 2005), we consider a new more general structural
framework to incorporate market movements into asset pricing models by including the
changes in the conditional market volatility. We achieve this by noting that the model (5)
can be expressed as

Rjt = a; + (Bir It + BinInt + Bir It )Ry + €ir = o + BirRaae + €it, (6)

which is a time-varying beta model, with

Bit = Bir It + BinInt + Birr 1t (7)

We note that the volatility of market returns is partitioned into three regimes in (2)—(4), which
are the functions of the size of the conditional market volatility, say, 0%,. Therefore B;; is a
simple functional of the market volatility 3;,, that is

BiL if o3, <07,
Bit = Bin if 0F <Ry <F, ®)
Bin if 03y > 0%

So the three-beta CAPM proposed by (Galagedera and Faff 2005) is a simple functional beta
model.

In this chapter, we will extend the model (5) that was suggested by (Galagedera and Faff 2005)
and propose a general functional-beta model as follows:

Ris = a; + Bi (o) R + i, )

where as before, Rj; is the return of financial asset i at time ¢, Ry is the market return at
time t, 0%, is the market volatility at time t, a; is the conditional expected specific return,
gj is random specific return, and f; is the coefficient of the contribution due to the market
factor, changing with the market volatility. Here B;(-) is particularly important, which is the
systematic risk functional, in capital asset pricing modelling. We may also treat «; as varying
with 0%/, although its value is usually rather small to be often assumed as a constant. We
call (9) the functional-beta CAPM. For our objective, we need to estimate the unknown «; and

Bi(-) in 9).
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2.2 Estimation of functional-beta CAPM: nonparametric method

Given the historical observations (R;;, Ry¢), t = 1,2,---,T, we are concerned with how
to estimate the unknown functional beta. First of all, we need some way to estimate the
unobservable market volatility ‘712\/1t- Using the market returns Ry, t = 1,2,---, T, we can
try to estimate 0%, in various ways. A simple way is to apply the econometric models of
ARCH of (Engle 1982) or GARCH of (Bollersleve 1986), as done in (Galagedera and Faff
2005). More involved stochastic volatility models can also be applied (c.f., Gao, 2007, page
169). Alternatively, we can use realized market volatility as an estimate of (TZZW ; see (Allen et
al. 2008) for a comprehensive review on realized volatility. In the following we assume the
market volatility (r]zw has been estimated, denoted by 6]2\/”, t=1,2,---,T.

We will estimate the unknown functional B(v) at the market volatility 03,, = v by least squares
local linear modelling technique (c.f. Fan and Gijbels, 1996). The basic idea of least squares
local linear modelling technique with B(+) can be described as follows. When 03, is equal or

close to v, then B(0%,) can be expressed or approximated by

B(v) + B'(v) (03 — v) = Bo + P10y — ) (10)

Locally at v, the model can then be approximately expressed as:
Rit ~ &+ (Bo + B (03 — ©)) Rt + €1, (11)

where though we can also assume a depending on 03, in model (9) and apply local linear
idea to «a(-), the estimation of «(-) is of less interest in capital asset pricing modelling, which
is very close to zero, therefore in (11) « is treated as a local constant to reduce the number of
unknown local parameters.

Therefore, replacing 0%, by 03, the least squares local linear estimate of « and B(-) in (9) can

—

be made by setting a(v) = @ and B(v) = By, where (&, By, B1) minimizes:

T 2
L& Bo, 1) = Y- (Rit — &+ (Bo + 1 (03 — o) Ruae) PR (L2, (12
t=1

where h = ht — 0 is a bandwidth that controls the length of the local neighborhood of v in
which the observations locally used fall, K(x) is a kernel function, which may, for example,
take

1 22
K(x) = ¢(x) = e 2. 13
() = 9x) = (13)
Therefore, we have three unknown local parameters a, By , B1 . Applying partial

differentiation, we get the expression of the estimators of the three unknown local parameters
at v as follows:

~

14
Bo | = A7'Br, (14)
B1
where
T 1 Ry Rt (634 — ) 52
_ 2 M Ome —©
Ar=Y_ L R . R ) Ifzzm(‘TMtZ—g) K<7h >,
=1\ (O — 0)Rmr (O — )RSy (O — 0) Ry
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Y1 RiK( %il_v)
Br=| ol RuRiK(542)
L1 (0% — o) R RieK (0
It is well-known (c.f., Fan and Gijbels, 1996) that the bandwidth h plays an important role
in the process of estimation. Therefore, how to choose the bandwidth becomes an important
step in the estimation. A popular method is the cross-validation (CV) selection of bandwidth

(cf., Stone 1974). We here apply a leave-one-out CV, defined below, which is relatively
computationally less intensive in comparison with other more involved CV principles:

CV(h) - Z{Ris — s (5']2\/15) - B—S (&12\/15>RMS}2/ (15)

where (&_s(-), B—s(-)) are the estimators of (a(-), 3(-)) obtained by minimizing (12) with the
term ¢t = s removed from the sum of (12). We select the /1, that minimizes CV/(-) over
h € [hp, hyl, where 0 < hp < hy are appropriately given. To simplify the computation,
a partition of [k, hyy] into g points hy,hy, - -+, by is applied. We adapt an empirical rule for
selecting a bandwidth by (Fan et al. 2003) to determining the bandwidth F; see also (Lu et
al. 2009): Up to first order asymptotics, the optimal bandwidth is hepr = {c2/(4Tc1)}/5,
minimising CV (h) = co + c1h* + &+ op(h* + T~'h~1). In practice, the coefficients g, ¢; and
cp will be estimated from CV (hy), k =1,2,-- - ,q, via least squares regression,

C0,C1,C2

q
min Z {CVk —Co — Clh% — Cz/(Thk)}zz (16)
k=1

where CV; = CV/(ly) obtained from (15). We let hypt = {é5/(4T¢1)}'/5 when both ¢; and &,
the estimators of c; and cy, are positive. In the likely event that one of them is nonpositive,
we let hypr = argming <4<, C V(hy). This bandwidth selection procedure is computationally
efficient as g is moderately small, i.e. we only need to compute g CV-values.

Before we can apply the estimation method introduced in this section to examine the empirical
evidence of the functional-beta CAPM, we need to introduce the data sets that we will use, in
next section.

3. Data sets from Australian stock market

We will use a set of the stocks data collected from Australian stock market to explore the
evidence of functional-beta CAPM in this chapter. The reason why we use the Australian
data is because we believe an Australian dataset is ideal for this task. Firstly, the Australian
evidence regarding the CAPM is well studied by (Ball, Brown and Officer 1976); (Faff 1991);
(Wood 1991); (Faff 1992); (Brailsford and Faff 1997); and (Faff and Lau 1997) as well as (Yao
and Gao 2004). Ball, Brown and Officer (1976) may be the first published test of the CAPM
using Australian data. They employed the basic univariate testing methodology and found
evidence supporting their model. Therefore using the Australian data set will help us to
better understand the varying-coefficient nature of CAPM. Secondly, it can be seen that a
relatively few, very large companies dominate the Australian market. For example, around
40 per cent of market capitalization and trading value is produced by just 10 stocks, whereas
a similar number of the largest US stocks constitute only about 15 per cent of the total US
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market. Moreover, there are typically prolonged periods in which many smaller Australian
companies do not trade. Therefore the market risk may be a significant factor that impacts
the risk of the individual stock or index measured by the beta in CAPM. Thirdly, despite the
above argument, the Australian equity market belongs to the dominant group of developed
markets. For instance, as at the end of 1996 it ranked tenth among all markets in terms of
market capitalization at about $US312,000 million. Interestingly, this is not greatly dis-similar
from the size of the Canadian market which ranked sixth (Faff, Brooks, Fan 2004). Therefore
the Australian data may be of some typical properties that the other markets may share.

According to ASX Indices (including All Ordinaries Index, ASX 200 GICS Sectors Index), we
take sample size 986, from August 2nd 2004 to August 8th 2008, for an illustration. The
sectors indexes include ASX 200 GICS Energy, ASX 200 GICS Materials, ASX 200 GICS Health
Care, ASX 200 GICS Financials, ASX 200 GICS Finance-v-property trusts. Moreover, we also
take a group of individual stock data which is ANZ bank group limited as survey sample of
individual stock analysis. An introduction to individual and market return series is presented
in Subsection 3.1; estimation of the market volatility that we need in estimating functional-beta
CAPM is detailed in Subsection 3.2.

3.1 Individual and market return series

At first we review the market return of Australia Index from August 2nd 2004 to August 8th
2008. The time series plot of the 5 sector daily indices and the ANZ stock daily closing price
are depicted in Figure 1 together with their return series in Figure 2, where the daily return
data denoted as R; (for individual sector index or for individual security), can be expressed
as:

Rt = (log Py —log P;_1) x 100, (17)
where P; represents the closing price of individual sector index in day t. The daily market
return data, Ry , can be expressed as:

Ryt = (log Pags — log Pags—1) x 100, (18)

and Pyy; represents the closing price of all ordinaries index in day ¢, both of which are plotted
in Figure 3.

In addition to market return data, Ry, we also need the daily market volatility, 012\/“, which is

unobservable directly. We discuss how to estimate (7]2\/” based on the market return data, Ry,
in the next subsection.

3.2 Market volatility

The market volatility that can not be observed directly needs to be estimated by using the
market return series Ry;. A popular method to estimate the market volatility in the literature
is by using the family of GARCH models proposed by (Engle 1982) and (Bollersleve 1986); in
particular, we produce the market volatility by the most popular GARCH(1,1) model applied
to the return series of All Ordinaries Index. In the GARCH(1,1) model

Ry = ag + a1 Rpp -1 + €t

€t = ey, (19)
2 2 2

Oy = 00 + 1651 + P10y,
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Fig. 1. The 5 ASX 200 GICS Sectors Indexes and ANZ daily closing price in Australia from
August 2nd 2004 to August 8th 2008. Sample size =986.

we use R fGarch package to calculate the parameters under ¢; satisfying Ee; = 0 and var(e;) =
1. In order to examine the impacts of distribution for e; on the estimation of the volatility, we
tried different distributions for ¢; in the fGarch package, including normal, ¢ and generalized
error distribution and their skewed versions, and found that the non-skewed distributions are
more acceptable according to their AIC values (Akaike, 1974), with the results listed in Table 1:
Quite obviously it follows from the p-value in Table 1 that ap and a; in the AR part are close
to zero while the GARCH parameters are all away from zero at the significance level of 5%.
Also by the AIC values, these three GARCH models are quite close to each other and well
fitted to the market return data set, with the GARCH-GED (i.e., with e; of generalized error
distribution) preferred. The estimated volatility series under GARCH-GED is plotted Figure 4,
where the kernel density estimators of the estimated volatility series under different GARCH
models are also displayed, confirming that the estimated volatility under different models are
very close. In the following we will use the estimated volatility from the GARCH-GED model
as the volatility series in the estimation of the functional-beta CAPM. The summary statistics

www.intechopen.com



Risk, Return and Market Condition:
From a Three-Beta to a Functional-Beta Capital Asset Pricing Model

399

return
0

-10

return

return

-10

Energy sector index

I I I I I I
0 200 400 600 800 1000
Time
Healthcare sector Index
I I I I I I
0 200 400 600 800 1000
Time
Fin—-X-Prop sector Index
I I I I I I
0 200 400 600 800 1000
Time

return

return

return

-10

10

-15

Finance sector Index

0 200 400 600 800 1000
Time
Materials sector Index
I I I I I I
0 200 400 600 800 1000
Time
ANZ stock price
B T T T T T
0 200 400 600 800 1000

Time

Fig. 2. The return series of the 5 ASX 200 GICS Sectors Indexes and ANZ daily closing price
in Australia from August 2nd 2004 to August 8th 2008. Sample size =985.

agp aq (1% N1 [31 shape AIC
garch-normal -0.019310 -0.022673 0.033037 0.110890 0.871949 3.248890
(p-value) (0.5731)  (0.4995)  (0.0146) (4.53e-08) (2e-16)
garch-t -0.032541 -0.015214 0.031242 0.114034 0.873597 10.00000| 3.248322
(p-value) (0.3363)  (0.6457)  (0.0360) (1.14e-06) (2e-16)  (7.50e-05)
garch-ged  -0.031626 -0.020063 0.031619 0.111393 0.872692 1.682406| 3.244669
(p-value) (0.3536)  (0.5460)  (0.0267) (3.94e-07) (2e-16)  (2e-16)

Table 1. Estimated GARCH models under different innovations for the return of all
ordinaries index

on the market return and volatility are provided in Table 2, from which we can see that the

market is quite volatile with large extreme values.
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Fig. 3. All Ordinaries Index (sample size =986) and its return series (sample size=985) in
Australia from August 2nd 2004 to August 8th 2008.

mean standard deviation skewness kurtosis median min max
Market return  0.04388 2.0214 0.4596 6.5235 -0.0099 -5.3601 8.5536
Market volatility 1.3089 0.3169 2.1493 8.7173  1.1729 0.6023 4.3905

Table 2. Some statistics data for the Australia index

In the next section, we shall explore the functional form of the beta risk associated with the
market volatility in CAPM with the stocks data sets from Australian stock market introduced
in this section.

4. Functional-beta CAPM: Empirical evidences

To carefully examine the evidences of functional-beta model (9), we are using the
methodology introduced in Section 2, under the semiparametric beta structure that is
estimated by local linear fitting introduced in Section 2.2. The advantage of this
semiparametric method lies in that the data will determine the relationship of the beta
coefficient associated with the market volatility, without pre-specifying a parametric structure
to avoid model mis-specification. Based on the findings from the semiparametric method,
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Fig. 4. The estimated volatility of All Ordinaries Index and its kernel probability density
estimates under different GARCH models

we shall clearly see whether the beta coefficient associated with the market volatility is of
three- or multi-beta structure or not. Differently from the three- or multi-beta CAPM in
(Galagedera and Faff 2005), our new findings will indicate that the functional beta may
probably be parameterized as threshold (regime-switching) stepwise linear functionals of the
market volatility, rather than three or more simple constant beta’s.

We will present our empirical evidence based nonparametric estimation method in Subsection
4.1 and further investigation into the parametric evidence in Subsection 4.2.

4.1 Nonparametric evidence

Referred to Section 2.2, when we apply local linear fitting method to estimate the unknown
beta function in model (9), we need to use the real data to choose the ideal bandwidth for
each Sector index. The values of CV are calculated against 40 points of the bandwidth / for
eight groups of data (with bandwidth ranging from 0.2 to 0.6 with partition interval of length
0.01). Hence using the CV calculation procedure given in Section 2.2, we can have the chosen
bandwidths as follows in Table 3:
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Energy Finance Healthcare Materials Fin-V-Prop ANZ
Bandwidth ~ 0.45 0.56 0.58 0.38 0.53 0.78

Table 3. Bandwidth Selection

Based on the chosen bandwidth in Table 3, the results of nonparametric estimation of
beta functional can be plotted in graphs. For each of eight groups of data (mentioned in
Section 3), we can have a curve of beta function plotted in the solid line in Figures 5-10,
respectively. As most of the beta functions except for ANZ are positive, it means that the
market return has positive effects on all individual sector return. Moreover, the time changing
of the beta factor is obvious; it also shows that the individual returns are influenced by the
market returns under conditions of market volatility at different levels. We will examine the
findings of regime-switching phenomena from the nonparametric estimation more carefully
by considering different parametric beta structures in CAPM, which are studied in the next
subsection.

4.2 Parametric analysis

In this part we focus on further parametric investigation according to the previous work of
nonparametric outcomes. How to specify parametric structures for functional beat? In a
recent pioneering work of three-beta CAPM, (Galagedera and Faff 2005) made an assumption
that the market conditions can play an important part in explaining a changing beta and
could be divided into three states specified as -"low", "neutral" and "high". The nonparametric
outcomes in Section 4.1 provide us with some possible ways of parametrization of the beta

functional.

To capture the findings of regime-switching phenomena in functional-beta CAPM, we need
to suitably specify the switching regimes of market condition in a parametric analysis of
functional-beta. The difficult choice of the specific switching regimes of market condition
can be suggested in accordance with the nonparametric outcomes of the functional beta, by
which we can select reasonable changing points (thresholds) that are needed in parametric
estimation. The problem of how many thresholds we should choose in the functional-beta
model will be solved by Akaike’s information criterion (AIC). This way, we shall have a
general flexible functional-beta model which fits the financial data more adaptively.

With reference to the results of non-parametric estimates in Figures 5-10, the market volatility
changing regime points 07 and ¢7; are quite amazingly very close to 1.4 and 2.8, respectively,
for all the individual sector indexes and the ANZ stock, if we would apply a three-regime
(two-threshold) CAPM as done in the three-beta CAPM of (Galagedera and Faff 2005). We
therefore run the comparisons of the following five types of parametric models to examine
which one appears more flexible and better fitted to the real data. (i) The first one is the
traditional CAPM with a constant beta as coefficient. (ii) The second one is similar to the first
one but it has a linear functional beta. (iii) In the third one, we divide the market volatility into
two regimes and the beta functional can be parameterized as a two stepwise linear function.
From the nonparametric estimates in Figures 5-10, it looks reasonable to set c7 = 1.4 as the
threshold. (iv) In the fourth one, we divide the market volatility into three regimes and the
beta functional can be parameterized as a three stepwise function, where we take 0'% =14
and (712{ = 2.8. (v)The fifth model is the three-beta CAPM of (Galagedera and Faff 2005), with

07 = 1.4 and 07 = 2.8. Specifically,
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(i) Traditional CAPM: Ry = a; + Bi Ryt + € Bi = Bio
(ii)Linear-beta CAPM: Ry = a; + BiRmt + iy Bir = Bio + Bin0ay
(iii) Two-regime (one-threshold) CAPM:  Rj; = a; + Bir . (ILeRt) + Bir g (It Rme) + €3t

BitL = Bio + Bin0sy,  Oagy < 0F
Bith = Bio + Bis0ay, 03y > 0%

(iv) Three-regime (two-threshold) CAPM:
Rit = ai + Bit, L (IeRme) + Bit, N (INeRmt) + Bit, i (IHeRme) + €t

Bitl = Bio + B0y oy < 07
Bitn = Bio + Bis0ay, 07 < ory < 0Fy
Bt = Pia + Bisory,  Oryy > O3y

(v)Three-beta CAPM:  Rj; = a; + Bjr . (ILeRaie) + Bit N (INeRate) + Bir i (IgeRae) + €5

Bitr = Bio, Oagy < 0F
Bitn = B, 0F < 0iy < 0F
Bitn = Bia, Try > 03

Here all the a;, Bjo, Bi1, Bi2, Bi3, Bia, Bis are constants to be estimated by linear regression
method.

One important problem in practice is the model selection, that is, which model is the best
suitable for a real data set among Models (i)—(v). In order to verify which type of CAPM best
suits each group of data respectively, Akaike’s information criterion, AIC, is to be applied in
this part by minimizing the value of AIC(m), where m is the number of unknown parameters
in the model. Note that all 5 models (i)-(v) can be expressed in a linear model in the form
R;=(Rj1, - ,Rit) = Xb+ (&1, -+ ,€i7)’ by suitably defining a T x m matrix X, where m is
the number of parameters in each of the five CAPMs (See Table 4). Then we can define

AIC(m) = Tlog &> + T(2m)
Ri=HR; H=X(XX)"'x (20)

A 1 & —~ —~ 1
==Y (Ry—Ry) (R — Ry) = —Ri(I—H)'(I - H)R;. (21)
t=1
The results in Table 4 show that except for the health care sector index selecting Model (v), all
the other data sets select either Model (iii), Model (iv), which means the beta functional could
be divided into two or three regimes. Models (i) and (ii) may be too simple to describe the
relationship between market return and individual return.

The two-stepwise beta functional in Model (iii) estimated by using the common changing
point 0’% for each data set is plotted in dashed line in the left panel of Figures 5-10, respectively,
and the three-stepwise beta functional in Model (iv) in dashed line in the right panel of
Figures 5-10, respectively. Obviously, due to the sparseness of highly extreme market
volatility (7]2\/“ (c.f., Figure 4), the results of nonparametric estimation are poor and unreliable at
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Model (i): m=2 (i) m=3  (iii)): m=5 (iv): m=7 (v): m=4 chosen CAPM
Energy 3869.947  3799.963 3778.340 3779.698  3805.315 (iii)
Finance 3677.854  3650.706  3643.563 3645.087  3655.554 (iii)
HealthCare 3321.021  3318.320  3318.096 3320.025  3316.039 (v)
Materials 4137.633  4066.287  4044.999 4026.751  4077.107 (iv)
F-v-P Trusts  3778.767  3755.012  3746.462 3747.036  3758.679 (iii)
ANZ bank 4577.802  4571.992  4558.787 4558.482  4578.409 (iv)

Table 4. AIC(m) and The Type of CAPM Chosen

extreme market volatility, while the parametric results of two-stepwise or three-stepwise beta
functionals provide reasonable outcomes in Figures 5-10. Under moderate market volatility,
both nonparametric and parametric outcomes are pretty consistent.

In (Galagedera and Faff 2005), the functional beta is assumed as three constants over three
regimes, which is a special case of Model (iv) with B;; = Bi3 = Bis = 0. To examine their
work, here we test the significance of B;1, Bi3, Bis by applying T-statistics:

Ho : pin = Biz = pis =0 (22)
Applying linear regression method we get b , and residuals 7:
b= (X/X>_1X/Ri/ where b = (“ir Bio, Bi1, Bz Pizs Bias ﬂiS)/l (23)

and let ¢ stand for the standard deviation of 7 = R; — Xb . Then the T-statistics value of each
estimated parameter is T; = E]-/ {(XXT)].;léz}l/ 2, where b; represents the jth element of b.
In a standard normal distribution, only 5% of the values fall outside the range plus-or-minus
2. Hence, as a rough rule of thumb, a t-statistic larger than 2 in absolute value would be
significant at the significance level of 5%. The outcomes of the T-statistics with p-values
for Models (iii), (iv) and (v) are listed in Tables 5-10, respectively, which indicate that the
(Galagedera and Faff 2005)" three-beta model is basically rejected except for the health care
sector index.

o Bio Bi1 Bix Bis Bis Bis AIC

Threshold CAPM (2 step) 3778.340
Estimate -0.0222 1.5001 -1.0176 -0.4794 0.5093
T statistic -0.4199 4.2287 -3.2583 -2.9629 7.9788
p-value 0.6746 2.6e-05 0.0012 0.0031 4.1e-15
Threshold CAPM (3 step) 3779.698
Estimate -0.0192 1.5024 -1.0196 -0.5792 0.5527 0.5988 0.1933
T statistic -0.3625 4.2365 -3.2654 -2.2719 4.5061 0.8689 0.9408
p-value 0.7171 2.5e-05 0.0011 0.0233 7.4e-06 0.3851 0.3470
Three-beta CAPM (3 step) 3805.315
Estimate -0.0336 0.3597 0.5410 1.2432
T statistic -0.6315 6.2018 9.2367 14.035
p-value 0.5278 8.2e-10 1.5e-19 6.4e-41

Table 5. Estimate, T-statistic and p-value for & and each component of ,B in Models (iii), (iv)
and (v) for Energy Sector Index
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& Bio Bil Bix Biz Bis Bis AIC

Threshold CAPM (2 step) 3643.563
Estimate 0.0332 1.1911 -0.6470 -0.0248 0.2982
T statistic 0.6728 3.5952 -2.2182 -0.1642 5.0018
p-value 0.5013 0.0003 0.0268 0.8696 6.7e-07
Threshold CAPM (3 step) 3645.087
Estimate 0.0355 1.1928 -0.6484 -0.2079 0.3883 0.8428 0.0377
T statistic 0.7187 3.6012 -2.2237 -0.8730 3.3893 1.3094 0.1965
p-value 0.4725 0.0003 0.0264 0.3829 0.0007 0.1907 0.8442
Three-beta CAPM (3 step) 3655.554
Estimate 0.0255 0.4660 0.5790 0.9690
T statistic 0.5174 8.6687 10.667 11.805
p-value 0.6050 1.8e-17 3.3e-25 3.6e-30

Table 6. Estimate, T-statistic and p-value for & and each component of ,B in Models (iii), (iv)
and (v) for Finance Sector Index

&; Bio Bi1 i Bis Bis Bis AIC

Threshold CAPM (2 step) 3318.096
Estimate 0.0080 0.5473 -0.2468 -0.0246 0.1382
T statistic 0.1909 1.9487 -0.9983 -0.1924 2.7342
p-value 0.8486 0.0516 0.3183 0.8475 0.0064
Threshold CAPM (3 step) 3320.025
Estimate 0.0082 0.5475 -0.2469 0.1961 0.0198 -0.0505 0.1589
T statistic 0.1969 1.9494 -0.9990 0.9716 0.2043 -0.0926 0.9764
p-value 0.8440 0.0515 0.3181 0.3315 0.8381 0.9263 0.3291
Three-beta CAPM (3 step) 3316.039
Estimate 0.0054 0.2707 0.2365 0.4784
T statistic 0.1308 5.9824 51772 6.9238
p-value 0.8960 3.1e-09 2.7e-07 7.9e-12

Table 7. Estimate, T-statistic and p-value for & and each component of B in Models (iii), (iv)
and (v) for Health care Sector Index
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&; Bio Bin Bio Biz Bia Bis AIC

Threshold CAPM (2 step) 4044.999

Estimate -0.0213 1.8714 -1.3549 -0.2381 0.4821

T statistic -0.3518 4.6074 -3.7889 -1.2850 6.5962

p-value 0.7251 4.6e-06 0.0002 0.1991 6.9e-11
Threshold CAPM (3 step) 4026.751

Estimate -0.0140 1.8769 -1.3594 -1.0294 0.8800 2.6250 -0.3886

T statistic -0.2341 4.6686 -3.8409 -3.5619 6.3288 3.3600 -1.6685

p-value 0.8150 3.5e-06 0.0001 0.0004 3.8e-10 0.0008 0.0955
Three-beta CAPM (3 step) 4077.107

Estimate -0.0392 0.3529 0.7542 1.3335

T statistic -0.6415 5.3006 11.218 13.115

p-value 0.5214 1.4e-07 1.5e-27 2.5e-36

Table 8. Estimate, T-statistic and p-value for & and each component of ,B in Models (iii), (iv)
and (v) for Materials Sector Index

&; Bio Bi1 Bio Bis Bis Bis AIC

Threshold CAPM (2 step) 3746.462

Estimate 0.0238 1.3180 -0.7423 -0.0411 0.3083

T statistic 0.4574 3.7760 -2.4154 -0.2579 4.9091

p-value 0.6475 0.0002 0.0159 0.7966 1.1e-06
Threshold CAPM (3 step) 3747.036

Estimate 0.0267 1.3202 -0.7441 -0.2572 0.4141 1.0547 -0.0197

T statistic 0.5133 3.7850 -2.4231 -1.0259 3.4323 1.5560 -0.0975

p-value 0.6078 0.0002 0.0156 0.3052 0.0006 0.1200 0.9224
Three-beta CAPM (3 step) 3758.679

Estimate 0.0146 0.4861 0.5820 0.9900

T statistic 0.2780 8.5826 10.176 11.445

p-value 0.7797 3.6e-17 3.4e-23 1.5e-28

Table 9. Estimate, T-statistic and p-value for & and each component of B in Models (iii), (iv)
and (v) for Financial-x-trusts Sector Index
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o Bio Bi1 Bix Bis Bis Bis AIC

Threshold CAPM (2 step) 4558.787
Estimate 0.0851 2.5144 -2.0707 0.4902 -0.1826
T statistic 1.0836 4.7693 -4.4614 2.03844 -1.9251
p-value 0.2788 2.1e-06 9.1e-06 0.0418 0.0545
Threshold CAPM (3 step) 4558.482
Estimate 0.0903 2.5183 -2.0740 0.1687 -0.0282 2.4172 -0.7560
T statistic 1.1504 4.7822 -4.4736 0.4455 -0.1547 2.3621 -2.4779
p-value 0.2503 2.0e-06 8.6e-06 0.6560 0.8771 0.0184 0.0134
Three-beta CAPM (3 step) 4578.409
Estimate 0.0453 0.1929 0.1149 -0.0954
T statistic 0.5749 2.2468 1.3247 -0.7278
p-value 0.5655 0.0249 0.1856 0.4669

Table 10. Estimate, T-statistic and p-value for & and each component of B in Models (iii), (iv)
and (v) for ANZ bank group limited

5. Closure and future work

In this chapter, we have suggested a functional-beta single-index CAPM, extending the work
of three-beta CAPM (Galagedera and Faff, 2004) that takes into account the condition of
market volatility. Differently from the three-beta CAPM, we allow systematic risk §; changing
functionally with the market volatility o2, which is more flexible and adaptive to the changing
structure of financial systems.

By using a set of stocks data sets collected from Australian stock market, empirical
evidences of the functional-beta CAPM in Australia have been carefully examined under both
nonparametric and parametric model structures. Differently from the three- or multi-beta
(constant) CAPM in (Galagedera and Faff 2005), our new findings have convincingly
demonstrated that the functional beta can be reasonably parameterized as threshold
(regime-switching) linear functionals of market volatility with two or three regimes of market
condition, taking as a special case the three-beta model of (Galagedera and Faff 2005) which
was mostly rejected except for the health care sector index. In the condition of extreme market
volatility, a parametric threshold functional-beta CAPM is found useful, which is of potential
interest in exploring the Black Swan effect of the merits of beta in the presence of large market
fluctuations.

The CAPM provides a usable measure of risk that helps investors determine what return
they deserve for putting their money at risk. Our new model is no doubt helpful to better
understand the relationship between risk and return under different market conditions. It can
be potentially applied widely, for example, it may be useful both for market investors and
financial risk managers in their investment/management decision-making, such as portfolio
selection.

In addition, as done in (Galagedera and Faff 2005), it is interesting to investigate how the
functional beta systematic risk is priced in the real financial assets.

We shall leave the above questions for future work.
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