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1. Introduction 

a. In spectroscopic analysis, visible (Vis), near infrared (NIR) and mid infrared (MIR) 

ranges are often used as they include plenty of information on physical, chemical and 

biological properties of objects. Commonly, wavelengths ranges are from 350 to 760 nm 

for Vis, 760-2500 nm for NIR, and 2500 to 25000 nm for MIR (often used in its 

wavenumber form 4000 to 400 cm-1). Frequencies in the Vis are due to electronic 

transition while those in the NIR are generally overtones and combination bands from 

the fundamental vibrations occur in the MIR, mainly O-H, N-H, and C-H bonds 

(Viscarra Rossel, et al., 2006). When NIR and MIR radiations are focused onto a sample, 

the molecules in the sample will increase their vibration energy by absorbing energy at 

specific frequencies depending on the molecular geometry, bond strengths and atomic 

masses. The resulting Vis, NIR and MIR lights are thus modified, creating a spectrum or 

‘signatures’ of the targeted object with peaks at the absorbing frequencies. 

b. The combined contributions from the various soil components can result in a very 

complex spectrum, difficult to analyze visually, but multivariate calibration models can 

be built to derive useful qualitative and quantitative relationships or models between 

the spectral signatures and many soil properties. Spectrometry is the combination of 

spectroscopy and chemometric (multivariate statistical) methods. It should be noted 

that the Vis-NIR-MIR spectrometry technique can predict multiple soil properties 

simultaneously. 

c. Recently, there is an increasing interest in the development of time- and cost-effective 

methods for the measurement of soil nitrogen (N) and carbon (C), due to the growing 

concerns about the effect of excessive use of N fertilizer in the environment and the 

increase of atmospheric C content, which could be limited through soil C sequestration. 

In order to manage N and C in soils in an efficient manner detailed information about 

these properties is needed. Previous reports confirm the presence of within-field 

variability of soil properties including N and C, which requires analysis of large 

number of soil samples (Mouazen, et al., 2007). Due to the fact that standard procedures 

for the measurement of soil N and C are time-consuming and expensive (Sinfield, et al., 
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2010), attention is being given to possible alternatives such as Vis-NIR and/or MIR 

spectroscopy. Numerous analyses of soil N and C have been conducted during the past 

decades using this technique, for examples, to predict the soil C and N mineralization 

rates (Fystro, 2002; Mutuo, et al., 2006), to derive spectral characteristics for classifying 

conventional and conservation agricultural practices (Haché, et al., 2007), to assess soil 

changes due to site disturbance during forest harvesting (Ludwig, et al., 2002), to 

evaluate the recovery of microbial functions during soil restoration (Schimann, et al., 

2007), to determine carbon inventories (Reeves III, et al., 2002), to determine (in situ) 

organic matter composition of coatings at crack surfaces and linings of earthworm 

burrow walls (Reeves III, et al., 2002) and others (Chang, et al., 2001; Chang & Laird, 

2002; Yang, et al., 2011a). 

d. Applying Vis-NIR spectroscopy to predict soil properties needs no special sample 
preparation. However, MIR spectra are traditionally obtained by a FT-IR spectrometer 
with samples pressed in KBr pellets, which requires labour and specific skills. 
Fortunately, newly-developed ATR (attenuated total reflection) and DRIFT (diffuse 
reflectance infrared Fourier Transform) accessories are becoming the predominant FT-
IR sample analysis tool. This is because sample handling is greatly simplified and 
sample preparation is eliminated. Hence, Vis-NIR-MIR spectrometry without sample 
preparation will bring about new wave of soil research. 

e. This study investigated the potential of calibrating Vis-NIR, ATR-FTIR and DRIFT 
spectra to soil N and C concentrations with an aim of comparing the performance of 
two spectrometers, namely, a Vis-NIR spectrometer vs. a FT-IR spectrometer with ATR 
and DRIFT accessories. The models developed for N and C were then compared to 
those developed with the combination of Vis-NIR and ATR-FTIR spectra (Vis-NIR-
ATR) and the combination of Vis-NIR and DRIFT spectra (Vis-NIR-DRIFT) for 
investigating whether the combination of Vis-NIR spectrometer and FT-IR spectrometer 
could improve the prediction accuracy of soil N and C. For each spectrometer, spectral 
data were subjected to various spectral transformation approaches before model 
calibration, aiming at model optimization. 

2. Material and methods 

2.1 Samples 

Samples archived in the Soil Labs at Cranfield University were originally collected from the 
top 0-20 cm of the soil layer from five fields in Silsoe experimental farm at Bedfordshire, 
United Kingdom. Figure 1 illustrates the location of these fields, namely, Avenue Field (#A), 
Orchard (#B), Ivy Ground (#C), Showground (#D) and Copse Field (#E). According to the 
soil descriptions presented on www.landis.org.uk, managed by the National Soil Resources 
Institute (MSRI), Cranfield University, these fields belong to two major soil World Reference 
Base (WRB) classifications, namely, Cambisol and Luvisol. Of them, Ivy Ground (Sample 
codes: C15, C21-C39), Orhcard (B01-B25 ) and Copse Field (E01- E23) are Cambisols and 
Showground (D01-D35 ) is Luvisol, while Avenue Filed (A01-A12, A14-A20) comprises of 
both soils. The parent material underlying these fields is mainly siliceous stones. 

A total of 122 bulk soil samples used in this study are with various proportions of sand, slit 
and clay (Table 1) and hence belong to three soil textures, e.g. sandy loam, clay loam and 
clay, according to the United States Department of Agriculture (USDA) triangular diagram  
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Fig. 1. Location of the five fields targeted in the study (www.landis.org.uk) 

 

Code Field Name Vegetation Soil type 
Sand 
(%) 

Silt 
(%) 

Clay 
(%) 

Soil texturea 

A Avenue Ground wheat C+Lb 61.9 20.1 18.1 Sandy loam 

B Orchard wheat Cambisol 40.1 27.4 32.5 Clay loam 

C Ivy Ground Soybean Cambisol 21.1 27.2 51.7 Clay 

D Showground wheat Luvisol 65.0 20.9 14.1 Sandy loam 

E Copse Field wheat Cambisol 14.6 27.8 57.6 Clay 

a according to USDA triangular diagram relating particle size distribution to soil texture. 
b mixture of Cambisol and Luvisol types. 

Table 1. Description of the five targeted farm fields 

of soil texture classification. Soil samples were air-dried and crushed at first. Plant residues 
and stones were then removed. After that, the samples were sieved to pass a 2 mm mesh 
and air-dried again at 40℃ for 48h. A small amount of soil was used for chemical analysis, 
whereas the majorities were left for spectrophotometer measurement. 

2.2 Reference methods 

Particle size distribution was determined by a combination of wet sieving and hydrometer 
tests using the USDA soil texture classification system. Reference values of N and C were 
analyzed through a sequence of processes. First, a 50 mg sample was used for the 
measurement of TN and TC by a TrusSpecCNS spectrometer (LECO Corporation, St. 
Joseph, MI, USA) using the Dumas combustion method. Next, another 50 mg from each soil 
sample was mixed with 5% HCl and then oven-dried at 90℃ for 4 h in order to remove IC. 
Then, OC in IC-free samples were measured by the same Dumas combustion method. 
Finally, IC was calculated by the difference between TC and OC. 
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2.3 Vis-NIR spectra acquisition 

The soil samples were equilibrated to room temperature (20-25℃) and carefully mixed 

before spectral measurement. A sub-sample of ~5g was loaded into a static ring cup and 

measured using a LabSpec 2500 spectrophotometer (Analytical Spectral Devices Inc. 

Boulder, CO, USA) equipped with a fibre-optic probe. The light source was a quartz-

halogen bulb of 3000K°. The light source and reflectance fibre were gathered with a certain 

angle of 35°. One Si photodiode array in the range of 350-1000 nm and two Peltier cooled 

InGaAs detectors in the ranges of 1000-1800 nm and 1800-2500 nm were used. All spectra 

were recorded in diffuse reflection mode over the wavelength range of 400-2500 nm at 1 nm 

data spacing interval, which resulted in 2101 wavelengths per spectrum. The reflectance 

spectra were transformed into absorbance spectra using Log(1/R), as absorbance is directly 

proportional to the concentration of an absorber according to Beer-Lambert Law. The actual 

spectra resolution was 3 nm at 700 nm and 10 nm at 1400 and 2100 nm. Before sample 

spectral acquisition, twenty five reference scans were taken on a ceramic standard supplied 

with the spectrophotometer. Ten photometric scans were conducted for each sample, 

followed by another ten scans of the refilled sample cup. The twenty scans were then 

averaged in one spectrum for each sample.  

2.4 MIR spectra acquisition 

MIR spectra were collected by an ALPHA Fourier transform infrared (FT-IR) spectrometer 

(Bruker Optics, Billerica, MA, USA) with wavelength range of 7500–375 cm-1, equipped with 

two exchangeable QuickSnapTM sampling modules. This instrument acquired spectra with 

two sampling accessories, namely, ATR and DRIFT. ATR is an easy-to-use FT-IR sampling 

method that is ideal for both solids and liquids and does not require any sample 

preparation. The Eco ATR is a single reflection ATR sampling module equipped with a 

versatile high throughput ZnSe ATR crystal for the analysis of powders, solids, pastes and 

liquids. The DRIFT module is an economical analysis option for a broad variety of solid 

samples: powders, inorganic material, gem stones, papers, textiles and others. The DRIFT 

module is designed for easy sampling and high light-throughput. 

2.4.1 Principles of ATR-FTIR 

An attenuated total reflectance accessory operates by measuring the changes that occur in a 

totally internally reflected infrared beam when the beam comes into contact with a sample 

(Fig.2). An infrared beam is directed onto an optically dense crystal with a high refractive 

index at a certain angle. This internal reflectance creates an evanescent wave that extends 

beyond the surface of the crystal into the sample held in contact with the crystal. It can be 

easier to think of this evanescent wave as a bubble of infrared that sits on the surface of the 

crystal. This evanescent wave protrudes only a few microns (ど.5μ − 5μ) beyond the crystal 

surface and into the sample. Consequently, there must be good contact between the sample 

and the crystal surface. In regions of the infrared spectrum where the sample absorbs 

energy, the evanescent wave will be attenuated or altered. The attenuated energy from each 

evanescent wave is passed back to the IR beam, which then exists at the opposite end of the 

crystal and is passed to the detector in the IR spectrometer. The system then generates an 

infrared spectrum (www.perkinelmer.com). 
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Fig. 2. A multiple reflection ATR system (www.perkinelmer.com) 

When measuring solids by ATR, it is essential to ensure good optical contact between the 
sample and the crystal. The accessories have devices that clamp the sample to the crystal 
surface and apply pressure. This works well with elastomers and other deformable 
materials, but many solids give very weak spectra because the contact is confined to small 
areas. The effects of poor contact are the greatest at shorter wavelengths where the depth of 
penetration is the lowest. The issue of solid sample/crystal contact has been overcome to a 
great extent by the introduction of ATR accessories with very small crystals, typically about 
2 mm across. The most frequently-used small crystal ATR material is diamond because it 
has the best durability and chemical inertness. These small area ATR crystal top-plates 
generally provide only a single reflection but this is sufficient, given the low noise levels of 
PerkinElmer’s modern FT-IR spectrometers. Much higher pressure with limited force can 
now be generated onto these small areas. As a result, spectra can be obtained from a wide 
variety of solid materials including minerals. 

After the crystal area has been cleaned and the background collected, the soil material is 
placed onto the small crystal area. Then the pressure arm should be positioned over the 
crystal/sample area. Force is applied to the sample, pushing it onto the diamond surface. 
It is good practice to apply pressure until the strongest spectral bands have an intensity 
which extends beyond 70%T, namely, from a baseline at 100%T down to 70%T. Then, the 
data are collected in the normal manner. Unlike transmission measurements, ATR 
sampling does not produce totally absorbing spectral bands because the effective path-
length is controlled by the crystal properties thereby minimizing sample re-preparation 
time. After the spectrum has been collected, the crystal area must be cleaned before 
placing the next sample on the crystal. A 100%T line with no spectral features should be 
seen if the crystal is clean, if spectral features are seen, the crystal should be cleaned again 
using a solvent soaked tissue.  

In the case of a solid sample, it is pressed into direct contact with the crystal. Because the 
evanescent wave into the solid sample is improved with a more intimate contact, solid 
samples are usually firmly clamped against the ATR crystal, so that trapped air is not the 
medium through which the evanescent wave travels, as that would distort the results. 

2.4.2 Principles of DRIFT 

Diffuse reflectance occurs when light impinges on the surface of a material and is partially 
reflected and transmitted. Light that passes into the material may be absorbed or reflected 
out again. Hence, the radiation that reflects from an absorbing material is composed of 
surface-reflected and bulk re-emitted components, which summed are the diffuse 
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reflectance of the sample (www.uksaf.org). DRIFT analysis of powders is conducted by 
focusing infrared light onto the powder (sometimes diluted in a non absorbing matrix, e.g. 
KBr) and the scattered light is collected and relayed to the IR detector.  

In practice, DRIFT is most conveniently and rapidly used for soil analysis in diffuse 

reflection mode, where the incoming radiation is focused onto the soil sample surface, 

often in the form of a dry powder or <2 mm micro-aggregates, and the reflected radiation 

is passed back into the spectrophotometer (Fig.3, www.clw.csiro.au). In this study, 

infrared spectra were recorded in diffuse reflection mode with an Alpha spectrometer 

with DRIFT accessory. Bulk soil samples were scanned 20 times in the range from 4000 to 

400 cm-1. DRIFT spectra were corrected against atmospheric CO2 and water vapour. 

Finally, the infrared reflectance spectra were transformed into absorbance spectra using 

Log(1/R). 

 

Fig. 3. A description of the method of acquiring a DRIFT spectrum (www.clw.csiro.au) 

2.5 Spectral processing and development of calibration models for soil N and C 

2.5.1 Principal components analysis (PCA) 

PCA is a data compression process (i.e. a bilinear modelling process), which can be used to 

reduce a complex multidimensional data (e.g. spectra) into a smaller number of principal 

components (PCs) which reflect the underling structure of the original dataset. The first 

principal component typically explains most of the variation in the dataset with further 

principal components being orthogonal to the preceding PC and explaining less variation in 

the dataset. By plotting the PCs in two or three dimensional data space, interrelationships 

between the samples and variables can be examined (www.clw.csiro.au). 

2.5.2 Partial least-squares regression (PLSR) analysis 

For PLSR, spectral information is arranged as N 抜M matrix which consists of N spectra with 

absorbance values for M wavelengths, and the calibration data is expressed as a single 

vector with measured values for these spectra. The PLSR algorithm decomposes the M- 

dimensional spectra space into few factors termed latent variables (LVs), which represent 

the best projections of the calibration vector onto the N 抜M matrix. One of the advantages of 

PLSR compared to other chemometric methods like PCA is the possibility to interpret the 

first few LVs, because they show the correlations between the property values and the 

www.intechopen.com



 
Vis/Near- and Mid- Infrared Spectroscopy for Predicting Soil N and C at a Farm Scale 191 

spectral features. Furthermore, PLSR takes as well variations of the absorbance as variations 

of the calibration data into account. PLSR is a rapid analysis, can handle co-linear data, and 

can provide useful qualitative information. 

2.5.3 Procedure of spectral processing and model calibration 

Before the absorbance spectra were calibrated to predict soil properties, PCA was conducted 
to detect sample outliers in raw data set of Vis-NIR spectra, ATR spectra and DRIFT spectra. 
The identified sample outlier/s was/were excluded from further investigation. The 
remaining spectra were then subjected to various spectral pre-processing algorithms to 
reduce or eliminate noise, offset and bias in raw spectra. The investigated spectral pre-
processing techniques included Savitzky-Golay smoothing, standard normal variate (SNV), 
multiplicative scatter correction (MSC), baseline offset correction (BOC), centre & scale, 1st- 
and 2nd- detrendings, and 1st- and 2nd- derivatives. Several spectral normalizations were also 
included. They were conducted according to maximum, range, mean and quantile values. 
Details of these algorithms are available in www.camo.com. PLSR algorithm was used to 
decompose both raw and transformed spectra matrix into 10 LVs. All PLSR models were 
validated with full cross-validation approach in which each spectrum was in turn excluded 
from the calibration sample set and was predicted by the PLSR model calibrated for the 
remaining spectra. By decomposing the spectra into 10 LVs, it was assumed that the PLSR 
model would be over-fitted because signal noise of the spectral measurements could also be 
correlated with the property vector. The optimal number of LVs was determined by 
minimizing the predicted residual error sum of squares (PRESS). For better understanding 
the importance of different wavelength ranges in the prediction of soil N and C, PLSR 
models were also developed for the combinational Vis-NIR-ATR and Vis-NIR-DRIFT 
spectra. Spectral transformation and model calibration were conducted using the 
UnscramblerX10.1® (CAMO, Oslo, Norway). 

2.6 Model assessment criteria 

The validation accuracy of PLSR models is given by the root mean squared error (RMSE): 

RMSE = 俵なN布 岫X辿 − Y辿岻態択  

where X辿 is the predicted value, Y辿	the measured (reference) value and N the number of soil 
samples. To compare model performance, we recorded the residual predictive deviation 
(RPD), which is the ratio of standard deviation of reference values to RMSE of the 
calibration set during cross-validation. The criteria adopted for RPD classification 
(Mouazen, et al., 2006) was that an RPD value below 1.5 indicates very poor 
model/predictions and that such as value could not be useful; an RPD value between 1.5 
and 2.0 indicates a possibility to distinguish between high and low values, while a value 
between 2.0 and 2.5 makes approximate quantitative predictions possible. For RPD values 
between 2.5 and 3.0 and above 3.0, the prediction is classified as good and excellent, 
respectively. Meanwhile, we compared the coefficient of determination (R2) in cross-
validation of calibration models. Generally, a good model would have high values of R2 and 
RPD for cross-validation. 
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3. Results and discussion 

3.1 Laboratory analyses 

Means and distributions of the reference values of total nitrogen (TN), total carbon (TC), 
organic carbon (OC), inorganic carbon (IC), the ratio of TC to TN, and the ratio of OC to TN 
in samples are summarized in Table 2. The averaged content (±s.d.) for TN, TC and OC are 

0.2(±0.06)%, 2.11(±0.57)% and 1.98(±0.54)%, respectively. The IC concentration for the 

studied samples is very low with an average value of 0.12%, although its coefficient of 
variance (c.v.) is 1.08. This leads to large skewness of IC content distribution in samples. The 
ratio of OC to TN is as nearly constant as 10 with very low c.v. value of ~0.05. The inter-
correlation coefficients among these properties are summarized in Table 3. TN, TC and OC 
were strongly correlated to each other (r=0.97~0.99), while they have weak correlation with 
IC (r=0.13~0.35). The TC/TN or OC/TN was poorly correlated to TN, TC and OC, however, 
they had good correlation with IC (r=0.53 or -0.49). 

 

Soil property 
Reference valuea

Mean Median Range s.d.b c.v.c 

TN(%) 0.20 0.19 0.09-0.31 0.06 0.30 

TC(%) 2.11 2.00 0.95-3.41 0.57 0.27 

OC(%) 1.98 1.84 0.85-3.02 0.54 0.27 

IC(%) 0.12 0.09 0.00-0.64 0.13 1.08 

TC/TN 10.57 10.47 9.56-13.12 0.59 0.06 

OC/TN 9.95 9.92 8.88-12.47 0.52 0.05 

a one sample outlier (A02) detected by PCA was not included. 
b standard deviation 
c coefficient of variance(=s.d./Mean) 

Table 2. Laboratory reference statistics for soil total nitrogen (TN), total carbon (TC), organic 
carbon (OC), inorganic carbon (IC), TC/TN and OC/TN 

 

All TN(%) TC(%) OC(%) IC(%) TC/TN OC/TN 

TN(%) 1 0.97 0.99 0.23 -0.25 -0.24 

TC(%) 0.97 1 0.97 0.35 -0.07 -0.18 

OC(%) 0.99 0.97 1 0.13 -0.19 -0.07 

IC(%) 0.23 0.35 0.13 1 0.53 -0.49 

TC/TN -0.25 -0.07 -0.19 0.53 1 0.41 

OC/TN -0.24 -0.18 -0.07 -0.49 0.41 1 

PC-1(Vis-NIR) 0.77 0.74 0.76 0.13 -0.22 -0.16 

PC-2(Vis-NIR) -0.48 -0.48 -0.46 -0.23 0.08 0.22 

PC-1(ATR-FTIR) 0.90 0.87 0.88 0.19 -0.29 -0.28 

PC-2(ATR-FTIR) 0.15 0.16 0.21 -0.17 0.05 0.30 

PC-1(DRIFT) 0.56 0.55 0.52 0.26 -0.12 -0.24 

PC-2(DRIFT) -0.71 -0.68 -0.71 -0.05 0.24 0.16 

Table 3. Correlation matrix between soil properties and the first two principal component 
scores of the Vis-NIR spectra, ATR-FTIR spectra and DRIFT spectra of 121 samples 
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3.2 Vis-NIR spectral analysis and model calibrations 

Different wavelength bands respond to different chemical compositions or molecular 
groups in soil. However, this response is strongly influenced by soil texture classes. Figure 4 
shows the representative Vis-NIR absorption spectra of samples from each soil texture class, 
e.g. sandy loam (field #D), clay loam (field #B) and clay (fields #C and #E), with high and 
low TC content. The shift in overall baseline in the Vis-NIR spectra is likely caused by the 
overall difference in the particle size distribution (Madari, et al., 2006). The clay soil has a 
finer texture compared to the others, which results in a higher baseline. In general, smaller 
particle size results in higher reflectance or lower absorbance, but for our case, the higher 
absorption coefficients for the clay fraction apparently dominate the particle size effect 
resulting in higher absorbance. Within the clay texture class, the samples with higher TC 
content tend to exhibit stronger absorption in Vis-NIR spectra than those with lower TC 
contents (Fig.4). This observation seems true for sandy loam soils but not for clay loam soils, 
which might be attributed to the effect of soil colour. In Fig.4, the sample from clay loam 
class with low TC content of 1.59% shows higher absorbance than that with high TC content 
of 2.44%. This is probably due to particle size effect. The Vis-NIR spectra are characteristic of 
absorption bands associated with colour (400-760 nm), the bending (1413 nm) and stretching 
(1916 nm) of the O-H bonds of free water and lattice minerals at around 2210 nm (Madari, et 
al., 2006). 

 

Fig. 4. Vis-NIR absorption spectra of samples from each soil texture class with high and low 
TC content. 

3.2.1 PCA analysis for Vis-NIR spectra 

Figure 5 shows all raw Vis-NIR spectra, PCA scores plot for the spectra, and residual X-
variance for PC-1 and PC-2. PC-1 and PC-2 explains 96% and 3% of total variance, 
respectively. The PC-1 may explain variation related to SOM of the samples, as the PC-1 was 
better correlated to TN, TC and OC (r=0.74~0.76) than to PC-2 (r =-0.46~-0.48) (Table 3). 
Samples originated from different fields can be divided into two clusters: one for Luvisol 
soils (Showground Field, #D) and another for Cambisol soils (Orchard, #B; Ivy Ground, #C;  
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                (a)           (b) 

 
               (c)            (d) 

Fig. 5. Vis-NIR absorption spectra of all samples (a), principal components analysis scores 
plot for the Vis-NIR spectra (b), and residual X-variance for PC-1 (c) and PC-2 (d). 

Copse Field, #E). Samples from Avenue Field (#A) exhibit partially mixing with the two 

clusters (Fig.5b). This might be attributed to the nature of this field as it is a mixture of 
Cambisol and Luvisol types. Although being of the same soil type of Cambisol, samples 

from field #B are clearly separated from those from fields #C and #E (Fig.5b). This is mainly 
due to different soil textures, namely, clay loam vs. clay (Table 1). Several samples located 

outside of the Hotelling T2 ellipse become the candidates of samples outliers (Fig.5b). 
However, apart from sample A02, other outliers locate close to their member samples. In 

addition, sample A02 exhibits large residual X-variance for PC-1 (Fig.5c) and PC-2 (Fig.5d). 

The raw spectrum of sample A02 also shows distinct color features (lowest absorbance in 
visible range) from other samples (Fig.5a). Thus, sample A02 was considered as an outlier 

and excluded from further investigation. 

3.2.2 Vis-NIR calibration models 

Table 4 summarizes the cross-validation results of the PLSR models developed with raw 
and various transformed Vis-NIR spectra against each soil property. For raw spectra, PLSR 
models produced good or excellent prediction accuracy with R2 of 0.86~0.90 and RPD of 
2.73~3.33 for soil TN, TC and OC. Coupled with appropriate spectral pre-processing  
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Spectral 

pretreatment 

method 

PLSR models calibrated for Vis-NIR spectra 

 

Total N Total C Organic C Inorganic C 

 

LVs R2 RPD LVs R2 RPD LVs R2 RPD LVs R2 RPD 

None 5 0.90 3.33 5 0.86 2.73 5 0.90 3.16 5 0.42 1.34 

SNV 3 0.91 3.75 3 0.87 2.74 4 0.91 3.44 3 0.37 1.29 

MSC 4 0.90 3.33 4 0.87 2.74 4 0.90 3.20 3 0.39 1.31 

BOC 4 0.90 3.33 4 0.86 2.70 5 0.91 3.27 5 0.37 1.29 

Center & Scale 5 0.91 3.53 5 0.87 2.78 5 0.90 3.21 6 0.42 1.34 

Normalization             

Maximum- 4 0.89 3.33 4 0.86 2.69 4 0.89 3.05 5 0.38 1.29 

Range- 5 0.90 3.33 5 0.87 2.74 5 0.90 3.23 4 0.34 1.26 

Mean- 4 0.89 3.16 4 0.85 2.61 4 0.89 3.00 4 0.39 1.31 

Quantile- 5 0.91 3.53 5 0.87 2.78 5 0.91 3.25 6 0.42 1.34 

De-trending             

1st- 4 0.90 3.53 4 0.87 2.75 4 0.90 3.20 4 0.38 1.30 

2nd- 3 0.89 3.16 3 0.85 2.57 4 0.89 3.05 3 0.39 1.31 

Derivative             

1st- 1 0.85 2.73 1 0.80 2.26 1 0.85 2.63 3 0.17 1.12 

2nd- 4 0.61 1.71 1 0.56 1.51 4 0.63 1.65 1 0.14 1.11 

Table 4. Cross validation result of PLSR models calibrated for raw and various transformed 
Vis-NIR spectra with 121 samples 

algorithms, model performance was improved for a certain degree. For examples, PLSR 

model developed for TN after SNV-transformed spectra resulted in R2 of 0.91 and RPD of 
3.75. By the same pre-processing technique, prediction of soil OC was improved with R2 of 

0.91 and RPD of 3.44. The best calibration model for TC was obtained when the spectra were 
transformed by Center-&-Scale technique. It is worth noting that these optimized PLSR 

models need less latent variables (3-5) than those for raw spectra. In general, the fewer the 
latent variables used, the better is the model developed, as the calibration is more apt to be 

applicable to new samples (Madari, et al., 2006). For IC, PLSR calibration with raw and 
various transformed spectra failed to produce useful models with R2≤0.42 and RPD≤1.34. 

Figure 6 shows the correlation between the measured and PLSR-predicted values of each 
soil property. The linear fitting slopes for TN, TC and OC are close to 1, which suggests that 

PLSR models developed with Vis-NIR absorption spectra for predicting soil TN, TC and OC 
are successful. 

3.2.3 B-coefficients analysis of PLSR models for Vis-NIR spectra 

B-coefficients curves of the PLSR models calibrated for the best transformed Vis-NIR spectra 
against each soil property are shown in Fig.7. The B-coefficients for TN, TC and OC exhibit 
strong similarity among them. This is mainly due to their high correlation obtained for  
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           (a)               (b) 

 
           (c)               (d) 

Fig. 6. Measured vs. predicted values of soil TN (a), TC (b), OC (c) and IC (d) based on Vis-
NIR absorption spectra. 

reference values (r=0.97-0.99, Table 3). It is worth noting that the visible range (400-760 nm) 
associated with soil colour shows huge influence on model accuracy, which is in line with 
other reports (Stenberg, et al., 2010; Viscarra Rossel, et al., 2006). The absorption feature in 
the visible and short-wave NIR (400-1000 nm) might be due to the Fe oxides in soil, mainly 
haematite and goethite (Viscarra Rossel & Behrens, 2010). The influential wavelengths 
located between 1000 and 2500 nm can be attributed to water, clay minerals and organic 
matter (Viscarra Rossel & Behrens, 2010). Using samples collected from Belgium and 
Northern France, Mouazen et al. (2006) compared the performance of two commercially 
available spectrophotometers with different wavelength ranges for the measurement of 
selected soil attributes including TC and TN. They found that the best accuracy was 
obtained when using a full wavelength range of 451-2459 nm, as compared to a short 
wavelength range of 401-1770 nm. Using samples collected from two depths along 11 km 
section of floodplain, Vohland and Emmerling (2011) reported that genetic algorithm (GA) 
allocated significant wavelengths most frequently to the range of 1970-2490 nm for soil OC, 
which is not particularly in line with those bands shown in Fig.7. One reason might be the 
use of farm-scale local set in our case in which the visible range associated with soil colours 
has the most influence on model calibration, whereas the NIR range has a smaller influence. 
This contradictory results against those published by others might be explained by the same  
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Fig. 7. B-coefficients curves obtained from PLSR analysis with the SNV-transformed Vis-NIR 
spectra for TN and OC, Center-&-Scale-transformed Vis-NIR spectra for TC, and raw Vis-
NIR spectra for IC. 

mineralogy of the data set originated from the same parent material in the current study, as 
compared to those using larger scale data sets (e.g. Mouazen, et al., 2006; Vohland & 
Emmerling, 2011). Although the prediction accuracy of IC did not satisfy with lowest 
quantification standard (RPD>2.0), the characteristic bands of carbonate in 2300 and 2500 
nm (Gaffey, 1986; Reeves III, et al., 2002; Viscarra Rossel & Behrens, 2010) can be clearly 
identified in its B-coefficients curve.  

3.3 DRIFT spectral analysis and model calibrations 

The procedure of analyzing DRIFT spectra was the same as that presented for Vis-NIR 
spectral analysis. 

3.3.1 DRIFT spectral response 

Figure 8 shows the representative DRIFT absorption spectra of samples from each soil 
texture class, e.g. sandy loam (field #D), clay loam (field #B) and clay (fields #C and #E), 
with high and low TC content. Obviously, the absolute magnitude and range of the DRIFT 
absorptions are much greater than those found for corresponding Vis-NIR spectrum (Fig.4). 
The DRIFT spectrum generally shows more distinctive spectral features than the Vis-NIR 
spectrum. The peaks between 3698 and 3620 cm-1 and various peaks below 1100 cm-1 are 
characteristic for kaolinite (Madari, et al., 2006). Soil organic matter also has characteristic 
absorption bands in the Mid-IR range (Table 5), however, due to its low concentration in the 
soil samples, and their overlapping with mineral peaks, most of these could not readily be 
identified by simple visual analysis of spectra. For example, the small bands around 2940-
2935 cm-1 and 2886-2877 cm-1 indicate the presence of organic aliphatic C-H stretching (Table 
5). This band is more evident in the spectra of soil samples having higher concentrations of 
organic carbon (Madari, et al., 2006). Other organic peaks overlap with the mineral peaks. 
Viscarra Rossel et al. (2006) has compared the usefulness of visible, NIR and Mid-IR diffuse  
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          (a)              (b) 

 
(c) 

Fig. 8. DRIFT absorption spectra of samples from each soil texture class with high and low 
TC content. Some dominant soil components and absorption peaks are shown for quartz 
(Q), organic compounds (OC), calcite (Ca), kaolinite (K), and the (OH) features of free water 
and lattice minerals (Viscarra Rossel, et al., 2006). 

reflectance spectroscopy by examining PLSR factor loadings weights. They showed that 

frequencies in the Mid-IR range corresponding to the absorption of organic compounds, like 
organic acids, or acidic functional groups, like alkyl, amide and aromatic groups, were 

indicators of correlation between organic carbon concentrations in the bulk soil samples and 
the Mid-IR spectra. 

3.3.2 PCA analysis for DRIFT spectra 

Figure.9a shows all Mid-IR spectra obtained by FT-IR spectrometer with DRIFT accessory. 

Figure 9 also shows the PCA scores plot for the DRIFT spectra, and residual X-variance for 

PC-1 and PC-2. PC-1 and PC-2 explains 83% and 14% of total variance contained in the 

spectra, respectively. The PC-1 axis may explain differences attributed to SOM content of the 

samples as the PC-1 was better correlated to TN, TC and OC (r=0.87~0.90) than to PC-2 

(r=0.15~0.21) (Table 3). Samples originated from different fields can be separated into two 

clusters according to soil types: one for Luvisol soils from Showground Field (#D) and 

another for Cambisol soils from Orchard (#B), Ivy Ground (#C) and Copse Field (#E),  
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Mid-IR band 

(cm-1) 
Assignments 

Vis-NIR wavelength 

(nm) 

3380 O-H stretching of phenolic OH  

3400-3300 O-H stretching (H bonded OH groups),   

3300 N-H stretching 1500,1000,751 

3030 Aromatic C-H strecthing 1650,1100,825 

2940-2900 Aliphatic C-H stretching  

2930,2850 Alkyl asymmetric-symmetric C-H stretching 
1706,1754,1138, 

1170,853,877 

2600 O-H stretching of H-bonded -COOH  

1725-1720 C=O stretching of –COOH and ketones 1930,1449 

1660-1630 

C=O stretching of amide groups (amide I band), 

quinine C=O and/or C=O of H-bonded conjugated 

ketones 

2033,1524 

1620-1600 
Aromatic C=C stretching and/or asymmetric –COO 

stretching 
 

1610 N-H stretching of Amine 2060 

1590-1517 
COO- symmetric stretching, N-H deformation+C=N 

stretching (amide II band) 
 

1525 Aromatic C=C strecthing  

1460-1450 Aliphatic C-H 2275,1706 

1400-1390 

OH deformation and C-O stretching of phenolic OH, C-

H deformation of CH2 and CH3 groups, COO- 

asymmetric stretching 

 

1350 
Symmetric COO- stretching and/or –CH bending of 

aliphatics 
 

1270 C-OH stretching of phenolic OH 1961 

1280-1200 
C-O stretching and OH deformation of COOH, C-O 

stretching of aryl ethers 
 

1225 C-O stretching and OH deformation of COOH  

1170-950 
C-O stretching of polysaccharides or polysaccharide-

like substances 
2137 

1170 
C-OH stretching of aliphatic OH, C-C stretching of 

aliphatic groups 
 

1050 C-O stretching of carbohydrates 2381 

830 Aromatic CH out of plane bending  

775 Aromatic CH out of plane bending  

Table 5. Absorption bands of C and N in organic bonds in the Mid-IR range (Madari, et al., 
2006) and corresponding wavelengths in the Vis-NIR range (Stenberg, et al., 2010) 
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          (a)                (b) 

 
           (c)                (d) 

Fig. 9. DRIFT absorption spectra of all samples (a), principal components analysis scores 
plot for the DRIFT spectra (b), residual X-variance for PC-1 (c) and PC-2 (d). 

although several samples from the field #B were mixed with former cluster. Samples from 
the field #A completely mixed together with the former cluster, although some of them 
belong to latter cluster. It seems that the soil type has no effect on samples separation into 
different classes but the texture diversity within the sample population used for calibration 
has clear effect (Madari, et al., 2006). Samples from the fields #C and #E are totally separated 
although they are of same clay texture. This is mainly due to their distinct SOM-related soil 
properties concentrations as different vegetations have been growing in both fields (soybean 
in the field #C with TN of 0.28±0.02%, TC of 2.94±0.23% and OC of 2.73±0.15%; wheat in the 

field #E with TN of 0.25±0.02%, TC of 2.62±0.15% and OC of 2.56±0.16%). No sample locates 

outside of the Hotelling T2 ellipse. Although sample A02 exhibits low residual X-variance 
for PC-1 (Fig.9c) which accounts for the most amount of variance in the DRIFT spectra, it 
displays large residual X-variance for PC-2 (Fig.9d). Also, in the raw spectrum, sample A02 
shows quite different from the others (Fig.9a). Thus, sample A02 was considered as a sample 
outlier and excluded from further investigation. 

3.3.3 DRIFT calibration models 

Table 6 summarizes the cross-validation results of the PLSR models developed with raw 
and various transformed DRIFT spectra against each soil property, e.g. TN, TC, OC and IC.  
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Spectral 
pretreatment 

method 

PLSR models calibrated for DRIFT spectra 

 

Total N Total C Organic C Inorganic C 

 

LVs R2 RPD LVs R2 RPD LVs R2 RPD LVs R2 RPD 

None 5 0.95 4.62 5 0.93 3.93 5 0.94 4.19 5 0.70 1.86 

SNV 4 0.94 4.29 5 0.94 3.93 4 0.94 4.06 3 0.68 1.82 

MSC 4 0.94 4.29 4 0.92 3.63 4 0.94 4.15 3 0.68 1.81 

BOC 5 0.95 4.62 6 0.94 4.10 5 0.95 4.25 4 0.71 1.88 

Center & Scale 5 0.95 4.62 5 0.93 3.88 5 0.94 4.25 4 0.71 1.89 

Normalization             

Maximum- 6 0.94 4.29 6 0.93 3.80 6 0.94 4.15 5 0.68 1.80 

Range- 6 0.94 4.62 6 0.93 3.85 6 0.94 4.22 5 0.69 1.84 

Mean- 5 0.94 4.29 6 0.93 3.85 5 0.94 4.12 5 0.67 1.78 

Quantile- 5 0.95 5.00 5 0.94 4.01 5 0.95 4.43 4 0.70 1.88 

De-trending             

1st- 4 0.94 4.62 4 0.94 4.04 4 0.95 4.35 4 0.70 1.86 

2nd- 5 0.94 4.62 5 0.93 3.83 5 0.95 4.32 3 0.67 1.79 

Derivative             

1st- 2 0.83 2.61 2 0.79 2.18 2 0.79 2.21 5 0.30 1.22 

2nd- 2 0.69 1.94 2 0.66 1.70 2 0.65 1.71 1 0.10 1.01 

Table 6. Cross validation result of PLSR models calibrated for raw and various transformed 
DRIFT spectra with 121 samples 

For raw spectra, PLSR models produced excellent prediction accuracy with R2 of 0.93~0.95 and 
RPD of 3.93~4.62 for TN, TC and OC. These models were calibrated with 5 latent variables. 
Coupled with proper spectral pre-processing techniques, model prediction was improved. For 
examples, the best model for soil TN produced prediction accuracy with R2 of 0.95 and RPD of 
5.00 using spectral pre-processing of quantile normalization. It was also effective for OC model 
improvement with R2 of 0.95 and RPD of 4.43. For TC, the best model was built using spectral 
transformation of BOC, although this model needed 6 latent variables. Figure 10 shows the 
correlation between the measured and PLSR-predicted values of each soil property. The linear 
fitting lines for TN, TC and OC are closer to 1:1 as compared to the corresponding plots for 
Vis-NIR spectra (Fig.6). DFIRT spectra outperformed Vis-NIR spectroscopy for the prediction 
of these three properties (Table 4 & 6). Even for IC, almost all PLSR models developed with 
raw and various transformed DRIFT spectra outperformed their counterparts for Vis-NIR 
spectra. Accuracy obtained for IC can be used to distinguish high and low content with 
RPD>1.5 (Table 6). These results suggest that PLSR models developed with DRIFT absorption 
spectra for predicting these soil properties are more accurate. 

3.3.4 B-coefficients analysis of PLSR models for DRIFT spectra 

B-coefficients curves obtained after PLSR analyses with the best transformed DRIFT spectra 
for each soil property are combined in Fig.11. The B-coefficients for TN, TC and OC exhibit  
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           (a)               (b) 

 
           (c)               (d) 

Fig. 10. Measured vs. predicted values of soil TN (a), TC (b), OC (c) and IC (d) based on 
DRIFT absorption spectra. 

strong similarity among them. This is mainly due to their high correlation obtained with 

reference values (r=0.97-0.99, Table 3). Overall, the most influential frequencies for 

predicting these soil properties locate in the wavenumber range from 2100 to 1200 cm-1. As 

indicated in Table 5, the peaks at around 1620-1558 cm-1 are for aromatic C=C stretching 

and/or asymmetric –COO stretching; the peaks at 1460 cm-1 and 1229 cm-1 are 

corresponding to Aliphatic C-H stretching and C-O stretching/OH deformation of COOH. 

Other significant wavebands can be found at round 2930 cm-1, corresponding to Aliphatic C-

H stretching. Interestingly, although the DRIFT-calibrated models are not accurate enough 

for IC quantification, the corresponding B-coefficients curve exhibits several distinctive 

frequencies for model calibration. The most influential frequency locates at around 1474 cm-1 

with two subordinate ones at 1795 cm-1 and 2513 cm-1, which are characteristic of existence 

of calcium carbonate (Reeves III, et al., 2002). Viscarra Rossel and Behrens (2010) found the 

carbonate of clay minerals in the NIR band of 2336 nm to be associated with the third 

overtones of CO戴貸態in MIR of 1415 cm-1. 

3.4 ATR-FTIR spectral analysis and model calibrations 

The procedure of analyzing ATR-FTIR spectra was the same as that presented for Vis-NIR 

and DRIFT spectral analysis. 
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Fig. 11. B-coefficients curves obtained from PLSR analyses with the transformed DRIFT 
spectra by quantile normalization for TN and OC, baseline offset correction for TC, and 
Center & Scale for IC. 

3.4.1 ATR-FTIR spectral response 

Figure12 shows the representative ATR-FTIR spectra of samples from each soil texture class 
with high and low TC content. Obviously, the absolute magnitude and range of the ATR-
FTIR light intensity are much lower than those for corresponding DRIFT spectra. Besides, 
the ATR-FTIR spectra of the samples present quite different shape together with absence of 
many characteristic peaks between 3000 and 1700 cm-1, compared to the corresponding 
DRIFT spectra of these samples. The peaks between 3696 and 3620 cm-1 and various peaks  

 

Fig. 12. ATR-FTIR spectra of samples from each soil texture class with high and low TC 
content. 
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below 1100 cm-1 might be characteristic for kaolinite (Madari, et al., 2006). However, most 
characteristic wavebands of soil organic matter presented in Table 5, due to their low 
concentrations in the soil samples and their overlapping with mineral peaks, could not 
readily be identified by simple visual observation. For example, the bands around 2940-2935 
cm-1 and 2886-2877 cm-1, indicating the presence of organic aliphatic C-H stretching (shown 
in DRIFT spectra, Fig.8), are nearly vanished. Although the ATR-FTIR spectra present severe 
deviations from corresponding DRIFT spectra, the light intensity in ATR-FTIR spectra 
exhibits strong correlation with particle size distribution. For example, samples of clay 
texture with fine particles present strongest light intensity, whereas samples with sandy 
loam texture with coarse particle size have lowest light intensity. The clay loam texture 
samples with middle size particles correspond to intermediate light absorption. For each soil 
texture class, the spectral difference due to high and low TC content is not apparent. All 
these spectra appear to be free from baseline offset. 

3.4.2 PCA analysis for ATR-FTIR spectra 

Figure 13 shows all Mid-IR spectra obtained by FI-IR spectrometer with ATR accessory 

together with the PCA scores plot for the spectra and residual X-variance for PC-1 and PC-2. 

PC-1 and PC-2 explained 98% and 1% of total variance of the spectra, respectively. The PC-2  

 
          (a)                 (b) 

 
             (c)                (d) 

Fig. 13. All ATR-FTIR spectra (a), principal components analysis scores plot for the ATR-
FTIR spectra (b), and residual X-variance for PC-1 (c) and PC-2 (d). 
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shows variation related to SOM of the samples as the PC-2 was better correlated to TN, TC 
and OC (r=-0.68~0.71) than to PC-1 (r=0.52~0.56) (Table 3). Samples originated from 
different fields can be divided into one cluster for Luvisol type soils (field #D) and another 
for Cambisol type soils (fields #B, #C, and #E). Although samples from the field #A are the 
mixture of Cambisol and Luvisol types, most of them locate within the former cluster. 
Samples from the fields #C and #E are hardly separated, although they are of the same soil 
texture of clay (Table 1). Compared to the samples D28, B04 and B10 located outside of the 
Hotelling T2 ellipse (Fig.13b), sample A02 exhibits large residual X-variance for PC-1 
(Fig.13c) and PC-2 (Fig.13d). Thus, sample A02 was considered as a sample outlier and 
excluded from further investigation. 

3.4.3 ATR-FTIR calibration models 

Table 7 summarizes the cross-validation results of PLSR models developed with the raw 
and various transformed ATR-FTIR spectra against each soil property. For raw spectra, 
PLSR models produced excellent prediction accuracy for TN, TC and OC with R2 of 
0.89~0.92 and RPD of 3.02~3.75. These models were developed with 6 latent variables. None 
of spectral pre-processing techniques adopted can effectively improve the prediction 
accuracy of these models. This might be due to absence of the baseline offset of spectra 
(Fig.12). For IC, all models can be used to distinguish high and low concentration with RPD  

 

Spectral 
pretreatment 

method 

PLSR models calibrated for ATR-FTIR spectra

 

Total N Total C Organic C Inorganic C 

 

LVs R2 RPD LVs R2 RPD LVs R2 RPD LVs R2 RPD 

None 6 0.92 3.75 6 0.89 3.02 6 0.89 3.10 6 0.71 1.91 

SNV 5 0.90 3.33 5 0.88 2.89 3 0.87 2.74 4 0.69 1.82 

MSC 5 0.90 3.33 4 0.87 2.75 3 0.87 2.74 4 0.69 1.82 

BOC 7 0.91 3.53 7 0.88 2.95 7 0.89 3.07 4 0.70 1.87 

Center & Scale 6 0.91 3.53 6 0.89 2.97 6 0.89 2.97 4 0.70 1.88 

Normalization   

Maximum- 5 0.90 3.33 5 0.87 2.79 5 0.87 2.78 5 0.70 1.85 

Range- 5 0.90 3.53 4 0.86 2.71 6 0.88 2.93 5 0.70 1.85 

Mean- 6 0.91 3.53 4 0.86 2.69 5 0.88 2.87 5 0.70 1.87 

Quantile- 7 0.91 3.75 6 0.88 2.89 6 0.89 3.00 4 0.70 1.87 

De-trending   

1st- 6 0.90 3.53 6 0.87 2.79 7 0.89 3.09 5 0.72 1.93 

2nd- 6 0.91 3.53 6 0.87 2.79 5 0.88 2.92 5 0.72 1.91 

Derivative   

1st- 4 0.88 3.16 4 0.85 2.60 4 0.86 2.69 5 0.71 1.91 

2nd- 3 0.78 2.31 3 0.75 1.99 2 0.74 1.98 7 0.60 1.61 

Table 7. Cross validation result of PLSR models developed with raw and various 
transformed ATR-FTIR spectra with 121 samples 
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           (a)               (b) 

 
           (c)               (d) 

Fig. 14. Measured vs. predicted values of soil TN (a), TC (b), OC (c) and IC (d) based on the 
ATR-FTIR spectra. 

of 1.61~1.93. Figure 14 shows the correlation between the measured and predicted values of 

each soil property. The linear fitting lines for TN, TC and OC are closer to the 1:1 lines as 

compared to the corresponding plots for Vis-NIR spectra (Fig.6a-c), but not so well as those 

for DRIFT spectra (Fig.10a-c). However, the linear fitting for IC is better than that for Vis-

NIR spectra (Fig.6d) and that for DRIFT spectra (Fig.10d). 

3.4.4 B-coefficients analysis of PLSR models for ATR-FTIR spectra 

B-coefficients curves of the PLSR models developed with the best transformed ATR-FTIR 
spectra for each soil property are compared in Fig.15. The B-coefficients for TN, TC and OC 

exhibit strong similarity among them. This is mainly due to the high correlation obtained 
with the reference values (r=0.97-0.99, Table 3). Overall, the most significant wavebands for 

predicting these soil properties locate in the wavenumber range between 1700 and 400 cm-1. 
As indicated in Table 5, the peaks at 1612-1551 cm-1 are for aromatic C=C stretching and/or 

asymmetric –COO stretching and the peaks at around 1050 cm-1 correspond to 
Polysaccharides. Other significant wavebands can be found at round 2925 cm-1, which 

correspond to Aliphatic C-H stretching. Interestingly, although the ATR-calibrated models 
are not accurate enough for IC quantification, its B-coefficients curve for IC exhibits several  
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Fig. 15. B-coefficients curves obtained from PLSR analysis with the raw spectra for TN, TC 
and OC, and the 1st-detrending-transformed spectra for IC. 

distinctive bands, similar to those obtained with DRIFT spectroscopy. The most significant 
band locates at around 1430 cm-1, which corresponds to calcium carbonate (CaCO3). 
However, compared to the B-coefficients curve for IC based on DRIFT spectra (Fig.11), two 
characteristic bands of CaCO3 at 1795 cm-1 and 2513 cm-1 disappear completely, which is 
mainly due to the weaker light response of ATR-FTIR spectra compared to DRIFT spectra. 

3.5 Model calibrations for combinational Vis-NIR-MIR spectra 

The raw Vis-NIR and Mid-IR spectra were combined to develop PLSR calibration models of 
soil TN, TC, OC and IC concentrations. Table 8 shows the cross-validation results of the PLSR 
models. For the Vis-NIR-ATR spectra, PLSR models produced excellent prediction accuracy 
with R2 of 0.89~0.91 and RPD of 3.00~3.75 for TN, TC and OC. By comparison, PLSR models 
calibrated for the Vis-NIR-DRIFT spectra achieved higher prediction accuracy than those with 
Vis-NIR-ATR spectra, with R2 of 0.93~0.95 and RPD of 3.83~4.62 for TN, TC and OC. For IC, 
PLSR model for Vis-NIR-ATR spectra was developed with 10 latent variables and validated  

 

Combinational 
spectra 

PLSR models calibrated for raw combinational Vis-NIR-MIR spectra 

 

Total N Total C Organic C Inorganic C 

 

LVs R2 RPD LVs R2 RPD LVs R2 RPD LVs R2 RPD 

Vis-NIR-ATR 5 0.91 3.75 5 0.89 3.00 6 0.91 3.42 10 0.69 1.83 

Vis-NIR-DRIFT 6 0.95 4.62 6 0.93 3.83 6 0.95 4.32 5 0.70 1.88 

Table 8. Cross validation result of PLSR models developed with raw Vis-NIR-MIR spectra 
with 121 samples 
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with R2 of 0.69 and RPD of 1.83, whereas PLSR model for Vis-NIR-DRIFT spectra calibrated 
with 5 latent variables performed better than Vis-NIR– ATR with higher prediction accuracy 
(R2 of 0.70 and RPD of 1.94). These models for combinational spectra performed slightly 
better than those for Vis-NIR spectra (Table 4). However, these models did not produce 
better performance than those for DRIFT spectra (Table 6) and ATR spectra (Table 7) with 
only exception of Vis-NIR-ATR models for OC with R2 of 0.91 and RPD of 3.42. 

3.6 Comparison of PLSR model performance among Vis-NIR, ATR-FTIR, DRIFT and 
combinational spectra 

As shown in Tables 4, 6 and 7, model performance is not only a function of wavelength 
ranges used during PLS regression analysis, but also a function of spectral pre-processing 
techniques. Overall, for TN, TC and OC, PLSR models calibrated for DRIFT spectra 
outperformed those for Vis-NIR spectra and ATR-FTIR spectra. For IC, both ATR-FTIR and 
DRIFT models outperformed Vis-NIR models no matter what spectral pre-processing 
techniques were applied. However, if coupled with appropriate spectral pre-processing 
techniques, Vis-NIR models for TN and OC can produce competitive prediction 
performance (R2>0.90 and RPD>3.0) with less number of latent variables (3 or 4) as 
compared to best ATR-PLSR models calibrated with 6 latent variables. For TC, ATR-FTIR 
models performed slightly better than Vis-NIR models. The lower accuracy for the 
calibration of IC compared to TN, TC and OC may be attributed to errors in the reference 
method for IC determination, since IC is calculated by difference between TC and OC. 

Researchers have reported that the particle size distribution within the soil sample population 
and also within each sample of the calibration set affects the accuracy of calibration for TC and 
OC both in Mid-IR and Vis-NIR (Madari, et al., 2006; Mouazen, et al., 2005, Yang, et al., 2011b). 
However, Vis-NIR proved to be more sensitive to particle size effects than the Mid-IR range 
(Madari, et al., 2006). Vis-NIR spectroscopy performed very well for a very homogenous 
sample population, even slightly better than Mid-IR, but with increasing heterogeneity among 
and within the soil samples the accuracy decreased drastically. By contrast, the particle size 
distribution had less effect in the Mid-IR range. For the very homogeneous sample population, 
the accuracy was slightly lower than Vis-NIR, but with the increase in the heterogeneity of the 
sample population the accuracy did not diminish drastically and was higher than using with 
Vis-NIR (Madari, et al., 2006). Thus Mid-IR spectroscopy coupled with appropriate 
chemometrics can be considered to be more robust than Vis-NIR.  

3.7 Fundamentals of predicting N in soil 

Soil N content is often highly correlated with C (Martin, et al., 2002). For example, Chang, et 
al. (2001) reported r of 0.95 between TC and TN. In this study, the mean (±s.d.) values of 

TC/TN and OC/TN are 10.6(±0.59) and 9.95(±0.52), respectively (Table 2). It is an interesting 

point to explore whether there is an independent spectral basis for the determination of N in 
soil by infrared (IR) spectroscopy or whether N is predicted through high correlation with 
C. In the work by Chang and Laird (2002), in which C and N were added to a soil resulting 
in a wide range of C-to-N ratios, N was proved to be predicted in soil independently of C. 
Although the N absorbers are present in the soil spectra, their absorbance is not as strong as 
that of C bonds, as the mass of C in soil is generally an order of magnitude higher than that 
of N (about 10 times in our case). Thus, Martin et al. (2002) explained that N is predicted best 
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on its correlation with C if a high C-to-N correlation exists. In the current study, the 
excellent prediction of TN might be due to its high correlation with TC or OC (r=0.97-0.99) 
(Table 3), which can be proved by the similar distribution of their B-coefficients curves for 
Vis-NIR spectra (Fig.7), DRIFT spectra (Fig.11), and ATR-FTIR spectra (Fig.15). 

4. Conclusions 

The Mid-IR spectroscopy, including ATR and DRIFT, and Vis-NIR spectroscopy were 
implemented for the prediction of soil TN, TC, OC and IC. Results proved that both Vis-NIR 
and Mid-IR when combined with chemometric methods have great potential to quantify soil 
N and C at the field scale. It was also shown that DRIFT is more robust than Vis-NIR or ATR 
in terms of prediction accuracy. Although the Mid-IR spectra holds more information and 
usually easier to interpret as compared to Vis-NIR spectra with overtones and combinations 
features, until recently the MIR instruments are less portable and born to easier damage of 
optical materials. In contrast, the Vis-NIR has some advantages related to portability, mobile 
(on-line) measurement, remote sensing and others. This study suggests that Vis-NIR 
spectroscopy, if coupled with proper spectral pre-processing techniques, has the potential 
for successful prediction of soil N and C, although the combination and overtone peaks in 
the Vis-NIR spectral range are usually weak. 
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