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1. Introduction 

Despite its static appearance, bone is a very dynamic living tissue that undergoes constant 
remodelling throughout life. After blood, bone is the second most commonly transplanted 
tissue in human medicine, and thus a thorough characterization of this material is of crucial 
importance. For instance, although it has been accepted that the whole bone strength is 
related to the bone mineral density (BMD), changes in this parameter often do not correlate 
with the probability of fracture. To improve the mechanical performance of bone, other 
material properties related to bone quality, and not only quantity, have to be investigated. 

FTIR spectroscopy constitutes an excellent tool to characterize the bone matrix because its 
main components (carbonated hydroxyapatite and collagen) absorb infrared radiation at 
distinct, almost complementary, regions within the 500-4000 cm-1 range. This not only 
enables the study of the main contributions of each component separately, but also allows a 
further investigation of relevant parameters that mostly affect the structural and mechanical 
properties of bone, as well as its active metabolism. Furthermore, FTIR analysis, particularly 
when combined with microscopic technologies, enables the measurement of spatial 
variations in bone composition, allowing their correlation with micro-to-macro morpho-
structural properties. In clinical studies, this allows the comparison between sound and 
diseased bone, and the analysis of therapeutic effects of drugs, among many other examples. 
On the other hand, FTIR spectroscopy is also commonly used to characterize bone grafts. 
Moreover, evidence that optimizing the osteointegration requires a fundamental knowledge 
of the material properties both of the bone graft and of the host bone tissue, has driven to 
extensive research on this subject, often supported by FTIR spectroscopy. 

2. Bone composition and structure 

Besides providing mechanical support, bone also plays diverse important metabolic functions. 
Even though bones possess various sizes and shapes, they share general chemical and 
structural features that, despite a static appearance on adult vertebrates, vary with and within 
species (Gamsjaeger et al., 2010; Mkukuma et al., 2004). In fact, among similar individuals, 
bone properties change with age, nutrition, hormonal equilibrium and health condition, in 
addition to other factors such as biomechanical environment (Aerssens et al., 1997; Fratzl et al., 
2004). These variations are relatively restricted due to the constant remodelling processes that 
re-establish equilibrium. The bone turnover or remodelling, that consists on the resorption, 
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followed by the replacement of bone with little change in shape, acts as a dynamic response to 
multiple local and systemic factors (Robling et al., 2006). The bone metabolic functions are 
regulated by the combined action of two principal cell lineages: the bone forming cells (mainly 
osteoblasts and osteocytes) and bone resorption cells (osteoclats). Diverse enzymes and many 
other molecules, such as the important bone morphogenetic proteins (BMPs), participate in 
those dynamic cellular processes (Katz et al., 2009; Urist, 1965). 

The composition of the extracellular matrix of bone, often described as a two-phase 
composite, consists of about 65 wt. % mineral component (carbonated hydroxyapatite) and 
25 wt. % organic component (mainly type I collagen), being the remaining 10 wt. % water 
(Judas et al., 2005). These components have extremely different mechanical properties: the 
mineral is stiff and brittle while the (wet) protein is much more elastic and also much 
tougher than the mineral. Bone combines both the stiffness and the toughness in an unusual 
arrangement of material properties that result on a remarkable tensile strength and 
resistance against fracture (Fratzl et al., 2004; Rho et al., 1998). 

The bone components are so tightly embedded that require the use of chemical procedures 
to obtain an effective separation of the mineral from the organic phase. The mineral 
component may be obtained using thermal treatment at high temperatures (calcination) to 
eliminate the organic component and conversely, the latter may be isolated using acid 
demineralization processes (Martins et al., 2008).  

Mineral phase 

Bone mineral is a poorly crystalline calcium-deficient apatite, with a Ca:P ratio that differs 
from 1.67, which is the theoretical value for pure hydroxyapatite [Ca10(PO4)6(OH)2]. The 
nonstoichiometric biological apatites contain several ion substitutions. For example, Na+ and 
Mg2+ may substitute Ca2+ ions, HPO42- ions may substitute phosphate ions, and Cl- and F- 
may replace OH-. Additionally, carbonate ions, the most abundant substitutions (3-8 wt. %), 
may occupy either the OH- (type A apatite) or PO43- (type B apatite) positions in the crystal 
lattice. The mineral component of bone is usually closer to B-type apatite (Landi, 2003; 
Murugan et al., 2006). 

The crystalline structure of carbonated hydroxyapatite belongs to the hexagonal system, 
although a portion of the bone mineral remains amorphous. In fact, the apatite crystals 
comprise two different environments: a non-apatitic hydrated domain, containing diverse 
labile and reactive ions, surrounds a relatively inert and more stable apatitic domain (Fig. 1) 
(Farlay et al., 2010). In the interface between these domains, labile anions (PO43-, HPO42- and 
CO32-) and cations (Ca2+, Mg2+) are easily and reversibly exchangeable. During initial crystal 
formation, ionic exchange occurs and ions gradually incorporate into the interior unit cell. 
The maturation of the mineral is associated with reduction of labile non-apatitic 
environments while stable apatitic domains augment. Moreover, as bone mineral becomes 
more mature, it contains less structural defects, both the size and number of crystals increase 
and its composition becomes closer to the stoichiometric hydroxyapatite. For this reason, 
crystal maturity is often associated with crystallinity (that augments with crystal size and 
mineral perfection). 

Organic phase 

The organic matrix of bone consists of collagen and a series of non-collagenous proteins and 
lipids. About 85–90 wt. % of the total bone protein corresponds to Type I collagen fibers. 
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Fig. 1. Evolution of the apatite crystal and of the surrounding hydrated layer. During 
maturation and growth of the mineral, the apatitic domain of the crystal increases whereas 
the hydrated layer decreases, due to continuous ionic exchange between these domains and 
the solution bath. Soluble charged groups of proteins (Pr) can also participate in the ionic 
equilibrium of the non-apatitic domain (adapted from Farlay et al., 2010). 

This principal component of the organic matrix of bone is a large fibrous protein with a 
highly repetitive amino acid sequence [Gly (glycine)–X–Y]n (often X is proline and Y is 
hydroxyproline). Other amino acids may also be found, such as alanine, lysine and 
hydroxylysine. These monomers are bound together by peptide bonds (between the 
carboxyl and amino groups of adjacent amino acids) constituting three polypeptide chains 

(two 1 and one 2 chains) that fold into a unique structure (Fig. 2). This consists of a single 
uninterrupted triple helix which represents more than 95% of the molecule (tropocollagen) 
and two non-helical domains (the telopeptides) containing the – COOH and – NH2 terminals 
of the protein. 

The integrity of the collagen molecule is attributed to the formation of intra- and inter-
molecular cross-linking which contribute to the mechanical strength of the bone organic 
matrix (Eyre & Wu, 2005; Ottani et al., 2001; Saito & Marumo, 2009). Inter-molecular 
collagen cross-links can be divided into two types: lysine hydroxylase/lysyl oxidase-
controlled cross-links (enzymatic cross-links) and glycation/oxidation-induced cross-links. 
In both cases, cross-linking sites are at specific Lys (lysine) or Hyl (hydroxylysine) residues 
of the collagen molecule. Concerning the first type, the enzymatic activity leads to the 
formation of Lys and Hyl aldehyde-derived covalent cross-links, in which a molecular 
fragment binds a telopeptide and a triple helix of adjacent molecules (divalent cross-link). 
As a consequence of chemical reactions and rearrangements, divalent cross-links may be 
converted into trivalent cross-links, in which a helix is bound to two telopeptides. As  
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Fig. 2. Structure of the collagen molecule: three intertwined polypeptide chains (two 1 and 

one 2) constitute a major triple helical domain (tropocollagen) and two non-triple helical 
domains (telopeptides) at the –COOH and –NH2 terminals of the protein. The typical 
staggered arrangement found in the collagen fibrils is displayed both in 2D and 3D 
configurations. The gap regions between the molecules are nucleation sites for hydroxyapatite. 

suggested by the sequence of the mechanism of formation, divalent cross-links are classified 
as immature, whereas trivalent are considered as mature. These cross-links are also 
commonly named after their reactivity with sodium borohydride: typically, divalent cross-
links are reducible fragments whereas trivalent are non-reducible. As for the second type, 
glycation cross-links, these are formed between collagen helices (telopeptides are not 
involved), being frequently associated with the ageing process that is generally deleterious 
to the function of the bone tissue. In fact, the extent and type of collagen cross-linking are 
known to change throughout life, leading to less flexible and less elastic properties. Besides 
the usual bone mass loss associated with age, the accumulation of glycation cross-links and 
of mature enzymatic cross-links in collagen is also thought to contribute to the fragility and 
brittleness of bone (Saito & Marumo, 2009; Viguet-Carrin et al., 2010). 

Bone matrix structure 

The structure of the mature bone matrix (Fig. 3) is highly organized on several hierarquical 
levels, starting with nanoscopic crystals of hydroxyapatite that are oriented and aligned 
within collagen fibrils (Fratzl et al., 2004; Olszta et al., 2007; Rho et al., 1998; Tzaphlidou, 
2005; Viguet-Carrin et al., 2005). These result from the self-assembly of collagen molecules 
and mineral deposition, mainly in the regularly spaced gap regions of the organic structure  
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Fig. 3. Hierarquical structure of the bone matrix (from Rho et al., 1998). 

(Fig. 2) (Nudelman et al., 2010). The association of the mineralized fibrils constitutes larger 
fibers which are layered in parallel arrangement forming lamellae with an alternate oriented 
“plywood” appearance (Goldman et al., 2005). Lamellar bone may be disposed 
concentrically around blood vessels, like rings of a tree, to form osteons (Havers Systems). 
This organization, from a nano to a macroscopic level, leads essentially to two distinct 
morphologies: compact bone, composed of densely packed osteons (Silva et al., 2005), and 
cancellous bone, wherein lamellae are assembled as spaced spicules (trabeculae), originating 
an interconnected microporous structure (Lozupone & Favia, 1990; Olszta et al., 2007). 
Compact bone is also called cortical because it always occupies a peripheral position relative 
to cancellous (or trabecular) bone. 

It is interesting to perceive that each hierarchical structure of this anisotropic composite 
material is optimised to achieve a remarkable mechanical performance, from its basic 
building block (the mineralized collagen fibril wherein hydroxyapatite crystals have the 
long axis parallel to the longitudinal axis of the collagen molecules) to the tri-dimensional 
architecture of compact and cancellous bone. Moreover, each structural level may undergo 
minor but fundamental modifications, to better adapt and respond to various biomechanical 
forces (Ottani et al., 2001). As stated in a basic rule of skeletal biology known as Wolff´s law, 
“the bone´s morphology is a reflection of what function the bone has been built to do or 
adapted to perform”. 

3. FTIR spectroscopy applied to bone characterization 

The Fourier transform infrared (FTIR) spectroscopy is based upon the absorption of IR 
radiation during vibrational transitions in covalently bound atoms. The frequencies and 
intensities of the infrared bands provide relevant information on the nature of the molecular 
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bonds, their environment and their relative content in the material being analysed. In some 
cases, some structural information regarding molecular conformations can also be obtained 
(Nyquist et al., 1997).  

In order to obtain FTIR spectra, solid state samples in powdered form are often mixed with 
the infrared transparent KBr salt and prepared as pellets. Using FTIR in the transmission 
mode, the incident infrared radiation passes through the sample pellet and the spectrum 
corresponds to the transmitted fraction of the radiation. Alternatively, using the attenuated 
total reflection (ATR) mode, the solid samples can be analysed directly (without mixing with 
other substances) and the infrared spectrum corresponds mainly to the interaction up to 

about 2 m depth from the surface of the sample. 

In addition to the conventional FTIR spectroscopy, a microscopic analysis coupled to the 
vibrational spectra is also currently used to characterize bone samples, providing further 
insight into the correlation between structural and functional features. In fact, the 
introduction of the technique of infrared microspectroscopy (FTIRM) in 1988, followed by 
the development of the infrared imaging (FTIRI) from 1998, enabled to combine the 
advantages of hystomorphometry of the bone tissue with spectroscopy in the infrared range. 
Firstly, FTIRM allowed acquiring the sequential infrared mapping of a sampling area. Later, 
using focal plane array detector technologies, FTIRI enabled the simultaneous spectral 
acquisition in each detector pixel, representing an important progress both quantitative and 
qualitatively. In fact, FTIR imaging provides all the functionality of mapping but does so 
faster, with better spatial resolution and most importantly, with considerably better 
sensitivity than FTIRM. Nowadays, both techniques are regularly applied to the in vitro 
analysis of human tissues, namely bone samples (healthy, diseased and archeological bone), 
as well as animal models (Isaksson et al., 2010; Lebon et al., 2008; Marcott et al., 1998). 
Samples are usually prepared from thin cut sections that, for FTIRM/FTIRI analyses and in 
opposition to conventional histological analysis, do not require specific staining. However, 
samples may have to be fixed with appropriate solvents and embedded on a rigid support 
(often polymeric resins) and these procedures may cause some deviations of the infrared 
absorption bands relative to the direct analysis of the material (Aparicio et al., 2002; 
Paschalis et al., 2011). To overcome this interference, the thin sections may be analyzed in 
the ATR mode (that most frequently requires little or no sample preparation) but this option 
may cause some loss of spatial resolution due to intrinsic limitations of the technique 
(Agilent Technologies, 2011; Petibois et al., 2009).  

3.1 FTIR spectrum of the bone matrix 

The composite nature of the bone matrix becomes very clear when its FTIR spectrum is 
compared with those of the model compounds of its components, hydroxyapatite and collagen 
(Fig. 4). In fact, the spectrum of bone exhibits all the most intense bands observed in the 
spectrum of hydroxyapatite (at 500-700 cm-1 and 900-1200 cm-1) and that of collagen (in the 
1200-1700 cm-1 and 2800-3700 cm-1 regions), being nearly coincident with the sum of the 
respective profiles. Nevertheless, there are some new bands (namely at around 870 cm-1 and 
1400-1450 cm-1) originated from carbonate substitutions in the crystal lattice of hydroxyapatite. 

From the detailed spectral assignments presented in Table 1, some bands must be discussed, 

particularly in the 500-1700 cm-1 region of the spectrum of bone. The most intense bands are  

www.intechopen.com



 
Characterization of Bone and Bone-Based Graft Materials Using FTIR Spectroscopy 

 

321 

 

Fig. 4. Typical FTIR spectra of bone, hydroxyapatite and collagen showing the vibrational 
assignments of the most significant bands.  

originated from the mineral phase, in accordance to its larger proportion in the composite. 

In particular, the bands at 557 and 600 cm-1 correspond mainly to 4 PO43- bending 

vibrations, despite some minor contribution from collagen (amide bands) in that region. 

Moreover, the absorptions at 961 and 1012 cm-1 correspond to the symmetric (1) and 

asymmetric (3) stretching of phosphate, respectively. Thus, most of the absorptions from 

phosphate vibrations are clearly observed both in the spectra of bone and of hydroxyapatite. 

It should be also mentioned that acidic phosphate (HPO42-), a frequent anionic substitution 

in the crystal lattice of hydroxyapatite, usually originates a band at ca. 1110 cm-1, which is 

normally overlapped with that from 3 PO43- vibration. 

On the other hand, the collagen moiety of bone originates the typical Amide I and Amide II 

bands at 1634 and 1548 cm-1, respectively. Furthermore, the bands at 1410 and 1445 cm-1 

show a different profile and higher intensity in the spectrum of bone relative to its organic 

model compound. These bands correspond, in fact, to absorptions from CH2 wagging and 

bending vibrations superimposed with those from asymmetric stretching (3) vibrations of 

CO32- groups, present as ionic substitutes in the apatite crystal. Carbonate also originates a 

band at ca. 870 cm-1, which is assigned to the 2 bending vibration. This band is characteristic 

of a type B apatite. 
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Wavenumber Vibration modes 

(cm-1) Bone Hydroxyapatite Collagen 

557 
4 PO43- bend (mineral) 
+Amide (organic) 

4 PO43- bend 

50
0-

75
0 

cm
-1

 

 A
m

id
e 

IV
-V

II
 

 

600 
4 PO43- bend (mineral) 
+Amide (organic) 

4 PO43- bend 

630  4 PO43- bend 

871 2 CO32- bend  

961 1 PO43- sym stretch 1 PO43- sym stretch 

1012 3 PO43- asym stretch 3 PO43- asym stretch 

1250 Amide III  Amide III 

1395   CH2 wag 

1410 
3 CO32- (mineral)+ 
CH2 wag (organic) 

 

1445 
CH2 bend (organic)+ 

3 CO32- (mineral) 
 CH2 bend 

1548 Amide II  Amide II 

1634 Amide I  Amide I 

2850 CH2 sym stretch  CH2 sym stretch 

2930 CH2 asym stretch  CH2 asym stretch 

3072 Amide B  Amide B 

3278 Amide A  Amide A 

3500  OH  OH  OH 

Table 1. Band assignments for the FTIR spectra of bone, hydroxyapatite and collagen, 
illustrated in Fig. 4. 

As described, the infrared spectrum is a good diagnostic of the presence of phosphate (and 
also of carbonate) groups in the mineral component of bone, as well as the presence of 
amide groups in the organic fraction. In fact, these groups originate many typical absorption 
bands, as predicted theoretically. 

Concerning the phosphate anions in tetrahedral geometry, there are four fundamental 
vibrations distributed as 1 (symmetric stretch), 2 (bend), 3 (asymmetric stretch), and 4 

(bend) (Fig. 5) and these vibration modes (except 2) give rise to medium to strong bands 
(Nyquist et al., 1997). Typically, in hydroxyapatite, 1 (a non degenerate vibration mode) 
originates one intense band at around 960 cm-1, and 3 and 4 (triply degenerate modes) 
originate up to three bands each in the 1000-1100 cm-1 and 500-650 cm-1 regions, 
respectively. Finally, the doubly degenerate mode 2 may be observed at less than 500 cm-1. 

Carbonate anions may also show up to four normal modes of vibration: symmetric stretch 

(1), out-of-phase bending (2), asymmetric stretch (3) and in-plane CO2 bending (4) (Fig. 5). 

Whereas 2 is a non degenerate mode, both 3 and4 are doubly degenerate and 1 is not  
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Fig. 5. Vibration modes for phosphate anions in tetrahedral symmetry and carbonate anions 
in D3h symmetry (adapted from Nyquist et al., 1997). 

an active vibration in the infrared because it does not change the dipole moment of the 
molecule (Nyquist et al., 1997). In carbonated apatites, the CO32- characteristic bands 

appear at 870-880 cm-1 (2, as a single band) and at 1400-1450 cm-1 (3, usually as a double 
band). Depending on the type of carbonate substitution in the crystal lattice, bands may 
appear at slightly different wavenumbers: type A carbonated apatite is characterized by a 

2 band at ca. 880 cm-1 and a 3 double band around 1450 and 1540 cm-1, whereas type B 
configuration has these bands at about 870, 1430 and 1450 cm-1, respectively (Fleet, 2009; 

Landi, 2003). The 2 band is often used to estimate the CO32- content of the sample, by 
calculating the respective area underneath. Moreover, this band may also contain a 
component at ca. 865 cm-1, due to the contribution of non-apatitic (labile) carbonate 
(Verdelis et al., 2007). 

As for type I collagen, the organic component of bone, many vibrational bands are 
originated from the amide groups that constitute the peptide bonds of this protein. The 
characteristic vibrations of amide groups in collagen are usually combined modes 
designated as Amide I-VII, Amide A and Amide B (Chang & Tanaka, 2002; Garip & 
Severcan, 2010). The Amide I band, typically observed in the 1600-1700 cm-1 range, is the 
most intense absorption band in collagen. It results mainly from the C=O stretching 
vibration (with minor contribution from C-N stretch) and is directly related to the backbone 
conformation. Amide II, which originates a band at 1500-1600 cm-1 in collagen, is also 
conformationally sensitive and results mainly from an out-of-phase combination of N-H in-
plane bending and C-N stretching vibrations of the peptide linkages. The Amide III band 
(1200-1300 cm-1), just like the Amide II band, mainly arises from C–N stretch and N–H in-
plane bending. The main difference between Amide II and III lies in the relative contribution 
of these modes for the respective mixed vibrations: whereas the N–H bending mode makes 
the larger contribution for the Amide II, the opposite occurs for the Amide III band. Amide 
IV is a C=O in-plane deformation and Amide V, VI and VII are out-of-plane motions 
(Roeges, 1994). The Amide A and Amide B bands, near 3300 cm-1 and 3100 cm-1 respectively, 
result from a Fermi resonance between the N-H stretch fundamental band and the overtone 
of amide II (Lee et al., 1999). 
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As demonstrated, the spectral contribution of the mineral and organic components to the 

overall FTIR spectrum of bone may be analyzed almost independently. This enables to 

estimate, for instance, the relative amount of mineral to organic matter and the proportion of 

carbonate in the bone apatite. Moreover, since high carbonate (and other ions) substitution 

correlates with a less mature mineral, FTIR data may also provide a measure of the crystal 

maturity based on the crystal stoichiometry. On the other hand, the maturity of the organic 

component of bone may also be evaluated through the analysis of specific amide bands from 

collagen. 

Next section addresses the methodology usually applied to determine these and other 
parameters important for bone quality, demonstrating the extraordinary potential of FTIR 
analysis.  

3.2 Assessing bone quality using FTIR 

Bone quality is a broad term that encompasses factors affecting the geometric and material 
properties that contribute to fracture resistance. Geometric properties include the 
macroscopic geometry of the whole bone and the microscopic architecture of the trabeculae. 
On the other hand, material properties include the composition and arrangement of the 
primary constituents of bone tissue (collagen and mineral), as well as microdamage and 
microstructural discontinuities (Boskey, 2006, 2011; Paschalis et al., 1997). As mentioned 
earlier, the recent interest in bone quality arises from the fact that the traditional 
measurement of bone strength in clinical practice, namely bone densitometry, does not always 
reliably predict fracture risk. In fact, the bone mineral density (BMD) measurements primarily 
show the quantity of bone in the skeleton, overlooking more subtle aspects of bone’s 
properties that may also contribute to its fragility. It is therefore important to understand 
alterations in bone that occur at the macro-, micro- and nanoscopic levels to determine what 
parameters affect bone quality and how they change with age or health condition. 

FTIR spectroscopy, including FTIRM and FTIRI, providing information on all bone 
constituents at molecular level, represents an excellent tool to explore bone quality. The 
most frequently reported outcomes of FTIR related to bone material properties are the 
relative mineral and organic content, mineral maturity and crystallinity, carbonate 
substitution into the apatite lattice and collagen crosslinking. Because most of the bands of 
the bone spectrum are composed of several spectral components, deconvolution methods 
based on second derivative-spectroscopy and curve fitting have to be applied, being the 
results normally reported as a percentage of the area of specific underlying bands (Donnely 
2010; Petibois et al., 2009). Hence, FTIR data are most commonly used for comparison 
purposes (between regions of the same sample, among samples or throughout time) rather 
than in absolute terms. 

The proportion between the mineral and organic content in bone expresses its degree of 
mineralization and can be calculated from the ratio of the integrated area due to phosphate 

bands (usually 1, 3 in the 900-1200 cm-1 region) to that of a amide band (normally Amide I 
in the 1600-1700 cm-1 region). This ratio is an important indicator of the maturation or aging 
of bone and is linearly related to the bone mineral density (BMD) routinely measured in 
clinical medicine by dual energy X-ray absorptiometry. However, it should be pointed out 
that these parameters are not expressed in the same basis (BMD quantifies the amount of 
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mineral per volume whereas the ratio of the mentioned areas represents the amount of 
mineral per amount of collagen per volume analysed). 

The mineral maturity is normally estimated based on sub-bands of the 1, 3 phosphate 
vibrations in the 900-1200 cm-1 region (Fig. 6). From deconvolution in this spectral range 

several individual peaks arise underneath the 3 band, being those at ca. 1020 and ca. 1030 
cm-1 regarded as representative of specific chemical environments: typically, the sub-band at 
1020 cm-1 is associated to nonstoichiometric apatites (containing HPO42- and/or CO32-) and 
that at 1030 cm-1, to stoichiometric apatites. Given that the ratio of the areas of the sub-bands 
at 1020 and 1030 cm-1 has shown to decrease as mineral maturation proceeds, this ratio is 
often applied to evaluate the maturity of the bone apatite (Miller et al., 2001; Paschalis et al., 
2011; Verdelis et al., 2007). 

 

Fig. 6. Spectral region of the 1, 3 phosphate bands with underlying components revealed 
by curve-fitting. Sub-bands associated with the stoichiometry of the apatite (generally used 
for determination of mineral maturity) and the sub-band from HPO42- (a common substitute 
in the apatite crystal) are highlighted (adapted from Verdelis, 2005). 

It should be mentioned that since they evolve concomitantly, mineral maturity is normally 
associated with crystallinity. Thus, the simultaneous expression mineral maturity/ 
crystallinity is commonly employed, regardless these parameters do not refer to the same 
mineral properties (Farlay et al. 2011). Although the crystallinity of a mineral is typically 
calculated from X-ray diffraction, it has been suggested that in the particular case of 
hydroxyapatite, this parameter may also be determined from the well resolved FTIR band at 

ca. 600 cm-1 corresponding to a 4 phosphate vibration. Since the inverse of the full width at 
half maximum (1/FWHM) of this peak was found to be highly correlated with the state of 
crystallinity of the apatite (the narrower the peak, the higher the crystallinity), this ratio may 
be used as a crystallinity index. (Farlay et al. 2011). Moreover, it has been suggested that the 

4 PO43- peak at ca. 600 cm-1 is more reliable than the 3 PO43- peak at ca. 1030 cm-1, most 
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frequently associated with crystallinity (Shemesh, 1990). Finally, it should be emphasized 
that mineral maturity and crystallinity seem to be strongly correlated in synthetic apatites, 
but poorly correlated in human bone (especially in pathological bone). As expected in such a 
dynamic remodelling tissue, both parameters depend upon numerous factors including age, 
nutrition and health condition. 

On the other hand, the maturity of the mineral phase is also related to the amount of 

substitutions in the crystal lattice of hydroxyapatite, being carbonate the most abundant in 

bone. Carbonate to phosphate ratio indicates the level of carbonate substitution and is 

calculated as the ratio of the carbonate band integrated area (850-890 cm-1) to that of 1, 3 

phosphate bands. This parameter seems a good indicator of the bone turnover and 

remodeling activity (Isaksson et al 2010). A combination of second derivative spectroscopy 

and curve fitting of the carbonate band (Fig. 7) reveals whether the carbonate has replaced 

hydroxide (A-type) or phosphate (B-type) in the apatite crystal, or is loosely attached to its 

surface (labile CO32-). Considering that acidic phosphate is another eventual substitute in 

bone apatite, mineral maturity may also be estimated from the ratio between the overall 1, 

3 phosphate band and the HPO42- sub-band at ca. 1110 cm-1. 

 

Fig. 7. Spectral region of the 2 carbonate band with components determined by curve-
fitting, indicating the different types of carbonate substitution (adapted from Verdelis, 2005). 

As previously mentioned, one of the most distinct features of type I collagen in mineralized 

tissues is its cross-linking chemistry. The intermolecular cross-linking provides high tensile 

strength and viscoelasticity to the fibrillar matrices. FTIR has been used to analyse the 

secondary structure of collagen, namely through the analysis of Amide I band. Information 

on protein structure may be obtained from the underlying bands of Amide I spectral region 

by resolution enhancement techniques (Fig. 8) (Paschalis et al., 2003). Of particular interest 

are two sub-bands: 1660 and 1690 cm-1, related to the presence of non-reducible (mature) 

and reducible (immature) collagen cross-links, respectively. Thus, the ratio of the integrated 

areas of these bands (1660/1690) can be used as an indicator of the collagen maturity 

(Paschalis et al., 2011; Paschalis et al., 2001; Saito & Marumo, 2009). 
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Fig. 8. Typical FTIR spectrum of collagen obtained from demineralized bovine bone in the 
region of Amide I and Amide II, resolved to its underlying components. Sub-bands at 1660 
and 1690 cm-1 may be used to determine the maturity of collagen crosslinks (adapted from 
Paschalis et al., 2001). 

Parameter Ratio of the integrated areas or peaks intensities 

Mineral/organic content Phosphate bands (900-1200 cm-1)/amide I band (1600-1700 cm-1) 

Mineral maturity 
1030 cm-1 sub-band (stochiometric apatites)/1020 cm-1 sub-band 
(non-stochiometric) 

CO32-/PO43- ratio Carbonate bands (850-890 cm-1)/phosphate bands (900-1200 cm-1) 

Type of CO32substitution 
Ratio of integrated area or intensity of sub-bands at ca. 870 cm-1 
(B-type carbonate), 880 cm-1 (A-type carbonate) and 865 cm-1 
(labile carbonate)

Collagen maturity 
1660 cm-1 sub-band (non-reducible/mature cross-links)/1690 
cm-1 sub-band (reducible/immature cross-links) 

Table 2. Relevant bone quality parameters derived from the FTIR data. 

Table 2 summarizes the most important parameters generally used to evaluate bone quality 
derived from FTIR spectroscopy data. In addition, Figure 9 illustrates the spatial 
distribution of some of these parameters in thin sections of osteoporotic bone samples, as 
observed by FTIRI. 

4. Characterization of bone-based graft materials using FTIR spectroscopy 

Bone tissue posses a remarkable capacity to self-repair microdamages. Nevertheless, when a 
bone defect reaches a critical size, healing usually requires the introduction of grafting 
materials. Ideally, these should be able to provide a porous scaffold to enable cell invasion 
and attachment, and the subsequent formation of new bone.  
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Fig. 9. Typical images obtained by FTIRI from an osteoporotic human iliac crest showing the 

spatial distribution of bone quality parameters in regions of cortical and cancellous bone: 

mineral/organic ratio (A), mineral maturity (B), and collagen maturity (C) (from Boskey, 

2011).  

A standard strategy applied when a bone loss occurs is using bone grafts which include 

autografts, allografts and xenografts (Bauer & Muschler, 2000; Torroni, 2009). An autograft 

consists of a tissue that is transferred from one site of the organism of an individual to a 

different location, an allograft represents a tissue transfer between individuals of the same 

species, and xenografts, between different species. Bone autografts, the “gold standard” in 

bone grafting procedures, have the advantage of no adverse immunological response and 

thus represent the best for inducing new bone formation. However, they are usually 

available in limited quantity (depending on donor site anatomy) and harvesting requires 

additional surgery, resulting in increased morbidity for the patient. Human allografts, 

which can be appropriately preserved in bone banks being thus available in greater 

abundance, represent a valuable alternative to autografts (Judas et al., 2005). Even so, the 

application of allografts is often limited due to uncertainty on compatibility and risk of 

disease transmission. Xenografts, most often of bovine or porcine origin, have no limitations 

regarding availability but, similarly to allogenous bone, can introduce risk of rejection and 

disease transmission. 
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Currently, the most common alternatives to bone-based grafts are synthetic biomaterials 
(often composites made of Ca/P ceramics and polymers) (Kikuchi et al., 2001). Although the 
raw materials of these composites are selected to fulfil many requirements (such as 
biocompatibility, osteoconductivity and non-toxicity), being often produced/modified to 
mimic the characteristics of natural bone, the best clinical results still derive from the 
application of autografts. Nonetheless, synthetic materials not only overcome most 
disadvantages of the natural bone grafts, but also provide more consistent and controllable 
properties. This is the case of diverse ceramic materials, namely hydroxyapatite, that besides 
being applied as components of composites, are also frequently used alone. In fact, synthetic 
hydroxyapatite is the most commonly used graft material mostly due to its resemblance 
with the bone mineral and similar osteocondutive potential. Synthetic hydroxyapatite, 
however, possesses some limitations including poor mechanical properties (specially when 
exposed to wet environments) and lack of osteoinductive properties. In addition, for the 
time being, synthetic apatites are not yet able to duplicate the composition and structure of 
the mineral component of bone, known to influence the grafts osteointegration. In fact, 
natural hydroxyapatite is nonstoichiometric and contains carbonate and other ions built into 
its structure. Although the presence of these ions is very low, they play a vital role in the 
biological reactions associated with bone metabolism (Barrere et al., 2006; Joschek et al., 
2000). It has been shown that carbonate incorporation tends to decrease the crystallinity and 
to augment the solubility of hydroxyapatite, enhancing its biodegradation rate. Thus, 
synthetic hydroxyapatite is frequently modified chemically in order to include additional 
properties favorable to bone grafting. 

A given type of graft can function by more than one mechanism. For instance, autografts are 
osteoconductive, osteoinductive and osteogenic whereas allografts and xenografts are 
mainly osteoconductive. Evidences that natural apatites also possess osteocondutive 
properties has stimulated their application as grafting materials, alone or combined with 
other materials. Currently, this mineral component of bone is usually obtained from 
calcined xenografts, being commercially available from different animal origins, under 
various formulations. On the other hand, in addition to osteocondutive properties, 
demineralized bone grafts have demonstrated to also possess osteoinductive capacities, 
which are mainly attributed to the exposure of bone morphogenetic proteins (BMPs) caused 
by the demineralization procedure. Thus, not only natural bone grafts, but also calcined and 
demineralized bone grafts constitute very important options that require extensive research 
regarding materials characterization, processing methods and application conditions, in 
order to help the prediction of their clinical outcome. 

4.1 Bone-derived hydoxyapatite: Influence of the calcination temperature 

One strategy to improve non-autograft materials while maintaining their advantages 
regarding their chemical and physical properties is to process natural bone, for example by 
heat treatment (Haberko et al., 2006; Joschek et al., 2000; Murugan et al., 2006; Ooi et al., 
2007). Natural hydroxyapatite obtained in this way has the advantage of inheriting the 
chemical composition and structure of the raw material (Catanese et al., 1990; Etok et al., 
2007; Murugan et al., 2003), being therefore an alternative solution for numerous 
applications based on its analogous synthetic products. As compared to allogeneic bone, 
hydroxyapatite derived from xenogeneic bone (usually of bovine origin) is considered a 
good option because it is easier to obtain at lower cost and is available in unlimited supply. 
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The problem that arises with heat treatment at elevated temperatures is that the biogenic 
composition and structure of bone mineral can change and this may affect the efficacy of 
this material (Etok et al., 2007; Hillera et al., 2003; Ooi et al., 2007). Although there is some 
controversy regarding the onset of chemical and structural changes as a consequence of heat 
treatment, it has been reported that changes in the mineral phase of bone are not significant 
until degradation and combustion of most of the more labile organic components occurs 
(around 500 ºC) (Etok et al., 2007; Mkukuma et al., 2004; Murugan et al., 2006; Ooi et al., 
2007). Regarding sample mineralogy, it is generally accepted that heat treatment promotes 
the crystallinity of bone derived hydroxyapatite and increases the crystallite size (Etok et al., 
2007; Hillera et al., 2003; Ooi et al., 2007). 

A recent study concerning cortical bone samples of different origins (human and animal) 
subjected to different calcination temperatures (600, 900 and 1200 ºC) revealed that the 
calcination temperature highly affects the properties of the bone samples (Figueiredo et al., 
2010). As expected, higher temperatures led to more pure forms of hydroxyapatite, with 
higher crystallinity degrees and larger crystallite sizes and a less porous structure. 
Furthermore, samples heated to the same temperature exhibited similar characteristics, 
regardless their origin. 

FTIR spectra (Fig. 10) indicated that the organic constituents were no longer present in the 
samples calcined at 600 ºC, suggesting that this temperature is adequate to obtain protein-
free samples. Moreover, these spectra have also revealed that, at this temperature, a 
carbonated apatite was obtained, being the carbonate removed from the mineral at higher 
temperatures. Furthermore, no new mineral phases were evident at higher temperatures, in 
good agreement with the results of thermal analysis, X-ray diffraction and additional 
confirmation by chemical analysis. Nevertheless, it has been reported that the apatite base  

 

Fig. 10. FTIR spectra of human cortical bone before (control) and after calcination at 600, 900 

and 1200 ºC. *Bands attributed to lattice carbonate vibrations (Figueiredo et al., 2010). 
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structure may be partially degraded by heating at temperatures higher than 800 ºC, 

originating -tricalcium phosphate (Ca3(PO4)2) and/or CaO. However, the presence of these 

products in the mineral is better detected by X-ray diffraction than by FTIR spectroscopy 

(Etok et al., 2007; Haberko et al., 2006; Mkukuma et al., 2004; Ooi et al., 2007; Rogers & 

Daniels 2002). 

SEM pictures (Fig. 11) of the human bone sample calcined at various temperatures showed 
that the samples surfaces no longer present the characteristic concentric lamellae around the 
Havers Canals, due to the elimination of collagen with heat treatment. Nonetheless, the 
basic microstructure of cortical bone (Havers Canals and osteocyte lacunar spaces, in 
particular) was preserved after calcination. Additionally, it was also apparent that the size of 
the apatite crystals increased with temperature, resulting on increased crystalinity (as 
confirmed by X-ray diffraction). 

 

Fig. 11. Scanning Electron Microscopy images of human cortical bone calcined at 600, 900 

and 1200 ºC (from left to right) showing the increase in crystal size with temperature 

(Figueiredo et al. 2010). 

Moreover, heat treatment also resulted in different porosity characteristics. Regarding 
porosity and pore size distribution, assessed by mercury intrusion (Fig. 12), it was clear that 
samples calcined at 600 ºC exhibit the highest porosity, around 50%, which, for a compact 
bone, is quite relevant. However, as the heating temperature increases, the porous structure 
condenses, sintering at very high temperatures (1200 ºC) and originating porosity values 
comparable to those of the non-calcined samples. 

4.2 Demineralized bone matrix: Effect of the acid concentration 

Demineralized bone matrix (DBM) is often applied in orthopedics, periodontics, oral and 
maxillofacial surgery because of its inherent osteoconductive and osteoinductive properties, 
generally related, as mentioned, to bone morphogenetic proteins (BMPs) (Bauer & Muschler, 
2000; Eppley et al., 2005; Katz et al., 2009). In fact, as mineral is removed, the matrix 
associated BMPs become available rendering DBM grafts osteoinductive (Pietrzak et al., 
2009). These grafts can be used either alone (Libin et al., 1975; Morone & Boden, 1998; 
Pietrzak et al., 2005) or in combination with bone marrow, autogenous bone graft, or other 
materials (Kim et al., 2002; Kucukkolbasi et al., 2009; Nade & Burwell, 1977). Additionally, 
DBM exhibits elastic features, being easily shaped to fill osteochondral lesions with different 
shapes and sizes (Costa et al., 2001). 

Despite the extensive use of DBM, conflicting results have been published in the literature 
regarding its bone-inducing abilities. This may be a consequence of following different  
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Fig. 12. Cumulative intrusion curve of human cortical bone, before (control) and after 
calcination at 600, 900 and 1200 ºC, measured by mercury porosimetry (Figueiredo et al., 
2010). 

demineralization procedures that naturally result in products with different properties (Bae 

et al., 2006; Eggert & Germain, 1979; Y. P. Lee et al., 2005; Lomas et al., 2001; Peterson et al., 

2004). As reported in a recent study about BMPs depletion in particles of bovine cortical 

bone under acid exposure (0.25 and 0.5 M HCl) (Pietrzak et al., 2009), the availability of 

BMP-7 increases as demineralization occurs but, after reaching a maximum in the extraction 

bath, continuously declines. These results alert for the need to control the demineralization 

processing conditions. Normally, the process of bone demineralization is carried out by 

immersing the sample in a variety of strong and/or weak acids. In the case of using HCl 

(the most frequently used), the major inorganic constituent of bone (hydroxyapatite) reacts 

to form monocalcium phosphate and calcium chloride (Dorozhkin, 1997; Horneman et al., 

2004).  

FTIR has been used to monitor the bone demineralization process using HCl under different 

experimental conditions (acid concentrations and exposure times) (Figueiredo et al., 2011). 

Fig. 13 shows the FTIR spectra of bone samples (¼ of a ring of a human femoral diaphysis 

after being transversely cut into rings of approximately 1 cm width) submitted to 

demineralization with HCl 1.2 M for different periods of time. From the analysis of the FTIR 

spectra of the surface and of the core of the bone blocks, it was confirmed that the 

demineralization starts at the surface (absence of 1, 3 PO43- bands and relative increase of the  
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Fig. 13. FTIR spectra from the outer surface and from the core of the human bone samples 
after immersion in 1.2 M HCl for different time intervals. Demineralization proceeds from 
the surface into the core of the bone samples, as evidenced by the absence of phosphate 
bands and by the similarity with the spectrum of collagen. 

collagen bands intensity) and progresses to the interior of the samples. These results support 
the concept of a diffusion model and agree with the proposed theory of the unreacted core 
during demineralization (Horneman et al., 2004; Lewandrowski et al., 1996, 1997). 

This study was complemented with kinetic profiles and analysis of the samples´ structural 
modifications. As expected, increasing the acid concentration led to an increase in the 
demineralization rate, but not in a proportional way. In addition, microscopic observations 
demonstrated that despite the structural deformation resultant from demineralization, the 
basic bone microstructure was preserved. The loss of mineral led to a progressive reduction 
of mechanical strength and an increase of plastic properties (e.g. flexibility and elasticity) of 
the resultant material, mostly composed of collagen.  

Although the deterioration of the organic component of bone was not examined in detail in 
this work, other studies using FTIR to analyse the effect of acids on the composition and 
structure of collagen during extraction from different tissues, may provide useful 
information on that subject. In fact, acid treatment of collagen samples was found to 
originate reduction of intermolecular cross-linking and hydrolysis of peptide bonds, as 
evidenced after curve-fitting in the spectral regions of the Amide I, II and III bands of 
collagen (Muyonga et al., 2004). These changes in collagen composition explained the 
observed loss of structural order. In addition, the amount and characteristics of the extracted 
fragments of collagen was related with the experimental conditions. These results agree 
with those from a FTIR study concerning the cross-linking of a collagen-hydroxyapatite 
nanocomposite with glutaraldehyde, as a model for the bone matrix (Chang & Tanaka, 
2002). The spectral analysis showed that the increase of the cross-linking degree induces 
higher retaining of the organic content in the composite. 

5. Conclusions 

From the above, it is clear that FTIR spectroscopy is a sensitive and convenient tool to study 
the physicochemical modifications of bone composition regarding the mineral phase as well 
as the organic matrix. The detailed information provided by this technique is extremely 
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useful to study bone alterations that occur at macro-, micro- and nanoscopic levels, helping 
to reach a more consistent diagnostic. 

Additionally, FTIR has been extensively used to characterize natural or synthetic graft 
materials, as well as to monitor the properties of the new bone formation. Furthermore, 
since the composition and the morphostructural parameters of a bone graft affect their 
biocompatibility, biodegradation and ultimately their osteointegration, the use of FTIR 
spectroscopy (including FTIRM and FTIRI) allows an interdisciplinary approach between 
chemists, molecular biologists and medical investigators. 
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