
Selection of our books indexed in the Book Citation Index

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us?
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

185,000 200M

TOP 1%154

6,900

1

Using Model Transformation Language
Semantics for Aspects Composition

Samuel A. Ajila, Dorina Petriu and Pantanowitz Motshegwa
Department of Systems and Computer Engineering,

Carleton University, Ottawa, ON,
Canada

1. Introduction

Modern software systems are huge, complex, and greatly distributed. In order to design
and model such systems, software architects are faced with the problem of cross-cutting
concerns much earlier in the development process. At this level, cross-cutting concerns
result in model elements that cross-cut the structural and behavioral views of the system.
Research has shown that Aspect Oriented (AO) techniques can be applied to software
design models. This can greatly help software architects and developers to isolate, reason,
express, conceptualize, and work with cross-cutting concerns separately from the core
functionality (Ajila et al., 2010; Petriu et al, 2007). This application of AO techniques much
earlier in the development process has spawned a new field of study called Aspect-
Oriented Modeling (AOM). In AOM, the aspect that encapsulates the cross-cutting
behavior or structure is a model, just like the base system model it cross-cuts. A system
been modeled has several views including structural and behavioral views. Therefore, a
definition of an aspect depends on the view of interest. Unified Modeling Language
(UML) provides different diagrams to describe the different views. Class, Object,
Composite Structure, Component, Package, and Deployment diagrams can be used to
represent the structural view of a system or aspect. On the other hand, Activity, State
Machine, and Interaction diagrams are used to model the behavioral view. Interaction
diagrams include Sequence, Interaction Overview, Communication, and Timing
diagrams.

After reasoning and working with aspects in isolation, the aspect models eventually have to
be combined with the base system model to produce an integrated system model. This
merging of the aspect model with the base model is called Aspect Composition or Weaving.
Several approaches have been proposed for aspect composition using different
technologies/methodologies such as graph transformations (Wittle & Jayaraman, 2007),
matching and merging of model elements (Fleury et al., 2007), weaving models (Didonet et
al., 2006) and others. The goal of this research is to compose aspect models represented as
UML sequence diagrams using transformation models written in Atlas Transformation
Language (ATL).

Composing behavioral models (views) represented as UML Sequence diagrams is more
complex than composing structural views. Not only is the relationships between the

www.intechopen.com

Semantics in Action – Applications and Scenarios

4

model elements important but the order is equally paramount. Several approaches have
been proposed for composing behavioral aspects with core system behavior, and these
include graphs transformations [Whittle et al., 2007] and generic weavers [Morin et al.,
2008]. In this research work we view composition as a form of model transformation.
Aspect composition can be considered a model transformation since it transforms aspect
and primary models to an integrated system model. Toward this end, we propose and
focus on an approach that uses model transformations to compose both primary and
aspect models represented as UML Sequence diagrams (SDs). SDs modeling the primary
model and generic aspect models is created using Graphical UML modeling tools like
Rational Software Architect (RSA). Model transformations are then used to instantiate the
generic aspect models in the context of the application to produce context specific aspect
models. Binding rules used for instantiating the generic aspect are represented as mark
models that conform to a metamodel. Using other model transformations, the context
specific aspect models are then composed with the primary model to produce an
integrated system model. Verification and validation is performed, not only to verify that
composition was successful, but also to ensure that the composed model is a valid UML
model that can be processed further and shared with other researchers.

The rest of this chapter is structured as follows. Section two presents Model Driven
approach, Aspect-Oriented techniques and technologies, and Atlas Transformation
Language (ATL). We present our approach to model composition in section three starting
with an example. We introduce our model composition semantics and definitions in section
four – giving formal notions and three major algorithms (pointcut detection, advice
composition, and complete composition) that define the basis of our work. Section five
presents the design and implementation of our model composition using ATL semantics.
We introduce and analyze a case study based on phone call features in section six. Section
seven gives our conclusion, limitations, and future work.

2. Model Driven Engineering/Development/Architecture (MDE/MDD/MDA)

In Model Driven Engineering (MDE) everything is a model. A model refers to a simplified

view of a real world system of interest; that is, an abstraction of a system. MDE considers

models as the building blocks or first class entities (Didonet et al, 2006). A model conforms

to a metamodel while a metamodel conforms to a metametamodel. MDE is mainly

concerned with the evolution of models as a way of developing software by focusing on

models. With this new paradigm of software development, the code will be generated

automatically by model to code transformations. Model Driven Development (MDD) is

copyrighted term by Object Management Group (OMG). One of the most important

operations in MDE/MDD is model transformation. There are different kinds of model

transformations including model to code, model to text, and model to model. Our interest in

this paper is in model to model transformations. Figure 2.1 shows the process of model

transformation. Since every artifact in MDE is a model, the model transformation is also a

model that conforms to a metamodel. The transformation model defines how to generate

models that conform to a particular metamodel from models that conform to another

metamodel or the same metamodel. In Figure 2.1, the transformation model Mt transforms

Ma to Mb. Mt conforms to MMt while Ma and Mb conform to MMa and MMb respectively.

The three metamodels conform to a common metametamodel MMM.

www.intechopen.com

Using Model Transformation Language Semantics for Aspects Composition

5

Fig. 2.1. Overview of Model Transformation Adopted from (ATL-User-Manual, 2009).

OMG's Model-Driven Architecture (MDA) is a term copyrighted by OMG that describes an
MDE approach supported by OMG standards; namely, UML, Meta-Object Facility (MOF),
MOF-Query/View/Transformation (QVT), XML Metadata Interchange (XMI) and Common
Warehouse Metamodel (CWM). MDA decouples the business and application logic from the
underlying platform technology through the use of the Platform Independent Model (PIM),
Platform Specific Model (PSM) and model transformations. The PIM describes a software
system independently of the platform that supports it while PSM expresses how the core
application functionality is realized on a specific platform. Given a specific platform, the
PIM is transformed to PSM. Platform in this case refers to technological and engineering
details that are independent of the core functionality of the application. For example,
middleware (e.g., CORBA), operating system (e.g., Linux), hardware, etc.

2.1 Aspect-Oriented (AO) techniques/technologies

The size of modern software systems has increased tremendously. Software architects and

developers have to design and develop systems that are not only enormous, but are more

complex, and greatly distributed. These systems naturally have many cross-cutting concerns

(requirements) whose solutions tend to cross-cut the base architecture and system behavior.

Such concerns include security, persistence, system logging, new features in software

product lines, and many others. Aspect-Oriented techniques allow software developers and

architects to conceptualize and work with multiple concerns separately (Groher & Voelter,

2007; Kienzle et al., 2009; Petriu et al., 2007). These techniques allow us to modularize

concerns that we cannot easily modularize with current Object-Oriented (OO) techniques

(Whittle & Jayaraman, 2007). The final system is then produced by weaving or composing

solutions from separate concerns (Petriu et al., 2007). Klein et al. point out that dividing and

conquering these cross-cutting concerns also allows us to better maintain and evolve

software systems (Klein et al., 2007).

Aspect Oriented Programming (AOP) applies AO techniques at code level (France et al.,
2004; Petriu et al., 2007). AOP was introduced to enhance Object-Oriented Programming to
better handle cross-cutting concerns that cause code scattering and tangling, which leads to
code that is very difficult to maintain and impossible to reuse or modify. AOP addresses
these issues by introducing a class like programming construct called an aspect which is
used to encapsulate cross-cutting concerns. Just like a class, an aspect has attributes (state)
and methods (behavior). An aspect also introduces concepts well known to AO community;
namely, join points, advice, and pointcut. Join points are points in the code where the cross-
cutting behavior is to be inserted. AspectJ (a popular AOP Java tool) supports join points for

www.intechopen.com

Semantics in Action – Applications and Scenarios

6

method invocations, initializing of attributes, exception handling, etc (Colyer et al., 2004). A
pointcut is used to describe a condition that matches join points, that is it is a way of defining
join points of interest where we want to insert the cross-cutting functionality. This cross-
cutting behavior to be inserted at a join point is defined in the advice. AspectJ supports before,
after, and around advices (Colyer et al., 2004).

Recent work in AO has focused on applying AO techniques much earlier in the
development process (Kienzle et al., 2009; Klein et al., 2007; Morin et al., 2008; Petriu et al.,
2007). In Aspect Oriented Modeling (AOM), Aspect-Oriented techniques are applied to
models (unlike AOP). Whittle et al. define an AO model as “a model that cross-cuts other
models at the same level of abstraction” (Whittle et al., 2006). Aspects are considered models as
well; hence, it makes sense to define (or abstract) other concepts such as pointcuts and
advices as models. However, the precise definition of a joint point, pointcut or advice
depends on our modeling view. For example, in a structural view, such as a class diagram,
an aspect is defined in terms of classes and operations/methods whereas in a behavioral
view, such as a sequence diagram, an aspect is defined in terms of messages and lifelines.
This has resulted in several approaches to AOM most of which have focused on separation
and weaving (composition) of structural (class diagrams) and behavioral views (sequence,
activity, and state diagrams) (Klein et al., 2007; Morin et al., 2008; Petriu et al., 2007). Several
approaches have been proposed for composing aspects in AOM. These include using graph
transformations (Gong, 2008; Whittle & Jayaraman, 2007), semantics (Klein et al., 2006),
executable class diagrams (ECDs), weaving models (Didonet et al., 2006), generic
approaches and frameworks (Fleury et al., 2008; Morin et al., 2008), etc. Composition
primarily involves deciding what has to be composed, where to compose, and how to
compose (Didonet et al., 2006). Aspect composition can either be symmetric or asymmetric.
In symmetric composition, there is a clear distinction between the models to be composed;
that is, one model plays the role of a base model while the other is declared an aspect model
(Jeanneret et al, 2008). This distinction is absent in asymmetric composition.

2.2 Atlas transformation language

The Atlas Transformation Language (ATL) is a model transformation language from the
ATLAS INRIA & LINA research group (ATL-User-Guide, 2009). The language is both
declarative and imperative, and allows developers to transform a set of input models to a
number of output target models. In ATL, source or input models can only be navigated but
cannot be modified (Jouault & Kurtev, 2005) whereas target models are write-only and
cannot be navigated. Figure 2.2 below shows an overview of an example of an ATL
transformation (Family2Person) from [ATL_Examples] that transforms a Family model to a
Person model. The Family model conforms to an MMFamily metamodel whereas the Person
model conforms to an MMPerson metamodel. The ATL, MMFamily, and MMPerson
metamodels all conform to the Ecore metametamodel which is a metamodel for the Eclipse
Modeling Framework. Families2Persons.atl is an ATL model or program that transforms a
Family model to a Person model.

ATL has three types of units that are defined on separate files (ATL-User-Guide, 2009);
namely, ATL modules, queries and libraries. ATL has types and expressions that are based
on the Object Constraint Language (OCL) from OMG. ATL has primitive types (Numeric,
String, Boolean), collection type (sets, sequences and bags) and other types, all of which are

www.intechopen.com

Using Model Transformation Language Semantics for Aspects Composition

7

Fig. 2.2. Overview of the Family to Person ATL Transformation.

sub-types of the OCLAny abstract super-type. An ATL module or program, like
Families2Persons.atl in the previous example, defines a model to model transformation
(Jouault & Kurtev, 2005). It consists of a header, helpers (attribute and operation helpers)
and transformation rules (matched, called and lazy rules) (Jouault & Kurtev, 2005). The
header defines the module's name, and the input and target models. ATL operation helpers
are more like functions or Java methods, and can be invoked from rules and other helpers.
Attribute helpers unlike operation helpers do not take any arguments. All helpers are,
however, recursive and must have a return value. Rules define how input models are
transformed to target models. They are the core construct in ATL (Jouault & Kurtev, 2005).
ATL supports both declarative and imperative rules. Declarative rules include matched
rules and lazy rules. Lazy rules are similar to matched rules but can only be invoked from
other rules. A matched rule consists of source pattern and target pattern (Jouault & Kurtev,
2005). A source pattern is defined as an OCL expression and defines what type of input
elements will be matched (ATL-User-Guide, 2009). An ATL model is compiled, and then
executed on the ATL engine that has two model handlers; namely, EMF (Eclipse Modeling
framework) and MDR (Meta Data repository) (ATL-User-Guide, 2009). Model handlers
provide a programming interface for developers to manipulate models (Jouault & Kurtev,
2005). The EMF handler allows for manipulation of Ecore models while MDR allows the
ATL engine to handle models that conform to the MOF 1.4 (Meta Object Facility)
metametamodel (ATL-User-Guide, 2009). For example, the ATL transformation in Figure 4.1
would require an EMF model handler since the metamodels conform to Ecore.

Fig. 3.1. Our AOM Composition Approach.

www.intechopen.com

Semantics in Action – Applications and Scenarios

8

3. Our approach to model composition

Our approach shown in the Figure 3.1 is an adaptation of the approach proposed by Petriu
et al. in (Petriu et al., 2007). Using a UML modeling tool, like RSA (Rational Software
Architect) from IBM, the primary and generic aspect models are modeled in UML and then
exported to a UML 2.1 (.uml) format file. The mark model is created in an XMI file. The
Instantiate and Compose operations in Figure 3.1 are defined as ATL model transformations.
We first instantiate a generic aspect model to the context of the application by using a model
transformation that takes the primary, generic aspect and mark models as input, and
transforms them to a context specific aspect model. We then invoke a second transformation
that will take as input the newly created context specific aspect model and the primary
model, and then output a composed target model.

3.1 Example

Let us introduce a simple example to provide a better view of our approach and the
definitions of the various concepts used in the approach. This example is adapted from
Klein et al. (Klein et al., 2007). It illustrates the weaving of a simple security aspect into a
primary model. The primary model consists of a single scenario. In fact, our composition
approach assumes that the primary model has only one sequence diagram (SD) and models
a particular instance of a use case. This example consists of a login scenario shown in Figure
3.2 below. The model shows a simple iteration between instances of Server and Customer.
The Customer attempts to log into the Server by sending a login message. The Customer's
login details are incorrect; hence, the Server sends a try_again message to the Customer to
attempt another login. The Customer then sends a login message with the correct details this
time and the Server responds with an ok message.

The primary model does not have any security features. So, we want to add some security
mechanism to the scenario so that when a customer attempts login and fails, the system should
do something about that exception. We can model this security mechanism as a Security
Aspect model that will detect a presence of a message from the Customer to the Server, and a
reply from the Server back to the Customer. The presence of this sequence of messages is
defined in the aspect's pointcut. The new behavior we want to add to the primary model in
order to enhance security is defined in the aspect's advice. However, to make the aspect
reusable and more useful, it has to be generic but not specific to our example or situation. This
way we can reuse the aspect and in different situations and scenarios.

Fig. 3.2. The Primary Model - A Login Scenario for a Security Aspect Example.

www.intechopen.com

Using Model Transformation Language Semantics for Aspects Composition

9

To create a generic aspect we adopt the use of template parameters used by France et al.
(France et al., 2004) and others (Kienzle et al., 2009; Petriu et al., 2007) to define generic roles
played by the participants and messages in the generic aspect model. These generic roles are
then bound to specific roles (names) when the generic aspect is instantiated. Figure 3.3
shows the pointcut and advice that make up our generic security aspect model. It should be
noted that in case of multiple aspects, each aspect will be modeled separately. The lifelines
(participants) and messages in the model are made generic. The pointcut in Figure 3.3a
defines that the aspect detects any sequence of messages between a lifeline that plays the
role of |client and lifeline that plays the role of |server such that |client sends a message
tied to the role |operation and |server responds with |retry. During instantiation these
template parameters (roles) will be set (bound) to concrete names of appropriate lifelines
and messages.

As already mentioned, the advice represents the new or additional behavior we want
executed if the pointcut matches, that is, if we find the sequence of messages defined in the
pointcut in our primary model. The advice in Figure 3.3b declares that we want |server to
invoke a self call after receiving |operation and before sending |retry to |client. So our
advice in this case adds new behavior (the |handle_error self call). The idea is that during
composition, as we shall see later, we replace whatever was matched by pointcut with what
is defined in the advice.

Before an aspect can be composed with the primary model, the generic aspect model must
first be instantiated to the context of the application to produce a Context Specific Aspect
Model. This is achieved by “binding” the template parameters to application specific values.
For example, we want to bind “customer” to |client because in our primary model,
customer plays the role of |client.

Instantiating our generic aspect model using the bindings in Table 1, we obtain the context
specific aspect model shown in Figure 3.4. The pointcut from the context specific aspect will
then match the sending of a login message from customer to server and a try_again message
from server back to customer, which is what we want. Its advice declares that the
save_bad_attempt self call will be added to the server hopefully for the server to do
something useful and security related.

 (a) pointcut (b) Advice

Fig. 3.3. Generic Aspect Model.

www.intechopen.com

Semantics in Action – Applications and Scenarios

10

Parameter Binding value Comment

|client customer Lifeline object name.
|server server Lifeline object name.
|Client Customer The name of the type for the lifeline object.
|Server Server The name of the type for the lifeline object.

|operation login
|reply try_again

|handle_error save_bad_attempt

Table 1. Example of Security Aspect Binding Rules.

 (a) Pointcut (b) Advice

Fig. 3.4. Context Specific Aspect Model.

3.2 Model composition

After instantiating a context specific aspect model, a complete integrated system is obtained
by composing the primary model with the context specific aspect model. We view
composition as a form of model transformation as shown in Figure 3.5. Therefore, our aim
is to transform the input models (Primary and Context Specific Aspect) to a target composed
model. As shown in Figure 3.5, both the input and output models conform to an EMF
implementation of the UML metamodel specification while our ATL program or model
conforms to the ATL metamodel. All the metamodels conform to the EMF's Ecore
metametamodel. As in other aspect composition approaches composition has to be
performed on different views, that is, structural or behavioral views. Our main focus is on
the behavioral view. Composition inevitably results in some model elements been replaced,
removed, added or merged (Morin et al., 2008; Gong, 2008). Similarly in our approach, all
model elements from the context specific aspect model that are not already in the primary
model, will be added to the composed model but elements common to both models will be
merged. All join point model elements (from primary model) are replaced by advice
elements. The rest of the elements from the primary model will be added to the composed
model. A formal definition of our models and the proposed algorithm (for matching and
composing) are based on UML metamodel classes. The specification for the UML
metamodel (OMG, 2009) is enormous and also includes metaclasses for other UML
diagrams that we are not interested in. Therefore, it makes sense to look only at some of the
important classes whose objects are used in creating sequence diagrams (SDs).

www.intechopen.com

Using Model Transformation Language Semantics for Aspects Composition

11

Fig. 3.5. Aspect Composition as an ATL model transformation.

4. Model composition semantics and definitions

A sequence diagram shows the order in which messages are exchanged among participants;

hence, order is crucial [Hamilton & Miles, 2006; Pilone & Pitman, 2005). The messages or

interactions, to be precise, on a specific lifeline are totally ordered but interactions between

two lifelines are partially ordered. The most important model elements in a SD are probably

lifelines (participants), messages, message ends, and the enclosing interaction. Figure 4.1 is a

simplified class diagram of the Interactions Metamodel showing the relationships among

the metaclasses for these model elements.

A complete description of each metaclass can be obtained from the UML specification

(OMG, 2009). The InteractionFragment abstract class represents a general concept of an

interaction (OMG, 2009). An Interaction is a sub class of InteractionFragment that represents

the modeled behavior or interactions (exchange of messages) between participants

(lifelines)[OMG09]. An Interaction essentially encloses Messages, Lifelines and other

InteractionFragments. The enclosed InteractionFragments are stored in an ordered list

referenced by the fragment role. This ordering is exploited in our algorithms for matching

and composing SDs. A Message models the kind of communication between participants

[OMG09]. There are five main types of messages; namely, synchronous, asynchronous,

delete, create, and reply messages [Hamilton+06]. Each message is accompanied by a pair of

MessageOccurrenceSpecifications (MOSs). The sendEvent MOS represents the sending of the

message while receiveEvent MOS models the reception of the message. Each MOS also has a

reference to the lifeline for which the message is received or sent from through the covered

association. In return, each Lifeline has a reference to a list of InteractionFragments or

specializations of InteractionFragment (including MOSs), which cover the lifeline, through the

coveredBy association.

The events that we are interested in are specializations of the MessageEvent abstract class

mainly the SendOperationEvent (SOE) and ReceiveOperationEvent (ROE) classes. These types

of events occur during the sending or receiving of a request for an operation invocation

(OMG, 2009).

www.intechopen.com

Semantics in Action – Applications and Scenarios

12

Fig. 4.1. Simplify Metamodel for Sequence Diagrams.

4.1 Sequence Diagram (SD) Composition

As previously described, our AOM approach has a primary model, one or more generic
aspect models and a mark model. The primary model describes the core system
functionality (behavior) without cross-cutting concerns. The generic aspect models describes
(encapsulate) cross-cutting concerns which could otherwise be scattered across core
functionality; for example, new features (in software product lines), security, persistence,
etc. Before composing the primary model with an aspect model we first instantiate the
generic aspect model in the context of the application with the help of a mark model. We
employ an ATL transformation model that takes the primary, generic aspect, and mark
models as input, and produces a context specific aspect model as output. We would like to
point out that the mark model does not necessarily have to specify all the bindings for the
template parameters in cases where some of the bindings can be matched or implied from
the primary model. A second ATL transformation model then takes as input the primary
and context specific models to produce the composed model. Defining a generic aspect
improves re-usability since the same aspect can be instantiated and then composed with the
primary model multiple times until a complete integrated system model is obtained. Since
we are mainly interested in the behavioral view (of our primary and aspect models), our
work is mainly focused on the composition of interactions diagrams in the form of SDs. As
described earlier, the aspect model consists of a pointcut and an advice defined as SDs
where the pointcut is the behavior to detect and the advice is the new behavior to compose
or weave at the join points [Klein et al., 2007]. Before composing, we first have to identify all
our join points by matching the pointcut SD with the primary model. The pointcut SD
consists of message or a sequence of messages between lifelines; therefore, we want to find
the occurrence of these sequences of messages in the primary model and then insert the
defined cross-cutting behavior (defined in the advice SD) at every join point. Composition is
essentially inserting this new behavior; that is, composition is achieved by replacing the join

www.intechopen.com

Using Model Transformation Language Semantics for Aspects Composition

13

points with the advice SDs. Before instantiating a generic aspect, we first have to ensure
that the aspect can be applied to the primary model; that is, whether its pointcut matches. A
formal definition of matching will be given later. Also during composition we have to find
where to weave. This makes pointcut detection or finding join points a core operation. The
algorithm designed for pointcut detection manipulates the SD metaclasses by exploiting the
relationship between InteractionFragments and their ordered list of fragments in an
interaction. It also makes use of the fact that a sequence of messages (and indeed a SD) is
essentially a list of ordered fragments.

4.1.1 Formal notations for defining aspects and primary models

Let,

 P be a sequence of fragments, that is, InteractionFragments (CombinedFragments and
MOSs), from the aspect's pointcut SD.

 A be a sequence of fragments from the aspect's Advice SD.

 C be a sequence of fragments from the primary model SD.

Note that a sequence is an ordered collection/list.

Then, P = Sequence{f1, ..., f┰} where ┰ = number of fragments in P and fi is either a
CombinedFragment (CF) or a MessageOccurrenceSpecification (MOS), such that,

fi = If instance of where
CF(O, Λ) CF O is a sequence of operands in the CF and each operand is

also a sequence of fragments just like P. This is the case with
nested CFs.
Λ is a list of lifelines covered by the CF.

MOS(Li,Ei,Mi) MOS Li is a lifeline covered by fi.
Ei is an event associated with fi.
Mi is a message associated with fi.

and,

C = Sequence{c1, ..., cμ} where μ = number of fragments in C and ci is also either a CF or a
MOS, such that,

ci = If instance of where
CF(O, Λ) CF O is a sequence of operands in the CF and each operand is

also a sequence of fragments just like C. This is the case with
nested CFs.
Λ is a set of lifelines covered by the CF.

MOS(Li,Ei,Mi) MOS Li is a lifeline covered by ci,
Ei is an event associated with ci.
Mi is a message associated with ci.

4.1.2 Aspect and primary models definition

Using the above notation, we will define an aspect model as a pair of fragment sequences,
that is, Aspect = (P, A) where P and A are the sequences defined earlier. This definition is
adapted from Klein et al. in (Klein et al., 2006; Klein et al., 2007); However, Klein et al. define

www.intechopen.com

Semantics in Action – Applications and Scenarios

14

a simple SD as a tuple that consists of a set of lifelines, a set of events, a set of actions and
partial ordering between the messages (Klein et al., 2007). This is different from our
definition of a sequence of fragments. Using our definition, the primary model = C, a
sequence of fragments from the primary model SD. Then our pointcut P matches C if and

only if there exists two sub-sequences M1 and M2 in C such that, C = M1 P M2, where

denotes a union of sequences. A B returns a sequence composed of all elements of A
followed by the elements of B. If the P matches C several times, say n times, then we can say,

C = M1 P M2 … Mn P Mn+1. This definition is an adaptation of the definition
given by Klein et al. in (Kleinet al., 2006).

4.1.3 Join point definition

Part of the sequence C that corresponds or matches P is the join point. In other words, a

join point is a sub sequence of C that is equal to the sequence P. Equal here means that

fragments at the same corresponding location in P and join point (same index on either

sequences) are equal. For example, if elements at position 1 in P and in the join point are

both MOSs, they can only be equal if and only if they cover similar lifelines (same name

and type), have the same message, and have other features that are similar. More details

for checking for equality will be given in the design and implementation section. Since the

size (number of fragments) of P, hence the size of a join point, is fixed we can afford to

keep track of only fragments at the beginning of each join point. With this assumption we

can define; S = Sequence{s1, ... ,sn}, a sequence of fragments at the beginning of each join

point where n > 1 is number of join points matched by P. A join point, Ji is then given by a

sub sequence of C from index of si in S to the index of si plus ┰ minus 1. That is, if; xi =

indexOf(si) and yi = xi + ┰ - 1, where ┰ = number of elements in P, then, Ji = C-

>subSequence(xi,yi) for 1 ≤ i ≥ n.

4.2 Composition algorithms - assumptions and requirements

The below algorithm and indeed the other algorithms to be introduced later, make the
following assumptions:

 The input models are well formed and valid; hence, the sequences S, P, and A are valid.

For example, we do not have empty sequences. We also assume that the aspect models

(generic and context specific) consists of two interactions (SDs) named Advice and

Pointcut, and that the primary model represents one interaction or scenario; therefore,

consists of one instance of Model, one instance of Collaboration, and one instance of

Interaction.

 We can correctly compare any two fragments regardless of their specialization, for

example, comparing a MOS with a CF.

 Nested CFs have been properly and consistently unrolled.

 A lifeline's name is the same as that of the represented object (property).

 Message have arguments with primitive UML types (strings and integers).

 We can ignore other fragments like BehaviorExecutionSpecifications (BESs) and
ExecutionOccurrenceSpecifications (EOSs) focusing only on MOSs and CFs (and their
operands), and still achieve accurate pointcut detection.

www.intechopen.com

Using Model Transformation Language Semantics for Aspects Composition

15

4.2.1 Pointcut detection algorithm

The pseudo code for the algorithm that detects or matches pointcuts and returns S is given
below. The algorithm begins by creating an empty sequence S on line 2. It then iterates over
all fragments ci in C checking if ci is equal to f1, the first element in our pointcut P on line 9.
If the elements are not equal, the algorithm moves to the next ci. However, if the fragments
(ci and f1) are equal, it obtains Ji, a sub sequence of C starting from ci and with the same size
as P, on line 10.

Algorithm-1 Pointcut Detection Algorithm
Input : P = Sequence{f1, ..., f┰}, C = Sequence{c1, ..., cμ}

where ┰ = number of fragments in P, and μ = number of fragments in C
Output : S = Sequence{s1, ... ,sn}
1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
15.
16.
17.
18.
20.

begin
S = Sequence{}
foreach ci in C do

//compute the location of the end of the potential join point
k = i + ┰ -1
if k > μ then //make sure we have a valid location

break
end if
if ci = f1 then

Ji = C->subSequence(i,k) // Potential join point
/* check if fragment at the same location in P is equal to the
corresponding element in the join point */
if pairWiseMatch(P, Ji) then

S->enqueue(ci)
end if

end if
 end loop
return S

end

On line 13 the algorithm then compares P and Ji, side-by-side by checking if each pair of
fragments at index j on both sequences is equal for 1 ≤ j ≥ ┰. If this is true, then indeed Ji is a
join point. So the algorithm inserts the first element (ci) of the join point into S and loops
back to line 3. It continues looping until it has checked all the elements of C or the condition
on line 6 is true to ensure we do not fall off the edge. More details on the implementation of
this algorithm and its functions, like pairWiseMatch, will be discussed in the next section.

4.2.1.1 Algorithm-1 complexity

If the algorithm-1 has to visit all fragments in C (when ┰ = 1) then both functions on lines 10

and 13 will take constant time, that is, O(1) which makes the algorithm linear or O(n). If P is

the same size as C (┰ = μ), then the algorithm has to loop only once but both subSequence

and pairWiseMatch functions are O(n); hence, the algorithm is again linear. However, if ┰ < μ

then again both functions (i.e., Sequence and pairWiseMatch) are, in the worst case, linear and

the algorithm will have to loop several times each time invoking the two functions making

the algorithm quadratic, that is O(n2); therefore, in general the algorithm is O(n2).

www.intechopen.com

Semantics in Action – Applications and Scenarios

16

4.2.2 Complete composition algorithm

After detecting the pointcut and obtaining our join points, the next step is to weave the
advice at the join points. Since the advice has already been bound to the context of the
application during aspect instantiation, weaving the advice is simplified to replacing a join
point with the advice. This is trivial with only one join point. Challenges arise when we
have multiple join points because we have only one advice from the aspect model. We can
either duplicate the advice or work with one join point at a time. Both options were explored
but duplicating the advice (without duplicating the aspect model) proved to be complex due
to the inability to navigate target models in ATL, and the nested relationships between
InteractionFragments. Focusing one join point at a time is easier and more elegant. The
complete composition algorithm presented in this section achieves this. Let us first
introduce abbreviations that we will use in the algorithm.

 GAM = Generic Aspect Model

 CSAM = Context Specific Aspect Model (Instantiated generic aspect model)

 MM = Mark Model

 PM = Primary Model

 CM = Composed Model

The pseudo code of the Complete Composition Algorithm is given below. The three functions
defined in this algorithm represent the ATL transformations used to implement this algorithm
as we shall see in the next chapter. The algorithm begins by retrieving n the number of join
points matched in the primary model (PM) using the JoinPointsCount function on line 2. This
function implements algorithm-1 (Pointcut detection Algorithm) to return a sequence of
fragments at the beginning of each join point, and then finds the size of that sequence. The
details of the implementation of this function will be given in next chapter. The number of join
points determines if the algorithm will execute lines 6 to 10, and not necessarily the number of
times the loop will iterate. If n > 0, that is, we have at least one join point, the algorithm
instantiates the GAM to create a CSAM on line 6. This corresponds to the instantiate process
shown in Figure 5.1. It then composes PM with CSAM by weaving the advice at the first join
point using the Compose function on line 8 to produce our composed model.

Algorithm-2 Complete Composition Algorithm
Input :GAM, MM, PM
Output :CM
1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.

begin
 n = JoinPointsCount(GAM, MM, PM)
 temp = PM
 while n > 0

// instantiate our generic aspect model
 CSAM = Instantiate(GAM, MM, temp)

// compose advice and first join point
CM = Compose (temp,CSAM)

 temp = CM
 n = JoinPointsCount(GAM, MM,temp)

 end while
return CM

end

www.intechopen.com

Using Model Transformation Language Semantics for Aspects Composition

17

The algorithm then checks the CM for more join points on line 10. If more are found, it
returns to line 6 to instantiate the GAM using CM (new primary model). It then creates
another CM and checks for more join points. The algorithm continues looping until no join
points are found.

As it is, this algorithm has a potential nasty flaw in the form of positive feedback, which, if

left unattended, can cause the algorithm to loop indefinitely in some cases! The problem is

rooted on the fact that composing an aspect in most cases results in the addition of new

model elements (fragments, messages and lifelines) which in turn can produce more join

points. This means that after composition on line 8, the algorithm may find more join points

on line 10 causing the algorithm to iterate again and again. For example, if the pointcut is

defined as a single message MSG1, and the primary model has two invocations of this

message, then we have two join points. If the advice adds three instances of the same

message MSG1, then after composition (1st iteration) we will have four join points. After the

second iteration well have six, then eight, etc. With the number of join points increasing all

the time the algorithm will never terminate. This problem is easily solved by tagging model

elements from advice during instantiation on line 6. To be precise we only have to tag MOSs

(fragments). Then when pointcut matching during the invocation of JoinPointsCount

(implementing algorithm-1), we check for that tagging. If a potential join point has at least

one tagged fragment, then we know that this join point emerged only after composition;

therefore, it is immediately disqualified.

4.2.2.1 Algorithm-2 complexity

The complexity of algorithm-2 is difficult to analyze because on the surface the algorithm
appears to be linear on the number of join points. However, the algorithm is not necessarily
linear on the number fragments. We have already seen that detecting the number of join
points is quadratic. Therefore, if that is nested within a loop, we could say that (in general)
the algorithm is cubic, that is, O(n3)

4.2.3 Advice composition algorithm

At the core of the Compose function, used by the Complete Composition Algorithm
described above, is the Advice Composition algorithm that weaves the advice at the join
point. Recall the definition of an Aspect = (P, A). We will use definition again where by
“Aspect” we are referring to a context specific aspect model. Our main interest is mainly on
the advice sequence A. Recall that,

 A = Sequence{a1, ..., a┱}, a sequence of fragments from the aspect model advice SD,
where ┱ = number of fragments in A.

 C = Sequence{c1, ..., cμ}, a sequence of fragments from the primary model, where μ =
number of fragments in C.

 S = Sequence{s1, ... ,sn}, a sequence of fragments at the beginning of each join point,
where n > 1 is number of join points matched by P.

 A join point, Ji is then given by a sub sequence of C from index of si in S to the index of
si + ┰-1; That is, If, xi = indexOf(si) and yi = xi + ┰ - 1, then, Ji = C->subSequence(xi,yi)
for 0 ≤ i ≥ n

 P is a sequence of fragments from the pointcut SD.

www.intechopen.com

Semantics in Action – Applications and Scenarios

18

Since our Complete Composition Algorithm is concerned with one join point at a time, our
Advice Composition algorithm needs to work with only one join point; that is, the join point
that begins with s1 (the first element in S). Then, let CCM be a sequence of fragments from the
composed model. Recall again that;

With the notation defined, we can now describe our Advice Composition algorithm. Its
pseudo code is given on the next page. In a nut shell, the algorithm simply replaces the join
point with the advice. The algorithm first checks if we have a join point. If so, it obtains the
first element of S, on line 5. Using that element, the algorithm finds the location (x1) at the
beginning and at the end (y1) of the join point, as shown on lines 6 and 7. The algorithm then
obtains a sub sequence of fragments from C (primary model) before the start of the join
point, on line 12. Note that indexing for our sequence data structure starts at 1 instead of
zero as in Java lists or arrays. On line 16, the algorithm returns a sequence of fragments after
the last element of the join point to the end of C. The composed model is then given by CCM

= sub_before A sub_after, that is, the union of sub_before, A andsub_after.

Algorithm-3 Advice Composition
Input : C, A, P, S - where ┰ = number of fragments in P
Output : CCM

1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22.

begin
if S->isEmpty() then

CCM = {}
else

s1 = S->first() // fetch the tail of the 1st join point
x1 = C->indexOf(s1) // find its location in C
y1 = x1 + ┰–1 // find the location of the join point's head
sub_before = {}
sub_after = {}
if x1 > 1 then

// get all fragments before the join point
sub_before = C->subSequence(1,x1-1)

end if
if y1 < μ then

// get all fragments after the join point
sub_after = C->subSequence(y1+1, μ)

end if
//Insert the advice in place of the join point
CCM = Sequence {sub_before, A, sub_after}

end if
return CCM

end

4.2.3.1 Algorithm-3 complexity

Creating sub_before and sub_after is linear in the worse case. Creating CCM is also O(n) in the
worst case; hence, the above algorithm is clearly linear.

www.intechopen.com

Using Model Transformation Language Semantics for Aspects Composition

19

5. Design and Implementation

In the previous section, we introduced our definition of primary, aspect and mark models.
We also introduced our approach to AOM composition, and discussed our Complete
Composition Algorithm that uses two other algorithms to detect join points, and compose
the primary and aspect models. In this chapter we describe how the Complete Composition
Algorithm was implemented using ATL transformations to realize the functions
JoinPointsCount(...), Instantiate(...) and Compose(...) employed by the algorithm. These
functions were implemented as ATL transformation models and used to transform several
input models to desired target models to achieve composition of SDs. Before giving the
implementation details of these transformation models, we would like to first justify some of
our design decisions and also describe how we designed our mark model.

5.1 Design decisions

Several key decisions were taken in this work. These include:

 The use of ATL transformation models for composition instead of, say, graph
transformations or general programming languages (e.g., Java). Aspect composition
or weaving can be considered a form of model transformation because we take at least
two input (primary and aspect) models and produce at least one target model
(composed). Therefore, model transformation approaches can be used for aspect
composition. ATL was chosen because it is mature and has a rich set of development
tools that are built on top of flexible and versatile Eclipse platform. ATL is based on
OCL; therefore, it is not difficult for a developer with some OCL experience to learn.
ATL was also chosen because no work on behavioral aspect composition, that we are
aware of, has been attempted using ATL.

 The use of RSA 7.5 as a modeling tool of choice. RSA 7.5 is not free but we already have
a license for it. It is a great UML modeling tool. It has excellent support for SDs. It is
easy and intuitive to use. It allows for easy model migration. We can export or import
UML models as .uml or XMI files. It allows for model validation (not available in some
of the tools) which we found very useful. RSA can also generate a sequence diagram
from an imported model. This makes verification of our composed model easy and less
error prone.

 The use of a mark model. ATL Transformations only work with models; therefore, our
binding rules have to be in the form of a model that has a metamodel. Mark models are
a convenient way to work with parameterized transformations. MDA, certainly, allows
for use of mark models in model transformations (Happe et al., 2009). Happe et al. use
mark models to annotate performance models in their work on performance
completions (Happe et al., 2009).

 Ignoring BehaviorExecutionSpecifications (BESs) and Execution Occurrence
Specifications (EOSs) model elements during pointcut detection and composition. As
stated in the previous section, we are convinced that we can ignore these two and still
achieve accurate pointcut detection. This is because BESs and EOSs are used to define
the duration of execution of behavior (OMG, 2009) of say, a message invocation. Our
work is focused on detecting the occurrence of a sequence of messages (interactions
between participants) and doing something when we find the sequence. We are not
concerned about how long the participant will execute after a message invocation.

www.intechopen.com

Semantics in Action – Applications and Scenarios

20

During early stages of system modeling or at high levels of system abstraction, BESs
and EOSs are not really applicable or useful; therefore, our decision to ignore them is
reasonable.

5.2 Designing mark model metamodel

A mark model helps define binding rules for instantiating generic aspect models. These

rules are merely template parameter and value pairs stored in mark model instances. In

MDE, a model must have a metamodel that it conforms to, and our mark model is no

exception. Since the mark model is to be used in ATL transformations (with an EMF model

handler), its metamodel must conform to a metametamodel that is the same as the ATL

metamodel, that is, Ecore as shown in Figure 4.1 and Figure 4.2. ATL development tools

include KM3 (Kernel MetaMetaModel) which is textual notation for defining metamodels

(ATL_Manual, 2009). The code snippet below shows a KM3 definition of the metamodel for

our mark model which we named BindingDirectives. The metamodel has one class with a

parameter and binding value attributes of type String. This essentially means that the

instances of the mark model will be a collection of objects with initialized parameter and

binding attributes.

package BindingDirectives {
 class BindingDirective {
 attribute parameter : String;
 attribute binding : String;
 }
 package PrimitiveTypes {
 datatype String;
 }
}

The metamodel is defined in a .km3 file which is then converted (injected) to an Ecore format
encoded in XMI 2.0 using injectors in the ATL IDE (ATL_Manual, 2009). Once the
metamodel has been defined, we can begin creating mark models in an XMI format.

5.3 Implementation of the complete composition algorithm

As mentioned earlier, the Complete Composition Algorithm uses the JoinPointsCount,
Instantiate, and Compose transformations to produce a composed model (SD). These
transformations in return implement the other two algorithms (Pointcut detection and
Advice Composition algorithm) to achieve their objectives.

5.3.1 Getting the Number of Join Points

The JoinPointsCount transformation is implemented by the ATL transformation model
shown in Figure 5.1. It returns the number of join points found in the primary model given a
pointcut defined in a generic aspect, and binding rules defined in a mark model. The
transformation produces a simple UML target model that contains the number of join points
found. The number of join points must be returned in a model because an ATL
transformation (module) has to produce a model but not a string or integer. The

www.intechopen.com

Using Model Transformation Language Semantics for Aspects Composition

21

JoinPointsCount transformation is implemented in an ATL module creatively named
JoinPointsCount as shown below by its header definition.

module JoinPointsCount;
create NUMJOINPOINT:UML2 from PRIMARY:UML2, ASPECT:UML2, BIND:BD;
uses PointcutMatchHelpers;

...

The header declares that the transformation takes as input two UML2 models (bound to

variables PRIMARY and ASPECT), a model that conforms to the BD (Binding Directive)

metamodel, that is the mark model bound to the variable BIND. The transformation then

produces a UML2 target model bound to the variable NUMJOINPOINT. The header also

declares that the transformation uses the PointcutMatchHelpers ATL library. This is where

common or general purpose helpers such as the ones used for pointcut detection (and used

also by other transformations) are defined. This helps reduce code duplication and allows

for a better code maintenance.

Fig. 5.1. An Overview of the JoinPointsCount ATL Transformation.

5.3.2 JoinPointsCount helpers

The transformation employs several helpers listed in Appendix A. It also uses some of the

helpers defined in the PointcutMatchHelpers library listed in Appendix B. Please note that

aspect model here refers to the generic aspect model (not context specific) which is one of

the input models to the transformation.

5.3.3 JoinPointsCount rules

Rules are used to generate the target model in ATL. Our JoinPointsCount transformation has
two simple declarative rules (one matched rule and one lazy rule) that generate a UML
model to store the number of join points found. A proper UML model should have a Model
container element that packages all the other modeling elements. The list of contained
objects is then referenced by the packagedElement attribute or association. The Model matched

www.intechopen.com

Semantics in Action – Applications and Scenarios

22

rule is the main rule that generates a Model element. We want the rule to match only one
element. Therefore, its source pattern defines that the rule should match an element of type
UML2 Model from the input aspect model as it can be seen on line 2 in the code snippet for
the rule below. The rule's target pattern defines that a UML2 Model element will be
generated.

1.
2.
3.
4.
5.
6.
7.
8.

rule Model {
 from s : UML2!Model(s.fromAspectModel())
 to t : UML2!Model (
 name <- 'NumberOfJoinpoints',

packagedElement <- Sequence {
 thisModule.CreateLiteralInteger(thisModule.numJoinPoints,
 'NumberOfJoinpoints'),

...

The attributes of the target elements will be initialized as defined from line 4. A Model
element has a name and a collection of packaged elements. The name attribute is set to
'NumberOfJoinpoints'. The packagedElement attribute will be set to a sequence containing a
UML2 LiteralInteger element generated by the invoked CreateLiteralInteger lazy rule. This
lazy rule is passed the number of join points and a string (name) as parameters. The number
of join points is, therefore, returned in a UML2 LiteralInteger model element packaged in a
UML2 Model element. The code snippet for the CreateLiteralInteger lazy rule is shown
below. The rule creates a LiteralInteger model element and initializes its name and value
attributes with a string (desired name) and an integer (number of join points found by our
transformation) respectively.

1.
2.
3.
4.
5.
6.

lazy rule CreateLiteralInteger {
 from count : Integer, name :String
 to t: UML2!LiteralInteger (
 name <- name,
 value <- count

...

5.4 Instantiating A generic aspect model

The Instantiate transformation is implemented by the ATL transformation shown in Figure
5.2. This transformation instantiates a generic aspect model and produce a context specific
aspect model. It inputs a primary model, generic aspect model and a mark model, and
outputs a context specific aspect model.

The Instantiate ATL module, whose header is shown below, implements the Instantiate
transformation. The header declares that the module creates a target UML2 model bound to
the CONTEXTSPECIFIC variable.

module Instantiate;
create CONTEXTSPECIFIC : UML2 from PRIMARY : UML2, ASPECT : UML2, BIND : BD;
uses PointcutMatchHelpers;

...

The module has two UML2 source models (bound to variables PRIMARY and ASPECT) and
one source model bound to the variable BIND that conforms to our Binding Directives

www.intechopen.com

Using Model Transformation Language Semantics for Aspects Composition

23

Fig. 5.2. An overview of the Instantiate ATL Transformation.

metamodel (BD); that is, a mark model. The header also declares that the module imports
the PointcutMatchHelpers library.

5.5 Instantiate helpers

Just like the JoinPointsCount, this module also uses some of the helpers defined in the

PointcutMatchHelpers library listed in Appendix B. This transformation also uses helpers

defined within its module. Before we can generate the context specific aspect model, we

have to ensure that we have a join point where we can weave. The pointcutMatched attribute

helper returns true if we have at least one join point. It is used as a guard condition for all

the rules that generate the target model elements as we shall see later. This ensures that no

model element will be generated if there are no join points. The details of this helper are

shown below.

helper def: pointcutMatched : Boolean =
 thisModule.joinPointsFragments()->notEmpty();

The helper returns true if the sequence that contains all the fragments at the beginning of
each join point (returned by joinPointsFragments()) is not empty. Since pointcutMatched is
defined as an attribute helper, it is evaluated once and the result cached. This means that
successive calls to the helper will be faster which improves performance especially in our
case where the helper is called many times by all the rules.

5.5.1 Instantiate rules

Several rules are required to generate a complete context specific aspect model. In fact, we
have a rule for every model element type required for a well formed UML sequence
diagram. These rules include several matched rules and a handful of lazy rules. Just like in
the previous transformation, our target UML model should have a Model container element
that packages all the other modeling elements. The rule that generates the target Model
element is shown below.

www.intechopen.com

Semantics in Action – Applications and Scenarios

24

1.
2.
3.
4.
5.
6.
7.
8.
9.

rule Model {
 from s : UML2!Model (
 s.fromAspectModel() and thisModule.pointcutMatched
)
 to t : UML2!Model (
 name <- s.createAspectName(),
 packagedElement <- s.packagedElement
)
}

The source pattern specifies that the rule matches elements of type UML2 Model. It also has
a condition that the matched element should come from the aspect model (using
fromAspectModel() helper), and also that pointcutMatched must be true, as mentioned earlier.
There is only one Model element from the aspect model. If at least one join point was found,
then only one UML2 Model element will be created on the target model since the target
pattern declares that the rule creates an instance of UML2 Model. Its packaged elements
will be initialized to the list from the matched element as defined on line 7 above. The name
will be initialized with the string returned by the createAspectName() helper on line 6 above.
The UML specification describes that an Interaction can be contained in a Collaboration.
Collaborations are used to show the structure of cooperating elements with a particular
purpose (OMG, 2009). Indeed, the primary and aspect models created using RSA have
interactions contained within collaborations. The Collaborations matched rule has the task of
generating Collaboration objects that enclose the interactions for the advice and pointcut.
Recall that the aspect model consists of the advice and pointcut SDs (interactions). The rule
is described by the code snippet shown below.

1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.

rule Collaborations {
 from s : UML2!Collaboration (
 thisModule.aCollaborations->includes(s) and

thisModule.pointcutMatched
)
 to t : UML2!Collaboration (
 name <- s.name,
 ownedBehavior <- s.ownedBehavior,
 ownedAttribute <- s.ownedAttribute,
 ownedConnector <- s.ownedConnector
)
}

The guard condition for this rule's source pattern ensures that only collaborations from the
aspect model (and not from primary model) are matched. It checks if a collaboration is
included in the collection of collaborations from the aspect model returned by the
aCollaborations attribute helper. The attributes of the generated collaboration, including the
enclosed interactions (ownedBehavior), are initialized from those of the matched collaboration
as shown on lines 7 to 10 above. The aInteractions and pInteractions rules are used to create
Interaction target elements for the advice and pointcut respectively. The rules are almost
identical with slight differences in the source pattern guard. The code below gives details of
the aInteractions rule. The difference between the rules is in line 3. The guard for aInteractions

www.intechopen.com

Using Model Transformation Language Semantics for Aspects Composition

25

rule ensures that the rule matches the interaction from the aspect's advice which has the
name “Advice”.

1.
2.
3.
4.
6.
7.
8.
9.
10.
11.
12.
13.
14.
15.
16.
17.

rule aInteractions {
 from s : UML2!Interaction (
 s.name = 'Advice' and thisModule.pointcutMatched
)
 to t : UML2!Interaction (
 name <- s.name,
 lifeline <- s.lifeline,
 fragment <- s.fragment,
 message <- s.message,
 ownedAttribute <- s.ownedAttribute,
 ownedConnector <- s.ownedConnector,
 generalOrdering <- s.generalOrdering,
 ownedBehavior <- s.ownedBehavior,
 covered <- s.covered
)
}

The guard for the pInteractions rule matches the interaction from the aspect's pointcut which
has the name “Pointcut”. Both rules then initialize the attributes of the generated
interactions using the values from the attributes of the matched source elements as it can be
seen from lines 7 to line 15.

The Lifelines rule generates lifelines for both the advice and pointcut SDs. The rule matches
all lifelines from the advice model as shown on line 3 of rule's code snippet on the next page.
The aLifelines helper returns all lifelines from the generic aspect model (advice and pointcut
SDs). The generated lifeline's attributes are then initialized as shown from lines 6 to 8. This
rule probably best shows how helpers are used to assist rules in creating the target models
other than been used as guard conditions in the source pattern. We can see on line 6 that
binding is achieved by using the bind() helper to initialize the name of the generated lifeline.

1.
2.
3.
4.
5.
6.
7.
8.
9.
10.

rule Lifelines {
 from s : UML2!Lifeline (
 thisModule.aLifelines->includes(s)and thisModule.pointcutMatched

)
 to targetLifeline : UML2!Lifeline (
 name <- s.bind(),
 coveredBy <- thisModule.getMOSByLifeline(s),
 represents <- s.represents
)
}

5.6 Composing aspect models

After obtaining a context specific aspect model from the previous transformation
(Instantiate), the next step is to compose the context specific aspect model with the primary
model. This is achieved by the Compose ATL transformation whose overview is shown in

www.intechopen.com

Semantics in Action – Applications and Scenarios

26

Figure 3.5. The transformation inputs the primary and context specific source models, and
produces a composed target model. Both the source models and the output model conform
to the UML2 metamodel. This transformation is implemented by the Compose ATL module.
The code snippet below shows a description of the module's header.

module Compose;
create COMPOSED : UML2 from PRIMARY : UML2, ASPECT : UML2;
uses PointcutMatchHelpers;

...

As expected, the header declares that the module creates a UML2 Model bound to the
variable COMPOSED from two UML2 source models bound to the variables PRIMARY and
ASPECT for the primary and aspect models respectively. The module also uses some
helpers from the PointcutMatchHelpers library.

5.6.1 Compose helpers

Our Compose transformation has a number of helpers. All the helpers have a necessary role
to play but some roles are, certainly, more important than others. For example, the
getTargetFragments attribute helper has the privilege of returning the composed sequence of
fragments, that is, sequence {sub_before, A, sub_after} from algorithm-3. The code definition of
this helper is shown below. The helper begins by ensuring that there is, at least, one join
point by calling the pointcutMatched helper on line 2, which we have described earlier. If
there exists a join point, getTargetFragments then obtains a sequence of fragments before the
join point by invoking the lowerFragSub helper on line 4, a sequence of fragments from the
advice (by invoking getAspectFragments) on line 5, and a sequence fragments after the join
point on line 6. It returns a flattened sequence consisting of those sequences. The fragments
returned by getTargetFragments are used to initialize the fragment attribute of the interaction
generated by our transformation.

1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.

helper def : getTargetFragments : Sequence(UML2!InteractionFragment) =
 if thisModule.pointcutMatched then
 Sequence {
 thisModule.lowerFragSub(thisModule.firstJPIndex),
 thisModule.getAspectFragments('Advice'),

 thisModule.upperFragSub(thisModule.firstJPIndex +
 thisModule.numPCTFs-1)

 }->flatten()->asSequence()
else

 Sequence{}
 endif;

The getTargetFragments helper also serves as the base of our composition process. Almost all
the other elements to be used in generating the target model are rooted from this helper. The
targetCFs helper, which returns all combined fragments to be used for generating combined
fragments in the target model, iterates through fragments returned by getTargetFragments
returning all instances of CombinedFragment. The targetOperands helper, in return, iterates
through the sequence of combined fragments returned by targetCFs to obtain all instances of
InteractionOperand.

www.intechopen.com

Using Model Transformation Language Semantics for Aspects Composition

27

5.6.2 Compose rules

Several rules are defined for creating the composed target model. Rules in the Compose
transformation probably use more helpers compared to the two previous transformations,
mainly because in this transformation more elements are removed or added. This requires
modifications to many associations between model elements. The code below is that for the
Model matched rule which is used to create the UML2 Model element.

1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.

rule Model {
 from s : UML2!Model (
 s.fromPrimaryModel() and thisModule.pointcutMatched
)
 to t : UML2!Model (

 name <- thisModule.getModelName(s.name, thisModule.aModel),
 packagedElement <- Sequence {
 thisModule.targetClasses,
 thisModule.pCollaborations,
 thisModule.getTargetEvents()

...

The rule matches elements of type UML2 Model from the primary model, and provided the

pointcut matches as defined by the source pattern on lines 2 and 3. The rule creates instances

of Model as declared on line 5. Since the primary model consists of one instance of the Model

class, this rule will generate only one instance. It then initializes the created instance with

the use of several helpers as defined on lines 6 to 11. The getModelName helper generates a

string used to initialize the name attribute. The packageElement list attribute is initialized to a

sequence of classes returned by targetClasses, a collaboration from the primary returned by

pCollaborations, and a sequence of events returned by the getTargetEvents() operation helper.

These three helpers are defined in the context of the module; hence, the use of the keyword

thisModule.

1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.

rule Messages{
 from s : UML2!Message (

thisModule.targetMessages->includes(s) and
thisModule.pointcutMatched

)
 to t : UML2!Message (

name <- s.name,
sendEvent <- s.sendEvent,
receiveEvent <- s.receiveEvent,
messageSort <- s.messageSort,
argument <- s.argument->collect (e |

 if e.oclIsTypeOf(UML2!LiteralString) then
 thisModule.CreateLS(e)
 else

 if e.oclIsTypeOf(UML2!LiteralInteger) then
 thisModule.CreateLI(e)
 else

 OclUndefined
 endif
...

www.intechopen.com

Semantics in Action – Applications and Scenarios

28

The Messages rule shown below is used to generate messages for the target model. This rule
is more interesting since it calls a few lazy rules to help initialize some of the attributes of
the target messages to be created. The rule matches all messages included in targetMessages
and creates messages for the target model. The generated message is initialized as defined
from line 7. On line 12, the argument attribute is initialized by calling a suitable lazy rule. We
are only interested in primitive type message arguments (integers and strings); therefore, we
have two lazy rules for creating an instance of LiteralInteger or LiteralString depending on the
argument type for the matched message.

The rule uses ATL's built-in oclIsTypeOf(t: oclType) operation to check the type of the
argument for the matched message. If it is a LiteralString then the CreateLS lazy rule is called
but if it is a LiteralInteger the CreateLI lazy rule is called instead. If the argument is neither an
integer nor a string, the message's argument attribute is initialized to OclUndefined, ATL's
equivalent of null. All the rules that are used by the Compose transformation to generate the
composed model are listed in Appendix C.

6. Case studies - phone call features as aspects

This case study of a cell phone application was adapted from Whittle and Jayaraman in

(Whittle et al., 2007). The application has three use cases but we are only interested in two;

namely, Receive a Call and Notify Call Waiting (Whittle et al., 2007]. The Receive a Call use case

is considered to be the base model and the Notify Call Waiting is considered the aspect.

Figure 6.1 shows a dynamic view of the Receive a Call use case modeled as a sequence

diagram. This will be our primary model. When the user's phone receives a call

(incomingCall message), it alerts the user by displaying the appropriate information about

the caller on the phone's display (Whittle et al., 2007) by sending a displayCallInfo message to

the display. The phone also sends a ring message to the ringer. The user then has several

options captured by an alt combined fragment. The user can accept the call by sending a

pickUp message to the phone and later end the call by sending a hangUp message.

Alternatively, if the user chooses not to accept the call, the user can send a disconnect

message to the phone. If the user elects to ignore the call, the phone will ring for a specified

amount of time and then time out ending the scenario. As mentioned, the Notify Call Waiting

scenario or feature is considered an aspect. The approach (graph transformations) taken by

Whittle and Jayaraman (Whittle & Jayaraman, 2006) does not have the notion of generic or

context specific models like our approach. Therefore, Figure 6.2 shows our representation of

the behavioral model of the Notify Call Waiting scenario as a generic aspect model.

The pointcut is defined as a sequence of parameterized |accept and |end messages from the

receiver lifeline to the phone lifeline. This will match a sequence of two messages that will

be bound to |accept and |end from the lifeline bound to |receiver. The advice shown in

Figure 5.2b is slightly more complex. It introduces messages that if bound properly, will

place the current call on hold (Whittle et al., 2007). The behavior defined by the advice is

only applicable when the user is currently on call; therefore, we must ensure that the advice

is weaved between the pickUp and hangUp messages on the primary model (Whittle et al.,

2007). To achieve this, we will bind |accept and |end to pickUp and hangUp respectively, as

shown on lines 9 and 10 of the mark model below. The |receiver parameter is bound to user

so the pointcut matches pickUp and hangUp from the user to the phone.

www.intechopen.com

Using Model Transformation Language Semantics for Aspects Composition

29

Fig. 6.1. Receive a Call Primary Model Adapted from (Whittle et al., 2007).

1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
15.

<?xml version="1.0" encoding="ISO-8859-1"?>
<xmi:XMI xmi:version="2.0" xmlns:xmi="http://www.omg.org/XMI"
xmlns="BindingDirectives">
 <BindingDirective parameter="|receiver" binding="user"/>
 <BindingDirective parameter="|sender" binding="caller"/>
 <BindingDirective parameter="|anotherRequest" binding="incomingCall"/>
 <BindingDirective parameter="|notify" binding="displayCallInfo"/>
 <BindingDirective parameter="|acknowledge" binding="ok"/>
 <BindingDirective parameter="|accept" binding="pickUp"/>
 <BindingDirective parameter="|end" binding="hangUp"/>
 <BindingDirective parameter="|suspend" binding="putOnHold"/>
 <BindingDirective parameter="|Client" binding="User"/>
 <BindingDirective parameter="|notifier" binding="display"/>
 <BindingDirective parameter="|Transducer" binding="Display"/>
</xmi:XMI>

www.intechopen.com

Semantics in Action – Applications and Scenarios

30

 (a) Pointcut (b) Advice

Fig. 6.2. Notify Call Waiting Generic Aspect Model.

The rest of the parameters are bound as defined by the mark model. Recall that by binding
these parameters from the generic aspect model, we are actually instantiating it to produce a
context specific aspect model. This is done by the Instantiate ATL transformation as
discussed in earlier sections. However, before going into the trouble of instantiating a
context specific aspect (and composing it with the primary model), we must first determine
if the pointcut matches, and if so, how much join points were found. Getting the number of
join points is performed by the JoinPointsCount transformation which takes the generic
aspect, the primary and mark models as input, and produces a target model that contains
the number of join points. Executing this transformation produces the model shown in
Figure 6.3 (when viewed on Eclipse's uml editor). The model contains a LiteralInteger object
with the name NumberOfJoinpoints and which has a value of one, that is, our primary model
has one join point.

Fig. 6.3. JoinPointsCount Output Model.

www.intechopen.com

Using Model Transformation Language Semantics for Aspects Composition

31

With only one join point, our composition algorithm only has to loop once; hence, no loop
unrolling is required. The next step is to validate our models using both RSA and our
custom validator package. Running the ValidateComposedModel class from our custom
package to validate the composed model (CM) produces the output shown below.

Reading model CM from disk ...Validating CM
Model container is valid
All Classes are valid :)
All Class Operations are valid :)
All Message events are valid :)
Collaboration model element ReceiveCall is valid :)
All Owned attributes in ReceiveCall are valid :)
Interaction model element ReceiveCall is valid :)
All Message Occurrence Specifications in ReceiveCall are valid :)
All Messages in ReceiveCall are valid :)
All lifelines in ReceiveCall are valid :)
Our model and all its model elements meet our validation requirements

 (a) Pointcut (b) Advice

Fig. 6.4. Context Specific Aspect Model.

www.intechopen.com

Semantics in Action – Applications and Scenarios

32

Fig. 6.5. Composed Model.

Running the ValidateComposedModel to validate the context specific aspect model (CSAM)

also shows that the model is valid. Both models are valid according to the checklist defined

in our validator package. Both models are then imported into RSA for validation and visual

inspection.

Figure 6.4 and 6.5 show the context specific aspect and composed model SDs created on
RSA after importing the models. The pointcut was properly bound. We can see in Figure
6.4a that |accept and |end are bound to pickUp and hangUp while |receiver and |Client
have been bound to user and User respectively. Figure 6.4b shows that the advice has also
been bound as specified by the mark model. Figure 6.5 shows a sequence diagram for our

www.intechopen.com

Using Model Transformation Language Semantics for Aspects Composition

33

composed model. We can see that the advice has been properly weaved into the alt
combined fragment's first operand. This way, if the user chooses to accept a call and another
incomingCall message is received by the phone the phone's display will show the new caller's
information. The user can then send an ok message to phone to put the caller on hold.

7. Conclusion

The main objective of this work is to compose aspect models represented as UML sequence

diagrams (SDs) using the Atlas Transformation Language (ATL). Toward this end, we

proposed a formal definition of SDs in terms of an ordered list of interaction fragments, and

in the process defined three algorithms for pointcut detection, advice composition and

complete composition. We designed and implemented the Complete Composition

algorithm to achieve composition of the primary model and generic aspect models. We

consider aspect composition as a form of model transformation; therefore, the algorithm is

implemented using model transformations written in the ATL model transformation

language. We also designed a simple metamodel in Ecore for mark models used to define

binding rules which are used to instantiate generic aspect models. We finally designed and

implemented a custom Java package to help validate the composed model. The Java classes

check the composed model elements against a list of defined constraints designed to ensure

that essential model elements are present in the composed model and are properly

initialized.

The Complete Composition Algorithm proposed and implemented composes behavioral

views of both primary and aspect models represented as UML sequence diagrams. The

primary model defines the core system behavior without cross-cutting concerns while the

aspect models represent behavior that cross-cuts the primary model. The models are

described in UML Sequence diagrams created using an eclipse-based modeling tool (RSA)

and then exported to a UML2.1 file for composition and validation.

Using ATL, a mature model transformation language, the Complete Composition Algorithm

is implemented using three transformation models; namely JoinPointsCount, Instantiate,

and Compose. The JoinPointsCount transformation determines the number of join points in

the primary model given the pointcut from the aspect model. The aspect models are made

generic so that they can be more reusable; therefore, they must first be instantiated before

they can be composed with the primary model. The Instantiate transformation is used to

instantiate generic aspect models in the context of the application using a set of binding

rules defined in mark models to produce context specific aspect models. The Compose

transformation then takes the primary model and context specific aspect model as inputs,

and produces a composed model. This process is repeated as many times as there are join

points and aspect models until a complete integrated system is obtained.

To test our design and implementation, several test cases and case studies were successfully

conducted. Validation was achieved by using custom Java classes to check the model against

a set of defined constraints. The composed model was also validated using RSA's built-in

validation feature. To verify composition, a sequence diagram was generated from the

model's UML2.1 file using RSA. The generated sequence diagram was then visually

inspected to see if the composition was performed properly.

www.intechopen.com

Semantics in Action – Applications and Scenarios

34

Using ATL for composing models does have its challenges. The inability to navigate target
models or modify input models makes intricate weaving of aspects a hard problem.
However, the benefits of using a versatile language that allows for powerful expressions
may outweigh the challenges.

7.1 Limitations and future work

This work is part of an ambitious quest for a complete AOM composition framework and a
set of tools that can allow software architects and developers to easily apply AO techniques
to model driven software development. There are several limitations that must be
addressed, and new features to be added before our composition approach can be more
useful. These include:

 Improved string pattern definition and matching for template parameters.

 Non primitive message and operation argument types.

 Support for Interaction Occurrences.

 Support for BehaviorExecutionSpecifications (BESs), ExecutionOccurrenceSpecifications
(EOSs) and other model elements.

 Structural view composition.

 Invoking ATL from Java.

 An eclipse plug-in to help in the creation of the mark model.

Our approach currently supports the use of the wildcard “*” for defining template

parameters. This gives some flexibility when defining generic aspect models. However, to

allow for powerful expressions, we need to use regular expressions. Currently ATL (version

2.0.x) does not support the use of regular expressions for comparing or matching strings.

ATL only uses regular expressions for replacing and splitting strings. Future research may

include development of a custom string ATL library that will provide helpers that

implement regular expression matching operations.

Furthermore, we have assumed that messages in the primary and aspect models have

simple arguments that are either strings or integers. However, messages can have

arguments that are instances of classes defined in the structural view of the system.

Therefore, the current use of lazy rules to create message arguments (and class operation

parameters) may not be ideal. Future work would look at a more efficient and elegant way

of creating message arguments in the target model. Interaction Occurrences provide a way

to reuse and manage complex SDs. They are a notation for copying one SD (basic) into

another one, which may be larger (Pilone et al., 2005). Our current composition approach

has no support processing interaction occurrences; therefore, future research would look

into including interaction occurrences in pointcut detection and composition. This will

provide challenges because the use of interaction occurrences means that the primary model

SD or the aspect model SDs may contain more than one instance of Interaction depending on

the number of interaction occurrences.

Recall that BESs and EOSs were ignored in our composition approach. Future work could

look into how these model elements can be processed with other interaction fragments. We

would also add support for other model elements that are not currently supported; like,

connectors, signals (and related events), gates, etc.

www.intechopen.com

Using Model Transformation Language Semantics for Aspects Composition

35

Future research would also include composition of other behavioral views (Statechart and
Activity diagrams) and structural views (class diagrams) of the primary model and aspect
models. Our current approach does achieve some composition of structural model elements
from the primary and aspect models but does ignores associations between the structural
elements.

8. Acknowledgement

This research work was partly sponsored by NSERC (Natural Sciences and Engineering
Research Council) of Canada through grant number EGP 401451-10.

9. Appendix A - JointPointsCount helpers

Helper Name Return type Purpose

aMessages Sequence Returns all messages from the aspect model.

aOperations Sequence Returns all class operations from the aspect model.

aLifelines Sequence Returns all lifelines from the aspect model.

aSendEvents Sequence Returns all SOEs from the aspect model.

aRecvEvents Sequence Returns all ROEs from the aspect model.

aProperties Sequence Returns all lifeline properties the aspect model.

allBindings Sequence Returns all binding rules from the mark model.

10. Appendix B - PointcutMatchHelpers library

Helper name

Return type Purpose

adviceMOSEncoding() String A tagging string for advice MOSs
getAspectFragments(sd) Sequence Returns MOSs and CFs from a

given SD from the aspect model.
getPrimaryFragments() Sequence Returns MOSs and CFs from a

given SD from the primary model.
getFragments() Sequence Returns MOSs and CFs within the

context CF.
getFragments() Sequence Returns MOSs and CFs within the

context Interaction Operand.
sameEventType(e1, e2) Boolean Returns true if the given

MessageEvents are both ROE or
SOE

PairwiseMatchFragments
(src, tgt)

Boolean Checks if the fragments at the same
index from src and tgt sequences
are "equal".

www.intechopen.com

Semantics in Action – Applications and Scenarios

36

getBinding(name) String Retrieves the binding value from
the mark model for the given
template parameter.

bindingDefined(String) Boolean Returns true if a binding value
exists for the given parameter.

samePropertyType(pct ,
core)

Boolean Returns true if the given Properties
have the same type (class).

equals(mos) Context = MOS Boolean Checks if the context and supplied
MOSs are equivalent.

invalidMOSName() Boolean Returns true if the context MOS
has been tagged meaning it was
added from a previous
composition iteration

getLifelineMOS() Sequence Returns MOSs that cover the
context lifeline.

getAspectSD (name) Interaction Returns an SD (Advice or Pointcut)
from the Aspect Model.

getMessageLifelines (m) Sequence Returns the sender and receiver
lifelines for the given message.

getSDLifelines (sd) Sequence Returns all lifelines in a given SD.
getSDMessages (sd) Sequence Returns all messages in a given SD.
createMOSName (code, idx) String Generates a name for the context

MOS given our tagging string and
MOS index in the sequence of
MOS.

fromAspectModel() Context
= Model

Boolean Returns true if the context model is
from the aspect model.

fromAspectModel() Context
= Interaction

Boolean Returns true if the context
Interaction is from the aspect
model.

fromPrimaryModel() Context
= Model

Boolean Returns true if the context model is
from the primary model.

fromPrimaryModel()
Context = Message

Boolean Returns true if the context message
is from the primary model.

notInPrimaryModel()
Context = Class

Boolean Returns true if the context class is
from the primary model.

notInPrimaryModel()
Context = MessageEvent

Boolean Returns true if the context
MessageEvent is from the primary
model.

notInPrimaryModel()
Context = Operation

Boolean Returns true if the context
operation is from the primary
model.

equals(c) Context = Class Boolean Returns true the context class is the
same as the supplied class; that is,
if they have the same name.

classMatch (c1 , c2) Returns true if the two classes are
equal.

www.intechopen.com

Using Model Transformation Language Semantics for Aspects Composition

37

equals(o) Context =
Operation

Boolean Returns true if the context
operation is the same as the
supplied operation.

equals(e) Context =
MessageEvent

Boolean Returns true if self is the same as
the supplied event; that is, they are
of the same type and have the
same operation.

equals(f) Context =
CombinedFragment

Boolean Returns true if the context CF is the
same as the given interaction
fragment which also has to be CF.

equals(f) Context =
InteractionOperand

Boolean Returns true if the context
interaction operand is equal to the
given interaction fragment .

getMOSs() Context =
InteractionOperand

Sequence Returns all MOSs enclosed by the
context interaction operand.

getMOSs() Context =
CombinedFragment

Sequence Returns all MOSs enclosed by the
context CF.

PairwiseMatchOperands
(src,tgt)

Boolean Returns true if the given sequences
of operands have matching pair of
operands, that is, the operands at
the same index are equal.

PairwiseMatchMOSs (src,
tgt)

Boolean Checks if the elements at the same
index from the src and tgt sequence
are equal.

joinPointsFragments() Sequence Returns fragments at the start of
the join points.

getMaxInt() ValueSpecificationAction Returns the maxInt value of the
given Interaction constraint.

getMinInt() ValueSpecificationAction Returns the minInt value of the
given Interaction constraint.

11. Appendix C – Compose rules

Rule Purpose

Model Generates a Model element that contains all the other target model
elements.

Collaborations Creates a Collaboration that contains the composed model
interaction.

Interactions Generates the Interaction that owns fragments, lifelines, messages,
etc.

CombinedFragments Generates all CombinedFragments including nested ones.

InteractionOperands Generates all InteractionOperands.

www.intechopen.com

Semantics in Action – Applications and Scenarios

38

InteractionConstraints Creates all the constraints.

OpaqueExpressions Generates OpaqueExpressions for InteractionConstraints.

Lifelines Generates all lifelines.

Messages Produces messages for the target model.

MOSs Creates all MessageOccurrenceSpecifications (MOSs).

ROEs Generates ReceiveOperationEvents for receiveEvent MOSs.

SOEs Produces SendOperationEvents for sendEvent MOSs.

Operations Generates operations for classes.

Classes Generates classes.

Properties Generates all Properties for lifelines.

lazy rule CreateLUN Creates LiteralUnlimitedNaturals that are used for guard conditions.

lazy rule CreateLS Creates strings that are used for guard conditions and arguments for
messages.

lazy rule CreateLI Creates integers that are used for guard conditions and arguments
for messages.

lazy rule CreateParam Creates parameters for operations in the target model.

12. References

http://wiki.eclipse.org/ATL/User_Guide, last accessed on September 22, 2009.
Samuel A. Ajila, Dorina Petriu, and Pantanowitz Motshegwa, Using Model Transformation

Semantics for Aspects Composition, 2010 IEEE 4th International Conference on
Semantic Computing (IEEE-ICSC 2010), pp 325-332, Carnegie Mellon University,
Pittsburgh, PA, USA, September 22 - 24, 2010

ATLAS group LINA & INRIA Nantes, “ATL User Manual version 0.7,” Online resource
available at:

 http://www.eclipse.org/m2m/atl/doc/ATL_User_Manual[v0.7].pdf, last
accessed on September 22, 2009.

O. Barais, J. Klein, B. Baudry, A. Jackson, and S. Clarke, “Composing Multi-View Aspect
Models,” In Proceedings of the Seventh International Conference on Composition-
Based Software Systems, pages 43-52, 2008.

A. Colyer, A. Clement, G. Harley, M. Webster, “Eclipse AspectJ. Aspect-Oriented
Programming with AspectJ and the Eclipse AspectJ Development Tools,”Addison
Wesley Professional, December 14, 2004, ISBN : 0-321-24587-3

www.intechopen.com

Using Model Transformation Language Semantics for Aspects Composition

39

M. Didonet Del Fabro, J. Bézivin, and P. Valduriez, “Weaving Models with the Eclipse
AMW plug-in,” In: Eclipse Modeling Symposium, Eclipse Summit Europe 2006,
Esslingen, Germany, 2006.

F. Fleurey, B. Baudry, R. France, and S. Ghosh, “A Generic Approach for Automatic Model
Composition,” Lecture Notes In Computer Science archive Models in Software
Engineering: Workshops and Symposia at MoDELS 2007, Nashville, TN, USA,
September 30 - October 5, 2007,pages 7–15, 2008, Springer-Verlag Berlin,
Heidelberg.

R. France, I. Ray, G. Georg and S. Ghosh, “Aspect-Oriented Approach to Design Modeling,”
IEEE Proceedings – Software, Special Issue on Early Aspects: Aspect –Oriented
Requirements Engineering and Architecture Design, 151(4):173-185, August 2004.

H. Gong, “Composition of Aspects Represented as UML Activity Diagrams.”, Master's
thesis, Carleton University, 2008.

I. Groher, and M. Voelter. “XWeave: models and aspects in concert,” In Proceedings of the
10th international workshop on Aspect-oriented modeling, March 2007.

K. Hamilton, and R. Miles, “Learning UML 2.0”, O'Reilly, April 2006, ISBN-10: 0-596-00982-8
.

J. Happe, S. Becker, C. Rathfelder, H. Friedrich, and R. H. Reussner, “Parametric
Performance Completions for Model-Driven Performance Prediction,” Journal of
Systems and Software, Volume 82 Issue 1, January 2009, Elsevier Science Inc.

I. Jacobson, and P. Ng, “Aspect-oriented software development with use case,” Addison-
Wesley Professional, December 30, 2004, ISBN-10: 0321268881.

C. Jeanneret, R. France, and B. Baudry, “A reference process for model composition,” In
Proceedings of the 2008 AOSD workshop on Aspect-oriented modeling, April 2008.

J.M. Jézéquel, “Model Transformation Techniques Model Techniques,” Online resource
available at: http://modelware.inria.fr/static_pages/slides/ModelTransfo.pdf, last
accessed in August 30, 2009

F. Jouault, and I. Kurtev, “Transforming Models with ATL,” In proceedings of the Model
Transformation in Practice Workshop, October 3rd 2005.

J. Kienzle, W. A. Abed, and J. Klein, “Aspect-oriented multi-view modeling,” In Proceedings
of the 8th ACM international conference on Aspect-oriented software development,
March 2009.

J. Klein, L. Hélouët, and J.M. Jézéquel, “Semantic-based Weaving of Scenarios,” AOSD 06,
March 20-24, Bonn, Germany, 2006

J. Klein, F. Fleurey, and J.M. Jézéquel, “Weaving Multiple Aspects in Sequence Diagrams,”
Transactions on AOSD III, LNCS 4620, pp. 167–199, 2007

Kompose website, http://www.kermeta.org/kompose/ last accessed on September 23,
2009.

M. Milanovic, “Complete ATL Bundle for launching ATL transformations
programmatically.” Online resource available at:

 http://milan.milanovic.org/download/atl.zip, last accessed on September 10,
2009.

B. Morin, J. Klein, O. Barais, and J.M. Jézéquel, “A generic weaver for supporting product
lines,” In proceedings of the 13th international workshop on Software architectures
and mobility, Leipzig, Germany, May 2008.

www.intechopen.com

Semantics in Action – Applications and Scenarios

40

Object Management Group, “UML Superstructure Specification, v2.1.1,” Online resource
available at: http://www.omg.org/docs/formal/07-02-05.pdf, last accessed last
accessed on July 20, 2009.

Object Management Group, “UML Superstructure Specification, v2.2,” Online resource
available at: http://www.omg.org/docs/formal/09-02-02.pdf, last accessed on
August 22, 2009.

OpenArchitectureware website, http://www.openarchitectureware.org/ last accessed on
September 23, 2009.

D.C. Petriu, H. Shen, and A. Sabetta, "Performance Analysis of Aspect- Oriented UML
Models", Software and Systems Modeling (SoSyM), Vol. 6, No. 4., pages. 453-471,
2007, Springer Berlin / Heidelberg

D. Pilone, and N. Pitman, “UML 2.0 in a Nutshell”, O'Reilly, (June 2005) ISBN: 0-596-00795-
7

G. Straw, G. Georg, E. Song, S. Ghosh, R. France, and J. M. Bieman, “Model Composition
Directives,” LNCS 3273, pages 84-97, 2004, Springer Berlin / Heidelberg

J. Whittle, J. Araújo, and A. Moreira, “Composing aspect models with graph
transformations,” In Proceedings of the 2006 international workshop on Early
aspects at ICSE, pages 59-65, Shanghai, China, 2006

J. Whittle, and P. Jayaraman, “MATA: A Tool for Aspect-Oriented Modeling Based on
Graph Transformation,” At MoDELS’07: 11th International Workshop on Aspect-
Oriented Modeling, Nashville TN USA, Oct 2007.

M. Woodside, D.C. Petriu, D.B. Petriu, J. Xu, T. Israr, G. Georg, R. France, J.M. Bieman, S.H.
Houmb, and J. Jürjens, “Performance analysis of security aspects by weaving
scenarios extracted from UML models,” Journal of Systems and Software, Volume
82 , Issue 1 (January 2009), pp 56-74, 2009

www.intechopen.com

Semantics in Action - Applications and Scenarios

Edited by Dr. Muhammad Tanvir Afzal

ISBN 978-953-51-0536-7

Hard cover, 266 pages

Publisher InTech

Published online 25, April, 2012

Published in print edition April, 2012

InTech Europe

University Campus STeP Ri

Slavka Krautzeka 83/A

51000 Rijeka, Croatia

Phone: +385 (51) 770 447

Fax: +385 (51) 686 166

www.intechopen.com

InTech China

Unit 405, Office Block, Hotel Equatorial Shanghai

No.65, Yan An Road (West), Shanghai, 200040, China

Phone: +86-21-62489820

Fax: +86-21-62489821

The current book is a combination of number of great ideas, applications, case studies, and practical systems

in the domain of Semantics. The book has been divided into two volumes. The current one is the second

volume which highlights the state-of-the-art application areas in the domain of Semantics. This volume has

been divided into four sections and ten chapters. The sections include: 1) Software Engineering, 2)

Applications: Semantic Cache, E-Health, Sport Video Browsing, and Power Grids, 3) Visualization, and 4)

Natural Language Disambiguation. Authors across the World have contributed to debate on state-of-the-art

systems, theories, models, applications areas, case studies in the domain of Semantics. Furthermore, authors

have proposed new approaches to solve real life problems ranging from e-Health to power grids, video

browsing to program semantics, semantic cache systems to natural language disambiguation, and public

debate to software engineering.

How to reference

In order to correctly reference this scholarly work, feel free to copy and paste the following:

Samuel A. Ajila, Dorina Petriu and Pantanowitz Motshegwa (2012). Using Model Transformation Language

Semantics for Aspects Composition, Semantics in Action - Applications and Scenarios, Dr. Muhammad Tanvir

Afzal (Ed.), ISBN: 978-953-51-0536-7, InTech, Available from: http://www.intechopen.com/books/semantics-in-

action-applications-and-scenarios/using-model-transformation-language-semantics-for-aspect-composition

© 2012 The Author(s). Licensee IntechOpen. This is an open access article

distributed under the terms of the Creative Commons Attribution 3.0

License, which permits unrestricted use, distribution, and reproduction in

any medium, provided the original work is properly cited.

