
Selection of our books indexed in the Book Citation Index

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us?
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

185,000 200M

TOP 1%154

6,900

0

Visualizing Program Semantics

Guofu Zhou and Zhuomin Du
Wuhan University

China

1. Introduction

Generally, any program is designed for computing one problem based on one special
architecture computing machine. It is unavoidable that some machine constraint will be
transferred to the program code. When the program is formalized for being verified or
validated the machine constraints will be treated as properties of program .

Turing model,the theory model of program(mainstream), has two special features: Only one
storage tape that determines the changing status is sequent; Only one write-read head that
determines the sequence of action operating is serialization; Accordingly, research on program
semantics is focus on two areas: the first viewpoint thinks that a program is a set of status. the
operating is a procedure of status changing. So, for that the formalization tools describe status.
The other one viewpoint thinks that a program is a set of processes. A status is abstracted for
understanding the process. So, for that the formalization tools describe the processes, and a
status only is the composition of processes by timeline.

One target of formalizing a program is,not for a special machine, to get one general and one
abstract specification Bjorner et al. (1987); Spivey (1998). So, one program specification must
describe the following basic properties:

• variables and theeir changing;

• the consumptive or the nonconsumptive resources;

• the semantics of operation;

• the control flow in program, not one in computing machine.

For the problems, Petri nets is an ideal theory tool. By both extending and applying Petri nets
theory, the semantics of program can be formalized visually Breuer & Lano (1999); Girault &
Valk (2002); Jensen et al. (2007).

2. Model

Informally, a program is composed of data structure and algorithm Harel (1987); Khedker
et al. (2009); Woodcock & Davies (1996). We know data structure is a discrete description of
entity attributes based on one special computing machine. For example, the data structure of
tree can be described as in figure 1(if the tree only has such attributes)

From figure 1, we can conclude the tree is composed of attributes right,le f t and data. But we
can’t make out any relation among right,le f t and data. In fact, the relations are the key to

9

www.intechopen.com

2 Will-be-set-by-IN-TECH

Tree: structure

Right:tree;

Left:tree;

Data:integer;

End Tree.

Fig. 1. Tree structure

x := 1 o1

y := 1 o2

Fig. 2. Segment of algorithm

y := 1 o1

x := 1 o2

Fig. 3. Another segment of algorithm

understand that is a tree but not any others. So, the discrete description of attributes does not
help to understand an entity .

And there is another characteristics in coding a program. For example, there is a segment
of algorithm in figure 2, o1 and o2 are labeled as a statement on x and a statement on y
respectively(ignore other unconcern processes).

Also, we can design another algorithm(figure 3) to fulfill the same function as in figure 2.

The reason to explain the case is in design phase designer only concerns the result produced
by the algorithm, and thinks the algorithm is right if and only if the algorithm can produce an
expected result. However, the same result the two algorithms can produce but not the same
semantics the two algorithms have.

In a word, when designing an algorithm, the designer transforms some constraints into the
algorithm unconsciously, for example, serialization(discussed above). Once the algorithm
finished, the additional relations are fixed into the code. So, two aftereffects are forged:

1. Two independent operations will be serialized, a new relation is added; or

2. The two concurrent operations will be serialized and the relation of concurrence is lost.

For convenience, the relation between variables, variable and operation, or operations is called
control.

Asynchronous control, A-control for short, is a kind of relation between operation and
variable that has no directive or indirected causality. A-control has two types: concurrent
control and noncorrelation control.

A concurrent control denotes there are one or more common direct or indirect causality sets
among operations (variables), e.g., o in figure 4 is a common result of b1, b2 and b3. Dashed
line shows there are more than one node, the straight line show there is a directive relation.

A noncorrelation control denotes there is no any common direct or indirect causality among
operations (variables) . A noncorrelation control is no necessary in program. However, in a
large-scale software system, noncorrelation controls are usual. The noncorrelative variables
or operations in a system may be associated for building a new system. For example, in figure
5(1), {a1, a2, · · · , ai} is non correlative with {b1, b2, · · · , bi} in a system, however, in figure

208 Semantics in Action – Applications and Scenarios

www.intechopen.com

Visualizing Program Semantics 3

Ob
1

b
2

b3

Fig. 4. Concurrent control

5(2), {a1, a2, · · · , ai} is associated with {b1, b2, · · · , bi} because of ci in a new system. ci is
a common result among {a1, a2, · · · , ai} and {b1, b2, · · · , bi}. Obviously, the noncorrelation
control between {a1, a2, · · · , ai} and {b1, b2, · · · , bi} disappears.

a
1

a
2

a
i

b
1

b
2

b
i

a
1

a
2

a
i

b
1

b
2

b
i

O O

c
i(1) (2)

Fig. 5. Asynchronous Control

Linear control, L-control for short, describes causality among variables and operations.
L-control has two kinds of types: direct associated and indirect associated.

one variable is a direct composition of another one, e.g., X is composed of b as in figure 6(1);
or one variable is a indirect sub-composition of another one, e.g., in figure 6(2), Y is directly
composed of both a and b. Specially, c is an indirect sub-composition of Y.

b

a

(1)

b

a

(2)

c

X Y

Fig. 6. Linear Variables

For operations, L-control denotes one operation is a run condition of another one , e.g., in
figure 7(1), ci run only after ai finished (direct associated); or one operation is one of run
conditions of another one (indirect associated), e.g., in figure 7(2), ci can not run immediately
after ai finish if bi do not finish.

a
i

c
i

(1)

a
i

b
i

c
i

(2)

Fig. 7. Linear Operations

Loop control is a special L-control(figure 8). because of the recursive attributes not being
permitted, A loop control can only describe relations among operations.

Parallel control , P-control for short, denotes variables or operations are parallel. On one
hand, parallel operations have direct common pre-operations or post-operations as in figure
9(1). A is parallel to B because C is a direct common post-operation of A and B.

209Visualizing Program Semantics

www.intechopen.com

4 Will-be-set-by-IN-TECH

a
i

b
i

c
i

Fig. 8. Linear LOOP

On the other hand, parallel variables have direct common target variables. In figure 9(2), both
right and le f t construct a tree, a parallel control exists between le f t and right.

tree:

left: tree;

right:tree;

P-control(left, right)

A

B

C

(1) (2)

Fig. 9. Parallel Control

P-control is relative. In figure 10(1), a is parallel to b. But, if another P-control is inserted
between a and b (figure 10(2)), then the new a is the direct run condition of b. Obviously, the
new a is not parallel to b and the P-control between a and b losts.

a

b

I

(1)

a

b

I

(2)

Fig. 10. Relative Parallel Control

Trigger Action Control is the logic relation that regulates how to run, delay and terminate
operations. Any operation can only run after it gets (satisfied) a control handle of computing
machine. In other words, computing machine determines how to run a program.

In figure 11, a control handle arrives at the statement doingsomething. Here,
controlo f program = true and controls of other statements can not be satisfied (controlo f oi =
f alse), the statement doingsomething is running. and the other statements do not run. So,
Control mechanism can help to describe the dynamic properties.

Regulate Order Single control handle determines a program is sequent. If a program has more
than one control handles, how about a program should be? For example, a program in figure
11 has one control handle, statements only run in turn. When the program has two control
handles, the program can run by many ways, such as in figure 12.

Resource is physical and depend on a computing machine. Running a program needs
resources, such as RAM, CPU, communication channel, and so on. Generally, resources are
managed by an operation system.

210 Semantics in Action – Applications and Scenarios

www.intechopen.com

Visualizing Program Semantics 5

o
1
: control of o

1
 = false ;

…

doing something : control of program = true ;

…

o
2
: control of o

3
= false ;

…

Fig. 11. Trigger Action

o
1
: contro of o

1
 = true ;

o
2
: contro of o

2
= true ;

o
3
: contro of o

3
= false ;

(1)

o
1
: contro of o

1
 = true ;

o
2
: contro of o

2
= false ;

o
3
: contro of o

3
= true ;

(2)

o
1
: contro of o

1
 = false ;

o
2
: contro of o

2
= true ;

o
3
: contro of o

3
= true ;

(3)

Fig. 12. Regulate Order

Resource can be either consumable or inconsumable . Consumable resource will be consumed
out during a program run. Consumable resources are exclusive, such as RAM ,CPU.
Inconsumable resource can be shared, such as system clock and any program can read the
system clock any time.

We know, the mathematics model of program is Turing machine. Accordingly, a program is a
set of variables and read-writes.

- Operation is to process variables, such as to update the current value of variable;

- Variable records the result produced by operation(s). An operation can be described by the
track of changing value of variable.

Any operation of program can be broken down a set of more fine grained read-write.
Generally, read-write operation appears in assignment statement.

Assignment is composed of read and write(not concerns arithmetic). Read refers the current
value of variable. Write updates the current value of variable. In an assignment statement,
read variable(s) is located in the right side and write variable(s) is located in the left side , such
as

X := a + b + c

Where,a,b,c are read variables. The current values of a,b and c are not modified. In the
following

X := a + b + c

X is a write variable. The current value of X will be updated.

Read-write not only refers the current value of variable, but also updates the current value.
The read-write variable will appear both sides of assignment statement, such as X in the
following,

X := X + c

Accordingly, the model of program should be composed of :

1. resources, including consumable resource and nonconsumable resource;

2. variables, recording status;

3. operations, including read and write;

211Visualizing Program Semantics

www.intechopen.com

6 Will-be-set-by-IN-TECH

4. relations, including read, write and control.

3. Extending definitions

Compare to general Petri net theory Jensen et al. (2007); Reisig (1985), Here concepts are
extended.

Place

two kinds of places: control place (Figure 13.a) and variable place (Figure 13.b). The definition
of control place is same as the definition of place in Petri net. Resources described by variable
place are inconsumable. Generally, variable place can describe all data types, such as real type,
boolean type, structure type and so on. The graphic representation of variable place is same
as that of control place. However, the type of arc connecting with control place is different to
that with variable place. Control place can only connect with control arc (flow); Variable place
can connect with read arc, write arc or the combinatorial arc of read arc and write arc, but not
with control arc. The arc types are discussed in the later this section.

(a) control place (b) variable place

Fig. 13. Extending Place

Token

As same as Petri net, token is expressed by symbol “•”. Here, token has two functions: firstly,
the flowing track of token denotes control flow; secondly, token in a variable place is expressed
by the value instead of symbol “•”, and the number of tokens in variable place is the current
value of variable place, such as in figure 14.b. To hold consistency, the number of token in
control place is mapped to a value of integer type. In figure 14.a, the data type denoted by the
place is integer and the current value is 1. So, the number of token in place is 1.

(a)

X

2

Y

(b)

Fig. 14. Extending Token

Arc

four kinds of arcs: control arc, read arc, write arc and read-write arc. The graphic
representations of arcs are drawn as in figure 15.

(a) represents the relation of control flow which denotes the firing of transition t1 will
consume resource s1;

(b) represents the read relation which denotes the firing of transition t2 will read the current
value of s2 but not modify the current value of s2;

212 Semantics in Action – Applications and Scenarios

www.intechopen.com

Visualizing Program Semantics 7

(c) represents the write relation which denotes the firing of transition t3 will modify the
current value of s3;

(d) represents the read-write relation which is the combination of a read relation and a write
relation, i.e. the firing of transition t4 not only read the current of s4, but also modifies the
current value of s4.

The four kinds of relations are classified into two categories: flow relationship(a) and
read-write relationship(b, c, d). Flow relationship is a kind of consumable relationship.
Control place can only hold flow relationship(control arc)and tokens in a control place must
flow. Read-write relationship is a kind of inconsumable relationship;Read-write do not
consume any token and tokens in a variable place can not flow around. Variable place can
only hold read-write relationship(read arc, write arc or both).

s
1

t
1

(a) control arc

s
2

t
2

(b) read arc

s
3

t
3

(c) write arc

s
4

t
4

(d) read-write arc

Fig. 15. Extending Arc

Transition

Extension of transition defines a new kind of transition called variable transition. Variable
transition can not only connect with control place but also variable place. In other words, the
firing of transition may either consume resources(e.g. need some tokens) or not. Contrast to
variable transition, transition defined in Petri net is called control transition . The structure of
control transition is represented as in figure 16.a. Guard is a mechanism to control the firing
of control transition. Control guard holds false only if the firing condition is not satisfied, i.e.,
the transition can not fire; When the firing condition is satisfied, the control guard hold true
and the transition fire. The structure of variable transition is composed of three parts (figure
16.b):

E denotes a control guard which is same as control guard of control transition;

B is called variable guard which denotes the condition satisfied by variables(places).

I operations script .

Because Petri nets is a self-explain system, places need not be declared explicitly. Variables
are described by variable places. In figure 17, places are variable places. Assignment X :=
a + b + c can be described as a variable transition(figure 18), where a,b and c connect with the
variable transition. Read operation is described by read arc between a variable transition and
a variable place. Write operation is described by write arc between a variable transition and
a variable place. Figure 20 describes assignment X := a + b + c, where Figure 19(1) is read
operation. Figure 19 (2) is write operation.

When a variable is both read and write, readwrite relation can be applied. Figure 20 is a
readwrite relation. Consumable resource is described by control place. The number of tokens

213Visualizing Program Semantics

www.intechopen.com

8 Will-be-set-by-IN-TECH

Control Guard
Control Guard

(E)

Variable Guard

(B)

Operation

 (I)

(a) control transition (b) variable transition

Fig. 16. Extending Transition

3.14

x a PI

Fig. 17. Variable Place

E

a <> nout and

b <> nout and

c <> nout

X := a + b + c

Fig. 18. Inside Transition

a b c

X := a + b + c

(1) (2)

X

a b c

X := a + b + c

Fig. 19. Read and Write

X := X + cX

a b c

X := a + b + c

Fig. 20. ReadWrite

214 Semantics in Action – Applications and Scenarios

www.intechopen.com

Visualizing Program Semantics 9

in a control place denotes the number of available resource described by the control place. The
weight of arc denotes the number of resource consumed by a transition. For example, RAM
consumption can be described as in figure ??. Place denotes the resource RAM; the number of
tokens in place denotes the available number of RAM; o1 denotes an operation; the weight of
arc denotes that operation o1 will consume two units of RAM during firing.

Fig. 21. Resource consumption

4. Formal definitions

For a convenience, the extension is called rwPN (readable and writable Petri Net). The
following discussion will refer some concepts of Petri Net or Coloured Petri Net.

Definition 4.1 (rwPN). 6-tuple N = (Sc, Sv, T; R, W, F), where

1. Sc ∩ Sv = ∅;
(Sc ∪ Sv) ∩ T = ∅;
Sc ∪ Sv ∪ T �= ∅;

2. R ⊆ Sv × T;
W ⊆ T × Sv;
F ⊆ Sc × T ∪ T × Sc ;

3. Sv = dom(R) ∪ cod(W);
Sc ⊆ dom(F) ∪ cod(F);
T ⊆ dom(F) ∪ dom(W) ∪ cod(F) ∪ cod(R).

where Sc, Sv, T are finite sets and R, W, F are relations respectively.

Let S be a function from a set of places to a set of colors, such as

S : S → C

S = Sv ∪ Sc

where S is a set of places , Sv is a set of Variable places , Sc is a set of control places , C is a set of
colors. Here and afterward, sets are finite .

Because dom(F) ∪ cod(F) can contain places , transitions , or both. For a convinence and in a
discussion context, dom(F)∪ cod(F) can be viewed as a set of places , a set of transitions or both
on need.

F only connects between Sc and T or T and Sc, and is defined as

F ⊆ Sc × T ∪ T × Sc

215Visualizing Program Semantics

www.intechopen.com

10 Will-be-set-by-IN-TECH

where T is a set of transitions . F describes a situation in which tokens are flowable, i.e. tokens
can flow out of this place and into another one along Control Flow F.

R only connects between Sv and T, and is defined as

R ⊆ Sv × T

R is represented graphically by a line with circle ⊸ which points to a transition .

W also only connects between T and Sv, and is defined as

W ⊆ T × Sv

W is represented graphically by a line with circle ⊸ but which points to a variable place .

Semantically similar to Coloured Petri Net, a transition is also controlled by a GUARD that is
a boolean value. Let Gc denote this kind of GUARD , called control guard .

Gc : T → BOOL

T is a set of transitions , and Gc changes from TRUE to FALSE alternatively. When the preset of
a transition has enough tokens , the control guard of transition is TRUE. Otherwise, the control
guard of transition is FALSE.

Additionally, there has another GUARD to monitor the Variable places in the preset of transition
. Such a GUARD called variable guard . Let Gv be a variable guard and

Gv : T → BooleanExpression

where the boolean expression specifies a variable-related condition to fire a transition . Any
operand in BooleanExpression either holds a constant or just is a variable place .

Accordingly, the two GUARDS codetermine whether a transition can be fired.

The third part of a transition is statements which describes the expected action of a transition .
Statements can be written by a program language, such as C, Java, etc. Let function L be the
action script of a transition , then

L : T → statement

Summarily, a transition has three components: Gc, Gv and L . Let function H be

H : T → Gc ∪ Gv ∪L

Obviously, ∀t ∈ T,

when R(t) = ∅ and W(t) = ∅ then L (t) = ∅ and Gv(t) = ∅.

when Gv(t) = ∅ and L (t) = ∅, the transition is the same as that of Coloured Petri Net.

when Gc(t) = ∅, the transition can fire without any Control Flow .

when Gv(t) = ∅, the transition can fire when the preset of transition has enough tokens .

As a default, if Gv(t) = ∅, let Gv(t) = TRUE, and if Gc(t) = ∅, let Gc(t) = TRUE.

216 Semantics in Action – Applications and Scenarios

www.intechopen.com

Visualizing Program Semantics 11

Definition 4.2 (cvNet). given a rwPN N = (Sc, Sv, T; R, W, F), Ncv is called cvNet (control
view net) of N, and

Ncv = (Sc, T|Sc
; F)

where T|Sc
is a set of transitions connecting with control places .

Definition 4.3 (dvNet). given a rwPN N = (Sc, Sv, T; R, W, F), Ndv is called dvNet (data view
net) of N, and

Ndv = (Sv, T|Sv
, R, W)

where T|Sv
is a set of transitions connecting with Variable places .

Theory 4.1. If Ncv is cvNet and Ndv is dvNet of rwPN N respectively, then

N = Ncv ∪ Ndv

Proof: where ∪ is the operator of graph union, based on definitions rwPN N, cvNet Ncv and
dvNet Ndv, the conclusion holds obviously.

So, if a system is modeled by rwPN , the system features can be captured from two views.
One view is from Control View Net which describes the control flow relationship of system.
The other one is from Data View Net which describes the entity relationship of system.

Definition 4.4 (rwPNs). 4-tuple Σ = (N, S , H , M0), where

1. N = (Sc, Sv, T; R, W, F) is a rwPN .

2. S : S → C,
S = Sc ∪ Sv;
C = Integer ∪ DATATYPE is a set of colors;
∀sc ∈ Sc, S (sc) = Integer;
∀sv ∈ Sv, S (sv) = DATATYPE;

3. H : T → Gc ∪ Gv ∪L

Gc : T → BOOL
Gv : T → BooleanExpression
L : T → statement

4. M is the marking of N, M = Mc ∪ Mv; and
Mc : Sc → N

Mv : Sv → {1}
M0 is the initial marking; MC0

is the initial marking of Sc; Mv0 is the initial marking of Sv;

Specially, if let color set C = C ∪ Integer ∪ DATATYPE ∪ BOOL ∪ BooleanExpression ∪
statement and cd = S ∪ H , rwPNs can be mapped to Coloured Petri NetN =<

P, T, Pre, Post, C, cd > . The mapping from rwPNs to Coloured Petri Netwill further be
discussed in the next section.

Definition 4.5 (cvNets). Given rwPNs Σ = (N, S , H , M0), call Ncs cvNets and

Ncs = (Ncv, S |Sc
, H |Sc

, M0|Sc
)

where
M0|Sc

= Mc0 ; the initial marking of control places ;

217Visualizing Program Semantics

www.intechopen.com

12 Will-be-set-by-IN-TECH

S |Sc
: Sc → integer; the colors of control places ;

H |Sc
= Gc; only the Control Guards of transitions are concerned.

Definition 4.6 (dvNets). Given rwPNs Σ = (N, S , H , M0), call Nds dvNets and

Nds = (Ndv, S |Sv
, H |Sv

, M0|Sv
)

where
M0|Sv

= Mv0 ; the initial marking of Variable places ;
S |Sv

: Sv → DATATYPE ; the colors of Variable places ;
H |Sv

= Gv ∪L ;the Variable Guards of transitions and the action script are concerned.

Theory 4.2. If Ncs is cvNets and Nds is dvNets of rwPNs N respectively, then

N = Ncs ∪ Nds

Proof: where ∪ is the operator of graph union, based on definitions rwPNs N, cvNets Ncs

and dvNets Nds, the conclusion also holds.

When the dynamic features of system are concerned, there are also two views to study
the system, cvNets and dvNets . Specially, Because GUARD Gc and GUARD Gv in H

will determine whether transitions can be fired, some properties of program, e.g.,the code
coverage and key path in the program testing, can be computed automatically based on H .

5. Dynamic semantics

Definition 5.1. x ∈ S ∪ T,
rs(x) = {a|(a, x) ∈ R ∧ x ∈ T}, the set of Variable places read by transition x;
ws(x) = {a|(x, a) ∈ W ∧ x ∈ T}, the set of Variable places written by transition x;
rt(x) = {a|(x, a) ∈ R ∧ x ∈ S}, the set of transition read variable place x;
wt(x) = {a|(a, x) ∈ W ∧ x ∈ S}, the set of transition write variable place x;
r(x) = rs(x) ∪ rt(x), read on x;
w(x) = ws(x) ∪ wt(x), write on x;
•t = {p|(p, t) ∈ F}, the preset of transition t;
t• = {p|(t, p) ∈ F}, the postset of transition t;

Definition 5.2. In marking M = Mc ∪ Mv, t is C_enabled, iff

C_enabled(M, t) ≡ enabled(Mc, t)

where, enabled(Mc, t) denotes •t has enough number of tokens and leads to control guard Gc =
TRUE. If •t = ∅, let Gc = TRUE.

t is V_enabled, iff
V_enabled(M, t) ≡ enabled(Mv, t)

where, enabled(Mv, t) denotes variable guard Gv holds. If r(t) ∪ w(t) = ∅, let Gv = TRUE.

Definition 5.3. t is firable in marking M, called M[t >, iff in marking M, t is both C_enabled and
V_enabled ,

M[t >≡ C_enabled(M, t) ∧ V_enabled(M, t))

218 Semantics in Action – Applications and Scenarios

www.intechopen.com

Visualizing Program Semantics 13

Accordingly, transition t is controlled by both Gv and Gc. t can fire iff all required resource have
been provided and all the related variables hold legal values.

Definition 5.4. if M[t >, let M′ be the succession marking of M, then M[t > M′ , and M′ is,
if s ∈ Sc:

M′(s) =

⎧
⎨
⎩

M(s)− 1 if s ∈• t − t•

M(s) + 1 if s ∈ t• −• t
M(s) if s /∈ •t• or s ∈• t ∩ t•

if s ∈ Sv:

M′(s) =

{
Val(H (t)) if s ∈ w(t),
M(s) if s ∈ r(t)

where Val(H (t)) denotes the current value of s updated by t.

From above definition, a transition will be affected by three factors: tokens in control place,
variable guard(B) and control guard(E).

Definition 5.5. t1, t2 ∈ T and t1 �= t2. In marking M , M[t1 > ∧M[t2 >,

1. if s ∈ •t1 ∩ •t2, M(s) < 2, Then, between t1 and t2, there exists P_confilict, call
P_con f lict(t1, t2).

2. if t1, t2 ∈ Tv, w(t1) ∩ w(t2) �= ∅ , then between t1 and t2, there exists W_conflict, call
W_con f lict(t1, t2).

3. if t1, t2 ∈ Tv, (w(t1) ∩ r(t2)) ∪ (r(t1) ∩ w(t2)) �= ∅ , then between t1 and t2, there exists
RW_conflict, call RW_con f lict(t1, t2).

t1 is conflict with t2, call con f lict(t1, t2), iff

con f lict(t1, t2) ≡ P_con f lict(t1, t2) ∨ W_con f lict(t1, t2) ∨ RW_con f lict(t1, t2)

Definition 5.6. t1, t2 ∈ T and t1 �= t2, in marking M, t1 is concurrent with t2 , iff

M[t1 > ∧M[t2 > ∧¬con f lict(t1, t2)

Definition 5.7. A directed net N = (B, E; F) is a general occurrence net, if N satisfies the condition:

F+ ∩ (F−1)+ = ∅

where,

F+ = F ∪ F ◦ F ∪ F ◦ F ◦ F ∪ · · · ;

F−1 = {(x, y)|(y, x) ∈ F};

(F−1)+ = F−1 ∪ F−1 ◦ F−1 ∪ F−1 ◦ F−1 ◦ F−1 ∪ · · · .

”◦“ is a symbol of relation composition.

A general occurrence net N = (B, E; F), if x, y ∈ E or x, y ∈ B(x �= y), and (x, y) ∈ F+, then
there is a partial order relation between x and y, denoted as x ≺ y, or more strictly x ≺N y .

Definition 5.8. A general occurrence net N′ = (B, E; F′), if there is a mapping between N′ and Net
system Σ = (N, C, I, M0), i.e. : ρ : N′ → Σ satisfies conditions:

219Visualizing Program Semantics

www.intechopen.com

14 Will-be-set-by-IN-TECH

1. B = B′ ∪ {ε};
ρ(B′) ⊆ Sp ∪ Sv, ρ(ε) = ∅;
ρ(E) ⊆ T;
ρ(F′) ⊆ F ∪ R ∪ W;
∃(x, y) ∈ F′ ∧ (x = ε ∨ y = ε) ⇒ ρ(x, y) = ∅;

2. ∀(x, y) ∈ F′ : ρ(x) ∈ Sp ∨ ρ(y) ∈ Sp

⇒ ρ(x, y) = (ρ(x), ρ(y)) ∈ F;

let Ñ = (B, E, F′ − {(x, y)}),
ρ(x) ∈ Sv ∧ (ρ(x), ρ(y)) /∈ R
⇒ (ρ(x), ρ(y)) ∈ W − R ∧• x �= ∅ ∧ ¬(x ≺Ñ y);
ρ(y) ∈ Sv ∧ (ρ(x), ρ(y)) /∈ W
⇒ (ρ(x), ρ(y)) ∈ R − W ∧

∣∣y•
∣∣ = 1 ∧ (ρ(y), ρ(y•)) ∈ W;

3. ∀e ∈ E :
ρ(•e) ∩ Sp =• ρ(e);
ρ(e•) ∩ Sp = ρ(e)•;
r(ρ(e)) ⊆ ρ(•e) ∩ Sv;
w(ρ(e)) ⊆ ρ(e•) ∩ Sv;
∀b ∈ B :
|b•| > 1 ⇒ ρ(b) ∈ Sv ∧ ∀e ∈ b• : (ρ(b), ρ(e)) ∈ R − W;
|•b| > 1 ⇒ ρ(b) ∈ Sv ∧• b ⊆ r(ρ(b))− w(ρ(b))
∧ ∃b′ ∈ B : ρ(b) = ρ(b′) ∧• b ⊆ b′•;

4. ∀b1, b2 ∈ B : ρ(b1), ρ(b2) ∈ Sv ∧ ρ(b1) = ρ(b2)
⇒ b1 ≺ b2 ∨ b2 ≺ b1 ∨ b2 = b1,
∀e1, e2 ∈ E, ∀x ∈ Sv : x ∈ v(ρ(e1)) ∩ v(ρ(e2))
⇒ ∃b(ρ(b) = x ∧ {e1, e2} ⊆ b•) ∨ e1 ≺ e2 ∨ e2 ≺ e1;

5. ∀b1, b2 ∈ B : b1 �= b2 ∧ ρ(b1) = ρ(b2)
⇒• b1 ∩

• b2 = b•1 ∩ b•2 = ∅;

6. ∀s ∈ Sp :
∣∣{b|ρ(b) = s ∧• b = ∅}

∣∣ ≤ M0(x) �= nout.

Then (N′, ρ) is a process of system Σ . Where,

1. Process may have a special place ε which is not appeared in rwPNs . ε denotes the partial
order of transitions. Transition labels in process are transition names in rwPNs . Place
labels in process are place names in rwPNs or label ε . Accordingly, the process may
have special arc(s) (complementary arc) ,associated with ε, which are also not appeared in
rwPNs .

2. N will guarantee the less complexity through removing the redundant arcs.

3. Elements of Sp mapped from •e• are similar to places of Petri nets. Elements of Sv mapped
from •e• can be :

(a) variables read by ρ(e) are mapped from the set •e , maybe including variable(s)
associated with complementary arc(s) and written by ρ(e) ;

(b) variables written by ρ(e) are mapped from the set e•, maybe including variable
associated with complementary arc(s) and read by ρ(e).

4. If a variable accessed by two different transitions in occurrence net, the mapped elements
of the two transitions in rwPNs either have a partial order relation or concurrently read
the variable.

220 Semantics in Action – Applications and Scenarios

www.intechopen.com

Visualizing Program Semantics 15

x

x

x

x

x

x x

Read

write

Read-write

Extension Process

Fig. 22. Basic Place-Arc-Transition

5. The preset and the postset of transitions in N must be labeled by different elements in Σ.
This condition is similar to general petri net theory except that the tail part of condition is
•b1 �=• b2 ∧ b•1 �= b•2 .

6. Not all processes need all initial resources described by the initial marking M0. This
condition requires |{b}| ≤ M0(s) instead of |{b}| = M0(s). If the first operation upon
an element of Sv is read action, the element must have an initial value.

The process of Petri nets is an observational record of system . Based on the above definition
of process, the mapping rules to process can be summarized by the graphic representation. In
Figure 22, one variable place is only operated by one transition.

• Read relation is mapped to input arc(a out-arc with arrowhead);

• write relation is mapped to output arc(a in-arc with arrowhead);

• read-write relation is mapped to input-output arc(one read and one writečl’.

Figure 23 lists the process mapping rules on read-write concurrent or conflict relations
between two transitions. When one transition writes after the other transition has read,
place ε is introduced to denote a sequential relation between the two transitions. When two
transitions write the same place at the same time, place ε is introduced to denote the sequential
order relation.

Based on above rules, more complex mapping specification can be work out.

6. Analysis

To verify the formal specification, all petri net theory can be applied. In this section, we will
discuss some special features.

Theory 6.1. A program has only one place s,•s = ∅.

Proof: The computing target is initialized by only one computing unit. The unit must provide
all initial condition for the computing target. Meanwhile the unit will also ask for cooperation
with other units because the unit can not fulfill the special computing. If the number of •s �= ∅

and greater than 1, the computing target will be more than 1 and are initialized by different

221Visualizing Program Semantics

www.intechopen.com

16 Will-be-set-by-IN-TECH

t
1

x t
2

Read-Read

t
1

x t
2

Read-Write

t
1

x t
2

Write-Read

t
1

x t
2

Write-Write

x t
2

x t
2

t
1

x t
2

e

t
1

t
2

x

t
1

t
2

e

x

Extension Process

Fig. 23. One Place and Two Transition

computing units. In this case, we can make a more abstract computing unite S covers these
initialized computing units. Obviously, the new abstract computing unit S is one and only.

Theory 6.2. if s• = ∅, then s is a finished status.

Proof: When a computing task reach a status in which all other status are no changed anymore,
i.e. the program reach a fixed point.

The above two theorems show there exists the boundary in a program specification.

Let S is a step in marking M of system, then S’s successive marking is M, ∀p ∈ P, P is a set of
all status.

M′(p) = M(p) + ∑
t∈T

I+(p, t)X(t)− ∑
t∈T

I−(p, t)X(t)

where, X(t) denotes the number of transition t appearing in step X. M′ is the succession of
M, written as M[X > M′, i.e. , after X firing, reaches from marking M to M′. I− denotes the
number of consumed tokens or the value for one variable. I+ denotes the number of produced
tokens or the updated value for one variable.

So, system will step into a new status, and

1. In the same step, more than one action can be fired.

2. Based on the preset of transition, I− , I+ and M , the marking M′ can be determined.

Resources or control flow are described by tokens, the number of tokens in system
must be conserved. The property of conservation of token number is called invariant.
Invariable(including T invariant and S invariant) is limited within boundary, i.e. local
invariant and system invariant. The invariant can be computed through reference matrix.

222 Semantics in Action – Applications and Scenarios

www.intechopen.com

Visualizing Program Semantics 17

From initializing computing to result returning, the task must be fulfilled in n steps.
occurrence sequence:

M0[S1 > M1[S2 > · · · Mn[Sn > M

we can get two sequences:

1. sequence of status changing:M0 M1 M2 · · · Mn M;

2. sequence of transition changing:S1S2 · · · Sn.

Theory 6.3. Any marking Mi can reach at from the initial marking M0, i.e. there exists one sequence:

M0[S1 > M1[S2 > · · · Mj[Sj > Mi

Proof:

If such a sequence is not exists, then there are two cases:

• Net is not connective. So, there are at least two no connective subnet and the two subnet
have no any intercourse. Because any subnet has its special computing target, the two
computing targets are not interactive.

That is inconsistency with the one and only of computing target. Therefore, the two
computing targets are unsure.

• If net is connective, but there exists a marking Mk can not reach. In Mk, place pk has no
token. pk is not isolated and has pre-transition tk. So, there is a function I+. Because pk has
no token, therefore tk is not enable, i.e., tk can not fire. In other words, the program has an
operation and the operation will never be executed. So, such a computing procedure is not
optimization and even wrong.

From above, any marking Mi is reachable from the initial marking M0.

Theory 6.4. elements in net are partial order and there exists least upper bound and greatest lower
bound

Proof: In any system , every operation or status serves for the computing target. Therefore,
all operations and status are correlation, i.e. all are useful for the computing target. So, there
does not exist any independent subnet, and all elements are in the same partial order set. The
initial set •s = ∅ is greatest lower bound. s• = ∅ is least upper bound.

In the following discussion, let C is a Coloured Petri Nets , R is a rwPNs . C is the Coloured
Petri Netmapping of R. For any element x ∈ R, x′ is the mapping element in C , and vice
versa.

Theory 6.1. if t′ ∈ C is firable, then t is also firable.

Proof: If t′ ∈ C is firable , then three condition must be satisfied.

1. the preset of t′ has enough tokens;

2. the postset of t′ has enough capacity;

3. the arc expression •t′ × {t′} can be evaluated correctly.

223Visualizing Program Semantics

www.intechopen.com

18 Will-be-set-by-IN-TECH

In R, whether t fires or not depends on preset of t. Let p be the preset of t. p may contain control
place pp,variable place pv or both. For a convenient, suppose pp and pv respectively contains
only one single place. for control place , pp is same as the preset of t′. For variable place , If
(pv, t) ∈ R, then there are two corresponding arcs,

(p′v, t′) ∈ F;

(t′, p′v) ∈ F;

Because t′ ∈ C is firable, pv has enough token and capacity.

If (t, pv) ∈ W, then there are two corresponding arcs,

(p′v, t′) ∈ F;

(t′, p′v) ∈ F;

Because t′ ∈ C is firable, pv has enough token and capacity.

The arc expression •t′ × {t′} can be evaluated correctly, and the number of tokens in variable
place remain unchanged. Meanwhile, the logical condition in arc expression •t′ × {t′} are
removed and put into the variable guard of t, consequently, the three condition of t’s firing

1. control guard holds;

2. variable guard holds;

3. the value of variable place can be evaluated correctly.

can be satisfied. Therefore, t also is firable.

Theory 6.2. If b′ ∈ C is reachable, then b ∈ R is reachable.

Proof:

Because b′ is reachable, therefore transitions in the preset of b′ can fire. Let the preset of b′ is T′

and the preset of T′ is P′. To prove b is reachable, the preset of b must be firable. Let the preset
of b is T and the preset of T is P.

for ∀p ∈ P, if p is a control place , obviously t is firable. If p is a variable place , the expression of
arc (p′, t′) in C contains variable guard of t as the logical conditions of arc expression. And the
arc expression (p′, t′) can be evaluated correctly , therefore p’s variable guard can hold TRUE,
i.e., in rwPNs t can fire, because b is the postset of t, accordingly b is reachable.

Theory 6.3. Let M′
1 is a marking of C and M1 is a marking of R. if M′

1 is reachable, then M1 is also
reachable, and there is a occurrence sequence M0[t1 > · · · ti > Mi[tt+1 · · · tn > M1.

Proof: According to theorem 6.2, the theorem holds.

Theory 6.4. if C is live, then R is also live.

Proof: because C is live, therefore for any transition in C can fire and any marking of C can
be reachable. Accordingly to 6.2 and 6.3, the theorem can be proved.

Theory 6.5. Let M′ is the marking of C . R is bounded iff there exists a natural number bound n so
that for every reachable marking M′ ≤ n.

224 Semantics in Action – Applications and Scenarios

www.intechopen.com

Visualizing Program Semantics 19

Proof: 1. If M′ ≤ n. ∀p′ ∈ M′, if p ∈ R is a control place , obviously the number of tokens in
p is same as the number of tokens in p′. if p is a variable place , then based on the definition of
variable place in rwPNs , the number of tokens in a variable place always is 1. ∀p ≤ n holds.
Therefore R is bounded.
2. If R is bounded. ∀p ∈ R, if p is a variable place , then the number in p is 1. If p is a control
place , because R is bounded, therefore there exists a natural number bound n and p ≤ n
holds. Because the mapping rules don’t change the number of tokens in a place, therefore
∀p′ ∈ C , the number in p′ is same as the number in p. Accordingly, there exists a natural
number bound n and p′ ≤ n. Therefore M′ ≤ n holds.

7. Example

In this section, we formalize several programs to illustrate rwPNs usage.

7.1 Min

A function, f oo, computes the value of 5 ∗ min(x, y) with parameters, x and y. Suppose the
code is such as

int foo(int x,int y)

{

int z;

if x<y

z := x;

else

z:=y;

z:=5*z;

return z;

}

Obviously foo contains three variables, x,y and z. Let

Sv = {x, y, z}

Generally, one statement can be modeled as one transition. Omitting the function head , the
variables declaration and statement return, three main statements are left,

1. if x < y z := x

2. else z := y

3. z := 5 ∗ z

Let transition ti f ,transition telse and transition tmin describe the three statements respectively,
then L can respectively be

L (ti f) : z := x

L (telse) : z := y

L (tmin) : z := 5 ∗ z

In the three main statements, statement 1 and statement 2 are enclosed by if-else. The boolean
expressions in statement if-else can be GUARDS .

225Visualizing Program Semantics

www.intechopen.com

20 Will-be-set-by-IN-TECH

Let us focus on transition ti f . In ti f , two variables z and x are concerned. ti f has two GUARDS
. One, control guard , is to test whether •ti f has enough tokens . When •ti f have one token ,
control guard is TRUE, otherwise FALSE. The control guard determines whether statement 1 can
be continued or not. The other one, variable guard , is to test whether x < y holds. The variable
guard also determines whether statement z := x can be continued or not. Therefore, the two
guards are

Gc(ti f) = {TRUE, FALSE}

Gv(ti f) = {x < y}

In Gv(ti f), variable x and variable y are read. Therefore, in L (ti f), variables z is written,and
variable y is read. Consequently, transition ti f concerns three variables , x(read),y(read) and
z(written). The specification can be represented as that in Figure 24. Similarly, Transition telse
can be described in figure 25.

Fig. 24. Transition ti f

Fig. 25. Transition telse

Statements in if-else are mutual exclusive, i.e. statement 1 and statement 2 are mutual
exclusive. To guarantee the mutual exclusion, one control place is applied. Let Ci f else is
the control place (Figure 26). When Ci f else has one token , there is only one is TRUEbetween

Gc(ti f) and Gc(telse). Suppose Gc(ti f) is TRUE. After ti f fires and the token is consumed, then

Ci f else loses the token . And then Gc(ti f) changes to FALSE. Generally, Gc(ti f) will be TRUEor
FALSEalternatively on whether Ci f else has enough tokens .

In statement z := 5 ∗ z, z appears in both sides of the assignment that means z will be both
read and written. Moreover, statement z = 5 ∗ z only executes after statement if-else finishes,
i.e. tmin follows both ti f and telse. Let control place C determine the consecutive order. Then the
program specification can be represented as that in figure 27.

tmin will execute when C has one token , therefore the variable guard of tmin is not necessary. Of
course, any GUARD can be added if need.

In rwPNs , if all Variable places , Read Arcs and Write Arcs are omitted, the cvNets of program
can abstracted as figure 28. In fact, that in figure 28 is a P/T nets and the analysis techniques
of Petri nets can be applied . Obviously cvNets describes the Control Flow framework of
program.

226 Semantics in Action – Applications and Scenarios

www.intechopen.com

Visualizing Program Semantics 21

Fig. 26. Exclusive transitions

Fig. 27. rwPN Specification of 5 ∗ min(x, y)

Similarly, if all control places , Control Arcs and transitions without write/read arcs are omitted,
then the dvNets of program can be abstracted as that in figure 29. Because dvNets has
not Control Flow , all transitions are concurrent theoretically. dvNets describes the dataflow
relationship among entities of program.

Fig. 28. cvNets of 5 ∗ min(x, y)

Informally, when an engineer starts to design a program, he can push Control Flow (cvNets)
aside first, and only focus on data flow(dvNets), i.e., entity relations. When a computing
machine has be chosen to implement the program, the Control Flow (cvNets) can be integrated
at later. Accordingly, the final model of program just is composed of cvNets and dvNets .

227Visualizing Program Semantics

www.intechopen.com

22 Will-be-set-by-IN-TECH

Fig. 29. dvNets of 5 ∗ min(x, y)

7.2 SORT

n(n ≥ 2) numbers should be sorted ascendingly. Let these n numbers be x1, x2, · · · , xn.
rwPN specification is described as in figure 30, where, Σ = (N, C, I, M0), and N =
(Sp, Sv, T; R, W, F).

Control place set: Sp = φ ;

Variable control set: Sv = {vi|1 ≤ i ≤ n};

(Variable) Transition set: T = {ti|1 ≤ i < n};

Control flow set: F = φ ;

Read relation (R) and write relation (W): R = W = {< vi, ti >,< vi+1, ti > |1 ≤ i < n};

C is the type set of xi;

Initial markings M0: {E0(ti) = f alse, M0v(vi) = xi|1 ≤ i ≤ n};

I, the specification of transition ti: for ∀tiT: B(ti) ≡ vi > vi+1;
A(ti) ≡ vi, vi+1 = vi+1, vi ; This statement denotes that vi exchanges the value with vi+1;

The semantics of marking varying is: If ∀ti T : M[ti > M′ ↔ M(vi) > M(vi+1) ∧ M(vi) =
M(vi+1) ∧ M′(vi+1) = M(vi), then E(ti) = true; If not, then E(ti) = f alse.

In figure 30, transitions firing may reduce the number of descending arrays of M(vi)(1 ≤
i ≤ n). When marking satisfies ∀vi Sv ∧ i �= n : M(vi) ≤ M(vi+1), then ∀ti T : B(ti) =
f alse ∧ E(ti) = true, and the sort arrives at the fixpoint, the sort accomplishes the purpose.

Fig. 30. SORT Specification

In figure 30, there is no sequential relation among t1, t2, · · · , tn−1, that is to say, transitions can
fire concurrently. The semantics of sort in figure 30 is: Transition ti is to compare the current
value of vi(M(vi) = xk) and that of vi+1(M(vi1) = xj). If the current value of vi is bigger than
that of vi+1, then vi exchanges the current value with vi+1; and then the guard of transition ti

228 Semantics in Action – Applications and Scenarios

www.intechopen.com

Visualizing Program Semantics 23

(E(ti) and B(ti)) holds false. When every transition guard holds false, the sort arrives at the
fixpoint and terminates.

The specification in figure 30 has not any resources restriction and n transitions can fire
concurrently. If resources are restricted, e.g., only one control handle, the new specification is
described as in figure 31. Where, additional sets,

Control place set: Sp = {si|1 ≤ i < n};

Control transition set: T = {gi|1 ≤ i < n};

Control flow set: F = {< si, ti >,< si, gi > |1 ≤ i < n} ∪ {< ti, si+1 >,< gi, si+1 > |1 ≤ i <
n − 1} ∪ {< tn−1, s1 >,< gn−1, s1 >};

M0p, initial marking of control place si : {M0(s1) = 1} ∪ {M0(si) = 0|1 < i < n};

Fig. 31. Constraint SORT Specification

In figure 31, ti can fire only if si, which is the preset of ti, has at least one token. After ti fires,
the token in si is consumed and a new token flows into si+1, which is the postset of ti. Because
of the nondeterminacy, the firing possibility of gi is the same as that of ti. If there are not gi,
when vivi+1, ti cant fire and the sort terminates though tj > tj+1(j > i). While transitions is
fired continually, the token flows along place s1, s2, · · · , sn−1, and s1. In fact, the specification
in figure 31 is bubble sort . Similarly, if other resources are restrained, many different sorts can
be designed based on the specification in figure 30.

In system Σ, let n = 4, Sv = {v1, v2, v3, v4}, Tv = {t1, t2, t3}, C(vi) = Integer and initial
markings of vi and ti are: M0(v1) = 4, M0(v2) = 2, M0(v3) = 3, M0(v4) = 1, M0(ti) = f alse.
We can get a process of system Σ (Fig.9). This process describes the sort procedure from 4, 2,
3, 1 to 1, 2, 3, 4.

7.3 Dining philosophy

In this section, DPP(Dining philosophy problem) is treated as a program . Five philosophers,
No.1 to No.5, sit around a table orderly and the No.1 is next to the No.5. Each philosopher
is in one of three states: thinking, hungry and eating. Thinking independently for a while,
each philosopher stops thinking to eat for hungriness. Each philosopher has one fork at
his left hand, but he can eat only when he holds two forks, i.e. the left fork is owned by
himself and the right fork is borrowed from his right neighbor. If borrows the right fork
successfully, the philosopher can eat, otherwise he must wait for the right fork. After his

229Visualizing Program Semantics

www.intechopen.com

24 Will-be-set-by-IN-TECH

Fig. 32. SORT Process

eating, the philosopher returns the borrowed fork and frees his own fork for being lent, and
then he starts to think. We suppose it is fair to use forks and there isn’t any priority. In
addition, a premise is that a philosopher doesn’t free his holding fork(s) until he finishes his
eating. Obviously, forks are the shared resources. To guarantee each philosopher can eat, each
dining philosopher must finish his eating in a while and free his holding forks. Therefore, no
philosopher can eat or be hungry forever.

Let PHIL be the type philosophers belong to, Pi ∈ PHIL denotes the ith philosopher.
Variable place Pi.state records the current state of philosopher, i.e. thinking, hungry or eating.
Concisely, Pi.state = thinking, Pi.state = hungry and Pi.state = eating are abbreviated as
Pi.thinking, Pi.hungry and Pi.eating respectively, here the data type of thinking, hungry and
eating are Boolean. Let FORK be the type forks belong to, fi ∈ FORK denotes the fork
owned by the ith philosopher. Variable transitions Ti, Hi and Ei denote operations that make
philosopher Pi to think, be hungry and eat respectively (see Fig.33). Ti, Hi and Ei all can
modify the current value of Pi.state. In figure 33, Control guard locates at top level and its
initial value is f alse. Control guard is f alse denotes that the fire condition of transition can’t
be satisfied, so the transition can’t fire. When the fire condition of transition is satisfied,
control guard is true and the transition is enabled. Control guard is just the first control of
transition’s firing. Variable guard locates at the middle level and it represents the condition
that the associated variables must satisfy. Similar to Control guard, when variable guard is
true, the transition is enabled. Variable guard is the second control of transition’s firing. The
transition fires only when both control guard and variable guard are true. Variable guard is
fixed once it is assigned, but control guard can alternate between true and f alse. Action
description locates at bottom level and it is a collection of assignments. For example, the
semantics of Ti is: when control f low arrives at Ti (control guard is true) and Pi is eating
(variable guard is true), Pi changes its state (eating) and starts thinking. Meanwhile Pi sets the
current state to thinking. The semantics of Ei and Hi are similar to Ti’s.

false

state = eating

state := thinking

T
i

false

state = thinking

state := hungriness

H
i

false

state = hungriness

state := eating

E
i

Fig. 33. Transition specification of thinking, hungriness and eating

230 Semantics in Action – Applications and Scenarios

www.intechopen.com

Visualizing Program Semantics 25

In figure 34, the initial marking of Pi is: M0(fi) = 1, M0(Sti) = 1 and Pi.state = thinking, i.e.
the initial state of Pi is thinking and the next enable transition is Hi. When Hi fires, Pi is in the
state of hungriness and requests two forks to eat, i.e. the weight of arc (Hi, Sai) is 2. When
M(fi) = 1 and M(Sai) ≥ 1, L fi fires. Consequently, fork fi is held by Pi. Similarly, When
M(fi−1) = 1 and M(Sai) ≥ 1, R fi fires. Consequently, fork fi−1 is held by Pi. If F fi has two
tokens, i.e. M(F fi) = 2, Ei fires and Pi starts to eat with two forks. Marking M(S fi) = 1
denotes Pi is eating. Ti’s firing denotes Pi finishes eating and start to think, at the same time,
Pi frees forks fi and fi−1 (P1 uses f1 and f5), i.e. M(fi) = 1 and M(fi−1) = 1. In Fig.34 and
other figures, arc with arrow denotes control f low and arc without arrow denotes read/write
relationship.

f
i

P
i
.state

f
i-1

St
i

E
i

T
iH

i

Sh
i

Sf
i

2

2

Sa
i

Lf
i

Rf
i

Ff
i

Fig. 34. Specification of Pi

In figure 34, token denotes the control inside Pi and flows among control places. Although
control place can’t be read or written, we can observe the control f low through the change of
state. For example, in figure 33, variable guards of Ti, Hi and Ei imply the change order of
states. The current state of philosopher can be checked through state.

The specifications of five philosophers are similar to that in figure.34. With shared forks, the
specification of DPP (figure.35) can be got from interaction among five individual philosopher
specifications (figure.34).

Control place set: Sp = {Sti, Shi, S fi, fi, Sai, F fi|i = 1, 2, 3, 4, 5}.

Variable place set: Sv = {Pi.state|i = 1, 2, 3, 4, 5}.

Transition set: Tv = {Ti, Hi, Ei|i = 1, 2, 3, 4, 5}, Tp = {L fi, R fi|i = 1, 2, 3, 4, 5}.

Read/Write relationship: R = W = (Pi.state, Ti), (Pi.state, Hi), (Pi.state, Ei).

Control flow relationship: F = {(Ti, Sti), (Sti, Hi), (Hi, Shi), (Shi, Ei), (Ei, S fi),
(S fi, Ti), (Ti, fi), (Ti, fi−1), (Hi, Sai), (Sai, L fi), (fi, L fi), (fi−1, R fi), (Sai, R fi),
(L fi, F fi), (R fi, F fi), (F fi, Ei)|i = 1, 2, 3, 4, 5}, where f0 = f5.

The individual weight of other arcs is 1 respectively, but
{W(F fi, Ei) = 2, W(Hi, Sai) = 2|i = 1, 2, 3, 4, 5}.

Description of (variables) transition I is in figure.33.
Initial marking M0 : {M0(fi) = 1, M0(Sti) = 1, M0(Pi.state) = thinking|i = 1, 2, 3, 4, 5}.

In figure.35, non-neighboring philosophers hasn’t the shared resource (fork), so they can be
concurrent, such as P1 and P3(P4), P2 and P4(P5), P3 and P5(P1). These properties can be

231Visualizing Program Semantics

www.intechopen.com

26 Will-be-set-by-IN-TECH

f
5

P
1
.state

f
1

St
1

E
1

T
1H

1

Sh
1

Sf
1

2

2

Sa
1

Rf
1 L f

1

Ff
1

P
2 .state

f
2

S t
2

E
2 T

2

H
2

Sh
2

Sf
2

2

Sa
2

R
f

2

Lf
2

Ff
2

 2

P 5
.st

at
e

St 5

E 5
T 5

H 5

Sh 5

Sf 5

2

Sa 5

R
f 5

Lf 5Ff 5

2

2

2

2

St
3

H
3

Sh
3

E
3

Sf
3

T
3

P
3
.state

Ff
3

Sa
3

f
3

L f
3

Rf
3

St
4

H
4

T
4

P
4
. state

Sh
4

E
4

Sf
4

Ff
4

Sa
4

Lf
4

R f
4

2

f
4

Fig. 35. rwPN Specification of Dining Philosopher Problem

observed from figure.35. For convenience, predicate Rp(Pi, Pj) denotes that Pi is next to Pj;

predicate Tf (fi, f j) denotes fi is next to f j and they are used by Pi,. Under no confusion

circumstances, M(Sti) = 1 is abbreviated to Sti; and ¬Sti to M(Sti) = 0; fi means fork fi

is free and marking M(fi) is 1; ¬ fi means fork fi is being used and marking M(fi) is 0.

Control places S fi, Sti and Shi are unreadable and to some extent are encapsulated. However,
variable place state is readable and writable, so the state of philosopher can be observed
through variable place state. We call state the observe window of the inner state of philosopher.
Therefore, control f low inside a philosopher can be checked indirectly through variable place,
and variable place also can be called as inter f ace. On the other hand, properties on state can
be proved through control f low. The following properties are expressed by UNITY logic but
the proofs are Petri nets style.

232 Semantics in Action – Applications and Scenarios

www.intechopen.com

Visualizing Program Semantics 27

Pi.thinking ensures Pi.hungriness.
Pi.hungriness ensures Pi.eating.
Pi.eating ensures Pi.thinking.

Pi will stop thinking because of hungriness.
The hungry philosopher has opportunity to eat.
The dining philosopher must finish his eating in a
while and start to think.

These properties ensure each philosopher is in one of three states by turn, i.e. any philosopher
can’t be in one of states forever. Therefore, the individual philosopher could be live.

Proof: Because Sti is a control place, M(Sti) = 1 implies that Pi is in the state of thinking, i.e.
Sti → Pi.thinking. Similarly, Shi → Pi.hungriness and S fi → Pi.eating. Therefore, property 1
can be rewritten as

Sti ensures Shi

Shi ensures S fi

S fi ensures Sti

From figure.34, we can get a segment of process (figure.36). For conciseness, some detail parts
are neglected in figure.36, e.g. Pi must have an opportunity to hold two forks.

St
i

H
i

Sh
i

E
i

Sf
i

T
i

Fig. 36. A process segment of Pi

As showed in figure.36, control(token) flows from Sti through Hi, and then into Shi.
Accordingly, there is an occurrence sequence Sti[Hi > Shi. Obviously, Hi is the operation
which guarantees Sti ensures Shi. Consequently, based on the premise Sti → Pi.thinking and
Shi → Pi.hungriness, Hi also guarantees Pi.thinking ensures Pi.hungriness.

Similarly, Pi.hungriness ensures Pi.eating and Pi.eating ensures Pi.thinking hold true.

Property 1. invariant Rp(Pi, Pj) → ¬(Pi.eating ∧ Pj.eating).

The neighboring philosophers can’t eat at the same time.

Proof: Similar to property 1, property 2 can be rewritten as

invariantRp(Pi, Pj) → ¬(S fi ∧ S f j)

Suppose Pi is in the state of eating, the firing condition of Ei is

M(F fi) = 2

At that time, tokens in S fi and S f j must respectively be consumed, i.e.

M(S fi) = 0 M(S f j) = 0

Similarly, Pj is in state of eating, the firing condition of Ej is

M(F f j) = 2

233Visualizing Program Semantics

www.intechopen.com

28 Will-be-set-by-IN-TECH

Because Pi and Pj are neighboring, and M(F fi) = 2 has caused M(S f j) = 0. Therefore, L f j

can’t fire. Accordingly, M(F f j) = 2 can’t be satisfied. So, Pj can’t be in the state of eating, i.e.

Rp(Pi, Pj) → Pi.eating ∧ ¬Pj.eating (1)

Similarly, when Pj is in the state of eating, the firing condition of Ei can’t be satisfied.
Accordingly, Pi can’t be in the state of eating, i.e.

Rp(Pi, Pj) → ¬Pi.eating ∧ Pj.eating (2)

When the neighboring philosopher Pi and Pj both are not in the sate of eating, obviously,

Rp(Pi, Pj) → ¬Pi.eating ∧ ¬Pj.eating (3)

From (1)(2)(3), we can find that

Rp(Pi, Pj) → ¬(Pi.eating ∧ Pj.eating) (4)

Because (4) has no other restrictive condition besides a premise that Pi and Pj are neighboring.
Therefore, (4) holds true when the program is initializing. Therefore, (4) always holds true.
Accordingly, property 2 holds true.

Property 2. Pi.eating �−→ ¬Pi.eating ∧ fi ∧ f j ∧ Tf (fi, f j).

the dining philosopher will finish eating and free the holding forks.

Proof: Similar to property 1, property 3 can be rewritten as:

S fi �−→ ¬S fi ∧ fi ∧ f j ∧ Tf (fi, f j)

From property 1, S fi ensures Sti holds true. A philosopher is thinking implies that the
philosopher is not in the state of eating, i.e. Sti → ¬S fi. Accordingly, S fi ensures¬S fi hold
true. From figure 35, we can get an occurrence sequence S fi[Ti > {Sti, fi, f j}, so Ti’s firing

causes M(fi) = M(f j) = 1. Accordingly, the two forks used by Pi(Tf (fi, f j)) are free, i.e.

S fi ensures ¬S fi ∧ fi ∧ f j

Consequently, property Pi.eating �−→ ¬Pi.eating ∧ fi ∧ f j ∧ Tf (fi, f j) holds true.

Property 3. Pi.hungriness �−→ Pi.eating ∧ (¬ fi ∧ ¬ f j) ∧ Tf (fi, f j).

The hungry philosopher has opportunity to eat with two forks.

Proof: Similar to property 1, property 4 can be rewritten as

Shi �−→ S fi ∧ (¬ fi ∧ ¬ f j) ∧ Tf (fi, f j)

From figure 34, we can get a process segment as figure.37 (f0 = f5).

In figure.37, •Ei = {Shi, F fi} and E•
i = {S fi}, accordingly, there is occurrence sequence:

{Shi, M(F fi) = 2}[Ei > {S fi} (5)

234 Semantics in Action – Applications and Scenarios

www.intechopen.com

Visualizing Program Semantics 29

Sh
i

E
i

f
i-1

f
i

Sf
i

T
i

L f
i

R f
i

Ff
i

2

Fig. 37. The process segment of Pi’s eating

Moreover, there also is occurrence sequence:

{ fi, f j}[{L fi, R fi} > {M(F fi) = 2} (6)

therefore, M(F fi) = 2 cause M(fi) = 0 and M(f j) = 0.

According to property 1 and (5), Shi ensures S fi and Ei’s firing needs M(F fi) = 2. According
to (6), M(F fi) = 2 causes M(fi) = 0 and M(f j) = 0, i.e. Ei’s firing causes M(fi) = 0 and

M(f j) = 0. fi and f j are neighboring is the premise, so

Shi ensures S fi ∧ (¬ fi ∧ ¬ f j) ∧ Tf (fi, f j)

i.e. Shi �−→ S fi ∧ (¬ fi ∧ ¬ f j) ∧ Tf (fi, f j) holds true.
Therefore, property 4 holds true.

Proof of liveness

T is a set of transitions, M is a set of system markings. Let r = {(m, m′)|m, m′ ∈ M ∧ t ∈ T :
m[t > m′}, then

r∗ = r0 ∪ r1 ∪ r2 ∪ · · · =
∞⋃

i=0

ri

is called as reachable relation, expression m r∗ m′ denotes that marking m can be changed to
marking m′ after finite transitions fire.

If m ∈ M, t ∈ T, m′ ∈ M : mr∗m′ ∧ m′[t >, then the system is live.

If the system is live, and m, m′ ∈ M : mr∗m′, then the system is circular.

From the above definition, we can prove the liveness of the dining problem.

Proof: The state of each philosopher changes in turn:

thinking → hungry → eating → thinking · · ·

The state change of philosopher Pi is controlled by a flow (directed circle): δi =
· · · Ti HiEiTi · · · , The two neighbor philosophers must share one fork. Pi requests the fork
is controlled by (directed circle)

The right fork: εri = fiEiS fiTi fi

The left fork: ε li
= fi+1EiS fiTi fi+1

235Visualizing Program Semantics

www.intechopen.com

30 Will-be-set-by-IN-TECH

If value(Pi) �= nout, the fire condition of the element in T = {Ti, Hi, Ei|i = 1 · · · 5} are
{· · · , S fi}, {· · · , Sti} and {· · · , fi, fi+1, Shi} respectively.

Given m ∈ M, the next firable transition t must be an element of T, arbitrarily let t = Hi,
obviously, if let m′ = {· · · , Sti}, the fire condition of Hi can be satisfied and Hi can fire.

Similarly, if let t = Ti or t = Ei, there are m′ = {· · · , S fi} or m′ = {· · · , fi, fi+1, Shi} can
satisfy the fire condition of Ti or Ei respectively. Thus,

t ∈ T, m′ ∈ M : m′[t > (1)

If m′ ⊆ m, then mr∗m′ holds true obviously.

If m′ � m, since there are directed circles δi, ε li
and εri , arbitrarily set ai be a place of the

directed circles δi, ε li
or εri in marking m′, and m′(ai) > 0.

If ai ∈ δi. Because δi is a directed circle, therefore δi has a place bi in marking m, and there
must be a path from bi to ai (the token in bi will arrive at ai at some time). Otherwise, the
philosopher Pi can’t be in one state of three states in m. So, bir

∗ai.

Similarly, if ai ∈ ε li
, bj ∈ ε li

, bjr
∗ai; if ai ∈ εri ,∃bk ∈ εri , bkr∗ai;

Hence, if m′ � m, m can reach m′. i.e.

mr∗m′ (2)

From (3.1) and (3.2), we conclude that the system is live.

Because there exists directed circles δi, ε li
and εri , the tokens must flow along the circles, so

the markings of system change circularly. We can conclude that any marking m can reach any
other marking m′, i.e., m, m′ ∈ M : mr∗m′. Hence, the system is circular.

8. References

Bjorner, D., Jones, C. B., Airchinnigh, M. M. a. & Neuhold, E. J. (1987). VDM ’87 VDM – A
Formal Method at Work, Vol. 252, Springer-Verlag, Germany. ø.

Breuer, P. T. & Lano, K. C. (1999). Creating specifications from code: Reverse-engineering
techniques, Journal of Software Maintenance: Research and Practice 3: 145–162.

Girault, C. & Valk, R. (2002). Petri Nets for Systems Engineering:a guide to modeling,verification,and
applications, Springer-Verlag.

Harel, D. (1987). Statecharts: A Visual Formalism for Complex Systems. Sci. Comput.
Programming 8.

Jensen, K., Kristensen, L. M. & Wells, L. (2007). Coloured petri nets and cpn tools for modelling
and validation of concurrent systems, Int. J. Softw. Tools Technol. Transf. 9(3): 213–254.

Khedker, U., Sanyal, A. & Karkare, B. (2009). Data Flow Analysis: Theory and Practice, CRC
Press (Taylor and Francis Group).

Reisig, W. (1985). Petri Nets, an Introduction, EATCS Monographs in Theroetical Computer
Science, Springer. EATCS Monographs in Theroetical Computer Science.

Spivey, J. M. (1998). The z notation: A reference manual.
Woodcock, J. C. P. & Davies, J. (1996). Using Z-Specification,Refinement,and Proof, Prentice-Hall.

236 Semantics in Action – Applications and Scenarios

www.intechopen.com

Semantics in Action - Applications and Scenarios

Edited by Dr. Muhammad Tanvir Afzal

ISBN 978-953-51-0536-7

Hard cover, 266 pages

Publisher InTech

Published online 25, April, 2012

Published in print edition April, 2012

InTech Europe

University Campus STeP Ri

Slavka Krautzeka 83/A

51000 Rijeka, Croatia

Phone: +385 (51) 770 447

Fax: +385 (51) 686 166

www.intechopen.com

InTech China

Unit 405, Office Block, Hotel Equatorial Shanghai

No.65, Yan An Road (West), Shanghai, 200040, China

Phone: +86-21-62489820

Fax: +86-21-62489821

The current book is a combination of number of great ideas, applications, case studies, and practical systems

in the domain of Semantics. The book has been divided into two volumes. The current one is the second

volume which highlights the state-of-the-art application areas in the domain of Semantics. This volume has

been divided into four sections and ten chapters. The sections include: 1) Software Engineering, 2)

Applications: Semantic Cache, E-Health, Sport Video Browsing, and Power Grids, 3) Visualization, and 4)

Natural Language Disambiguation. Authors across the World have contributed to debate on state-of-the-art

systems, theories, models, applications areas, case studies in the domain of Semantics. Furthermore, authors

have proposed new approaches to solve real life problems ranging from e-Health to power grids, video

browsing to program semantics, semantic cache systems to natural language disambiguation, and public

debate to software engineering.

How to reference

In order to correctly reference this scholarly work, feel free to copy and paste the following:

Guofu Zhou and Zhuomin Du (2012). Visualizing Program Semantics, Semantics in Action - Applications and

Scenarios, Dr. Muhammad Tanvir Afzal (Ed.), ISBN: 978-953-51-0536-7, InTech, Available from:

http://www.intechopen.com/books/semantics-in-action-applications-and-scenarios/visualizing-program-

semantics

© 2012 The Author(s). Licensee IntechOpen. This is an open access article

distributed under the terms of the Creative Commons Attribution 3.0

License, which permits unrestricted use, distribution, and reproduction in

any medium, provided the original work is properly cited.

