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1. Introduction  

The transmissible spongiform encephalopathies (TSEs) constitute a family of fatal, 
neurodegenerative diseases, including scrapie in sheep, chronic wasting disease (CWD) in 
deer and elk, bovine spongiform encephalopathy (BSE) and a range of human disorders, such 
as Creutzfeldt-Jakob disease (CJD), kuru and fatal familial insomnia. The archetypal TSE 
disease is scrapie of sheep and goats, which has been present in the UK flock for over 200 years 
as a result of both horizontal and vertical transmission. The most prevalent TSE disease of 
humans is sporadic Creutzfeldt-Jakob disease (spCJD), which affects 1-3 individuals per 
million worldwide. A new form of CJD, known as variant CJD (vCJD), was diagnosed in 
humans in the mid 1990s and it is likely that vCJD was contracted by consumption of 
contaminated beef, since this disease is indistinguishable from BSE on transmission to a panel 
of mice (Bruce et al., 1997). To date, there have been 175 cases of vCJD in the UK and a further 
49 cases across 11 other countries (www.eurocjd.ed.ac.uk, data correct as of Aug 2011).  

During pathogenesis of TSE disease the principal molecular event is the conformational 
rearrangement of a normal, host protein called the prion protein. The normal form of the 
prion protein, PrPC, misfolds to a form known as PrPSc. PrPSc is insoluble and partially 
resistant to digestion by proteolytic enzymes that would usually recycle incorrectly folded 
proteins. PrPSc therefore accumulates in proteinaceous aggregates, including plaques and 
fibrils. The prion protein is ubiquitously expressed, but is most abundant in the central 
nervous system (CNS). Hence accumulation of PrPSc occurs principally in the brain, but 
peripheral lymphoreticular tissues can also accumulate proteinaceous deposits. The prion 
hypothesis suggests that PrPSc is the infectious agent in TSE diseases and that it catalytically 
causes nascent PrPC molecules also to misfold (Prusiner, 1998). TSEs exist as discrete strains 
of disease, which can be stably passaged in suitable hosts resulting in differences in 
incubation time, clinical signs and pathology. It is suggested that PrPSc exists in different 
conformations, which encode the information necessary to transmit each disease and cause 
the strain-specific pathology (Prusiner, 1998). As a result of the critical involvement of the 
prion protein in TSEs, these disorders are also known as prion diseases. 
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At clinical end point of TSE disease, there is characteristic vacuolation in various areas of the 
brain, the exact locations of which depends on the infecting strain. Loss of neurons can also 
be detected at late stages of disease as can alterations in membrane morphology. Several 
excellent reviews cover neuropathology of animal (Jeffrey et al., 2011) and human (Kovacs & 
Budka, 2009) diseases that is evident on post mortem examination. In general, there are 
good correlations between disease, neurodegeneration and prion protein aggregation in 
many TSE diseases, which has led to suggestions that PrPSc-containing aggregates are 
directly toxic to neurons. In vitro studies largely support this conjecture, but the evidence in 
vivo is less convincing. Even assuming that a misfolded form of the prion protein is 
responsible for neurotoxicity, the mechanisms that initiate the cascade leading to neuronal 
loss are unknown. It is also unknown whether loss of function of PrPC, as it is sequestered 
from the cell surface into proteinaceous aggregates, plays a role in rendering neurons 
susceptible to degeneration. Reactive astrocytosis is evident during the clinical phase and 
whilst time course studies have also suggested that astrocytes are activated at earlier stages, 
it is not known to what these cells are responding. In this chapter we review briefly the state 
of knowledge of the processes leading the neurodegeneration in TSE diseases, with a 
particular focus on the earliest detectable events.  

2. Early morphological events in TSE-induced neuronal loss 

In both prion diseases and other neurodegenerative disorders, the mechanisms leading to 
neurodegeneration remain particularly poorly understood. As mentioned above, the clinical 
phase of a variety of natural prion diseases has been studied, which has produced 
descriptions of the targeting of pathology, including the localisation of PrPSc deposits and of 
characteristic vacuolation and spongiform alterations. Substantial neuronal loss occurs by 
terminal endpoint, but it has become clear that loss of neurons is a relatively late 
development in the progression of pathology. In common with other neurodegenerative 
diseases, at later time points there are characteristic abnormalities in a range of normal 
neuronal molecular processes; this includes defects in ion homeostasis, aberrant 
mitochondrial morphologies and function, increased production of reactive oxygen species, 
endoplasmic reticulum stress and reduced proteasome function. Many of these homeostatic 
defects are thought to drive each other and it is therefore not clear which, if any, is the 
initiating factor. Thus, gross defects in several biochemical pathways represent the end 
stages of disease, but to determine causal mechanisms, it is necessary to describe in 
molecular and morphological detail the earliest stages of the neurodegenerative process. In 
naturally-contracted diseases, such descriptive studies are frequently not possible because 
(i) it is difficult to diagnose disease in advance of clinical signs (ii) outbred animals and 
humans can show significant variability in specific responses to disease and (iii) it is often 
impossible to know how and when individuals became infected. To remedy this situation, 
much use has been made of rodents as models of prion disease; C57BL/6 mice infected with 
the ME7 murine scrapie strain is the experimental system that has been studied in the 
greatest detail. There are clear advantages in using experimental prion diseases as a model, 
since the disease begins and ends at defined points (inoculation and death) and the 
homogeneity afforded by inbreeding produces standardised results. One caveat to murine 
models is that it appears that not all aspects of TSE disease in rodents are replicated in 
natural disease of large animals (Jeffrey et al., 2011). Nevertheless, some key findings from 
study of ME7 infection of mice are depicted graphically in Figure 1 and discussed below. 
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Fig. 1. Schematic timeline, in weeks, of pathological and behavioural events during infection 
of C57BL/6 mice with the mouse-passaged prion stain ME7. Information contained in this 
figure has been abstracted from multiple publications, referenced in section 2. 

2.1 Synaptic degeneration precedes neuronal loss in prion disease 

Recent studies of the pathogenesis of the ME7 strain of murine scrapie have allowed the 
identification of synaptic deficits within the hippocampus of C57BL/6 mice that occur well 
before neuronal loss can be observed (Betmouni et al., 1999, Cunningham et al., 2003, 
Guenther et al., 2001, Jeffrey et al., 2000). From roughly half way though the incubation 
period, synaptic deficits can be characterised at a molecular level by a loss of integral 
synaptic vesicle proteins and reduced synaptophysin staining (Cunningham, et al., 2003, 
Cunningham et al., 2005, Gray et al., 2009). Importantly, molecular changes appear to 
correlate with functional deficits, since electrophysiological abnormalities have also been 
observed within a similar timeframe (Chiti et al., 2006). At week 12, an accumulation of 
electron rich material within the pre-synapse in the CA1 region of the hippocampus was 
observed by use of electron microscopy, specifically between CA3 pre-synapses and CA1 
post-synaptic densities within the Schaffer-Collateral pathway (Siskova et al., 2009). As the 
disease progressed, a distinct curvature of the post-synaptic densities around the 
degenerating pre-synapses could be visualised (Siskova, et al., 2009), potentially an attempt 
to maximise synaptic transmission. In addition, a loss of perineuronal nets surrounding 
GABAergic interneurons of the hippocampus coincided with a reduction in synaptic 
plasticity at early time-points (week 11/12) (Franklin et al., 2008). Early synaptic changes are 
a feature of other strains of murine disease, suggesting that these events may be early 
pathological markers of a TSE infection (Siso et al., 2002), at least in rodents. Synaptic 
dysfunction also appears to be a consistent, early pathological sign in many other 
neurodegenerative diseases, but there are suggestions that the exact morphological changes 
seen may differ depending on whether the insults to synapses are caused by processes 

www.intechopen.com



 
Miscellanea on Encephalopathies 

 

72

leading to intra- or extra-cellular protein deposits. In addition, synaptic dysfunction in prion 
diseases differs from that seen during Wallerian degeneration in the periphery, in which 
axons are dissected or otherwise compromised and presynapses retract (Gillingwater et al., 
2003). In prion diseases, loss of synapses appears to be followed by a retraction of the 
dendritic spine, but whether loss of any given synapse impacts on neighbouring synapses 
and ultimately on the respective cell body remains to be determined.  

The early loss of synapses in prion disease must occur in response to a disease-associated 
molecular event or biochemical pathway. It is possible that this event may be the beginnings 
of the misfolded protein cascade, since in C57BL/6 mice infected with ME7 scrapie the 
accumulation of PrPSc can be detected at week 8, before the first observable signs of synaptic 
defects. The first deposits of abnormal PrP accumulate in the dentate gyrus of the 
hippocampus, subsequently spreading to encompass the CA3 sub-region of the 
hippocampus (Gray, et al., 2009). This suggests a progression of PrPSc formation along the 
Mossy-Fibre pathway, connecting the dentate gyrus and CA3 field, and a subsequent 
pathological dysfunction of CA3 neurons leading to degeneration of CA3 pyramidal cell 
pre-synapses in the CA1 region along the Schaffer-Collateral pathway. In the majority of 
prion diseases that have been studied in detail, PrPSc accumulation is one of the earliest 
detectable pathological signs and precedes, or is concurrent with, cellular or synaptic 
changes. These results suggest a causative correlation between the initial signs of PrP 
conversion and synaptic dysfunction. This raises the question of whether neurodegenerative 
processes are also similar in other prion disease models, particularly those that have small 
quantities of misfolded PrP present at the clinical end point (Barron et al., 2007). In the 
majority of cases, time course studies of such disease models have not been performed in 
sufficient detail to dissect the earliest pathological events. It is clear, nevertheless, that 
synaptic dysfunction and degeneration occur well before neuronal loss is observed in TSEs.  

2.2 The role of glia in prion disease-induced neurodegeneration 

Although neuronal death in TSEs is the most widely recognised pathological manifestation 
at a cellular level, alterations in non-neuronal cells are also apparent occurring alongside the 
first obvious signs of PrPSc accumulation in the brain. Reactive astrogliosis, exemplified by 
up regulation of Gfap, can be seen in various areas of the brain (Betmouni et al., 1996, 
Cunningham, et al., 2003). An increased understanding of astrocytes suggests that these cells 
have an integral role in maintaining homeostatic functions within the CNS (Butt et al., 1994, 
Chang Ling & Stone, 1991, Ransom et al., 2003, Robinson & Dreher, 1989, Slezak & Pfrieger, 
2003). Astrocytic processes come into close contact with synapses (Bushong et al., 2004, 
Grosche et al., 1999) forming a ‘tripartite’ between the pre and post synaptic elements and 
the fine astrocytic processes (Araque et al., 2009). Astrocytes can undergo excitatory 
mediated release of chemical neurotransmitters as a result of increases of intracellular Ca2+ 
concentrations in the astrocyte cytoplasm (Kreft et al., 2009). Reactive astrogliosis is thought 
to play a neuroprotective role during acute brain injuries, for example during cerebral 
ischemia (Pekny et al., 2008), but it is not clear whether the activation of astrocytes is also 
neuroprotective during chronic infections, such as TSE diseases.  

Microglia also exhibit an activated morphology prior to and concurrent with 
neurodegeneration, however, this doesn’t appear to represent the classic inflammation one 
may expect during infection with classical pathogens (Perry et al., 2002). Instead, a concept 
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of ‘microglial priming’ is thought to occur. Activated microglia produce an anti-
inflammatory phenotype in response to ongoing TSE pathology, but subsequent systemic 
insults can elicit a rapid inflammatory response, initially by increases in IL-1┚ (Perry et al., 
2007, Perry et al., 2003). Since the microglial response is not associated with classic 
inflammation, the role that these cells play in neurodegenerative disease remains unknown. 
It has been hypothesised that microglia have a neurotoxic role in neurodegeneration (Block 
et al., 2007) but other studies suggest microglia could be neuroprotective (Solito et al., 2010). 
There are also suggestions that microglia are not involved in the neurodegenerative process 
at all, but that degeneration is a neuron-autonomous process, at least at early stages (Perry & 
O'Connor, 2010). For both astrocytes and microglia, it remains unknown what these cells are 
responding to and whether this response aids or is detrimental to neuronal health. 
However, their activation at around the time that PrPSc deposition can first be observed 
suggests that they respond to the ongoing conversion process, to the accumulation of PrPSc 
itself or to the changes that PrP conversion and/or PrPSc deposition elicits in cellular 
mechanisms or synaptic morphology, plasticity and function. Mice in which PrPC expression 
is restricted to astrocytes are susceptible to TSE infection (Raeber et al., 1997) suggesting that 
these cells are important in replication of PrPSc as well as in responding to its presence. In 
many studies using the ME7 murine scrapie strain, there exists strong correlations between 
the initial accumulation of PrPSc and neurodegeneration suggesting a key role for misfolded 
PrP in the mechanism of neuronal degeneration. This raises the key question of whether 
abnormal PrP isoforms are neurotoxic and, if so, what their molecular structures are. 

3. Molecular mechanisms underlying degeneration of neurons 

Prion protein deficient mice are resistant to TSE infection (Bueler et al., 1993, Manson et al., 
1994b), demonstrating that PrPC is required for disease. However, it is unclear what 
property of PrP is important for pathology: whether the PrPSc that accumulates during 
disease is actually toxic to neurons directly, whether the loss of PrPC plays a role in 
rendering neurons susceptible to toxic insults (either involving PrPSc or not) or whether the 
ongoing process of agent replication compromises normal neuronal homeostasis. Although 
PrPSc accumulation appears to precede neuronal loss in ME7 scrapie, there are reasons to 
suggest that the accumulation of misfolded PrP is not responsible for neurotoxicity directly. 
For example (i) neurons which lack PrPC do not degenerate in the presence of infected graft 
tissue rich in PrPSc (Brandner et al., 1996) and (ii) a variety of models exist in which levels of 
PrPSc and neuronal loss are poorly correlated (Barron, et al., 2007, Baumann et al., 2007, 
Chiesa et al., 1998, Flechsig et al., 2003, Hegde et al., 1998, Lasmezas et al., 1997, Li et al., 
2007, Ma et al., 2002, Muramoto et al., 1997, Piccardo et al., 2007, Shmerling et al., 1998). But 
if classical PrPSc is not neurotoxic, then what is the toxic species? 

3.1 Neurotoxicity of different aberrantly folded PrP isoforms 

Considerable morphological heterogeneity can be observed in the protein deposited in vivo 
and recombinant PrP (recPrP) also exhibits conformational flexibility in vitro. There are also 
reports of aberrant cell biological behaviour of PrPC at various stages of its cellular life-cycle, 
as depicted in figure 2, and these factors make pinpointing the neurotoxic entity rather 
challenging. Recent studies seem to support the idea that relatively small, (pre-fibrillar?) 
oligomeric protein species are highly neurotoxic (Bucciantini et al., 2002, Caughey & 
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Lansbury, 2003, Novitskaya et al., 2006, Simoneau et al., 2007, Zhang et al., 2010) and this 
appears true not just for prion diseases but also for other neurodegenerative protein 
misfolding diseases, further suggesting that common mechanisms of neurodegeneration 
may exist. RecPrP preparations have been used to investigate what the mechanisms 
underlying neuronal death may be, but in vitro studies such as these come with their own 
set of limitations. Nevertheless, a consensus from several studies suggests that oligomeric 
protein assemblies physically disrupt cellular membranes affecting the calcium levels within 
the cell (Sanghera et al., 2008, Simoneau, et al., 2007, Zhang, et al., 2010). This may occur by 
the insertion of oligomers into the phospholipid membrane (Kayed et al., 2004) and, since 
the plasma membrane is accessible to both intracellular and extracellular proteins, 
perturbation of the membrane may provide a mechanistic link between protein misfolding 
diseases that are associated with either intra- or extracellular deposits. An alternative theory 
is that functional structures, composed of oligomeric proteins, form within the lipid bilayer. 
These structures appear to act as relatively porous ion channels, affecting the cellular 
membrane potential and ionic homeostasis, leading to apoptosis (Quist et al., 2005).  

In contrast to oligomers, fibrillar aggregates of recPrP have shown variable toxicity in vitro: 

some researchers have found that fibrils are not toxic to cells (Simoneau, et al., 2007), 

suggesting that fibril formation in vivo is a protective mechanism or an “end-point” in the 

misfolding pathway (Caughey & Lansbury, 2003, Silveira et al., 2005). Conversely, other 

studies have shown fibrils to be just as toxic as oligomers (Novitskaya, et al., 2006), but since 

protein preparations are generally not extensively characterised prior to incubation with 

cells in vitro, it is possible that differences in protein structure may account for these 

inconsistencies. Although fibrils are typically perceived to be rather inert, it is also 

conceivable that smaller species could fragment from fibrillar aggregates, which may then 

possess the neurotoxic properties of oligomers (Tanaka et al., 2006). A study using A┚ fibrils 

showed that interaction of the fibrils with lipids led to fragmentation, forming oligomers 

which were highly toxic (Martins et al., 2008). Thus the toxicity of amyloid fibrils may be 

inversely proportional to their stability. However, Novitskaya et al. showed that fibrils 

composed of recPrP caused cells to aggregate and subsequently undergo apoptosis, an effect 

that wasn’t seen for oligomers in the same experiments (Novitskaya, et al., 2006). This 

aggregation was reduced when PrPC was down-regulated, suggesting a role for PrPC in 

mediating toxicity. There have also been recent reports that PrPC is required for the toxicity 

exhibited by a range of molecular species (Resenberger et al., 2011a).  

PrPC is expressed heavily at synapses and the misfolding process may initiate in and around 

the synaptic cleft. This localises all relevant molecular species in the compartment in which 

the first morphological changes are detected, but this is still someway short of proving that 

abnormal PrP is neurotoxic. Through ongoing studies in our laboratories, we are 

endeavouring to dissect the relationship between PrPSc, infectivity, neurotoxicity and 

mechanisms of neurodegeneration (Barron, et al., 2007, Bradford et al., 2009, Cancellotti et 

al., 2010, Cancellotti et al., 2005, Manson et al., 2001, Piccardo, et al., 2007, Tuzi et al., 2008, 

Tuzi et al., 2004). Through the use of several unique models of prion disease in mice, we are 

beginning to accumulate evidence suggesting that the levels of infectivity are not always 

dependent on the quantity of misfolded PrP present (Barron, et al., 2007, Piccardo, et al., 

2007). In conjunction with studies on the neurotoxicity of misfolded recombinant prion 

proteins, this leads to the theory that specific subpopulations of PrP conformations represent 
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either the infectious or neurotoxic agents of TSEs (Weissmann, 1991). The role of PrPC in 

neuronal toxicity is still controversial and prompts the question of whether a reduction in 

the levels of PrPC on the cell surface, as it is converted into PrPSc, is a critical factor in prion 

disease-specific neurodegeneration. 
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Fig. 2. Normal cell biology and putative misfolding pathways of PrP leading to toxicity. The 

prion protein is expressed in the secretory pathway and, after transiting the endoplasmic 

reticulum and Golgi apparatus, the protein is trafficked to the cell surface (A). Here it resides in 

specialised microdomains known as lipid rafts (B) but must move out of these domains to 

undergo endocytosis (C), presumably mediated by a cell surface receptor. After endocytosis 

PrPC is routed on the endosomal pathway (D). Both the cell surface and the endosomal pathway 

have emerged as candidate locations for prion protein misfolding to intra- and/or extra-cellular 

oligomers or fibrils. After trafficking through endosomes, a proportion of the protein can be 

degraded, whilst some of it is routed back to the cell surface (E). Over-expression of PrPC results 

in its localisation in mitochondria (F) whilst blockade of proteasome function leads to 

cytoplasmic accumulation (G). Both processes may follow retrograde transport of PrP from the 

ER by endoplasmic reticulum associated degradation (ERAD) processes. 

3.2 Does loss of PrP
C
 function play a role in neurodegeneration?  

The failure to infect prion protein knockout mice demonstrated conclusively that PrPC is 
needed to sustain prion disease (Bueler, et al., 1993, Manson, et al., 1994b). These animals 
were also expected to inform on PrP function, but initial observations suggested that 
knockout mice developed normally (Bueler et al., 1992, Manson et al., 1994a). More in depth 
studies have highlighted a range of subtle and not so subtle alterations, including abnormal 
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circadian rhythms (Tobler et al., 1996), defects in long term potentiation (Curtis et al., 2003, 
Maglio et al., 2006) and abnormalities of mitochondrial numbers and morphologies (Miele et 
al., 2002). From additional studies, primarily in cells lacking PrPC, there have been 
suggestions that PrPC has roles in copper binding and trafficking (Brown et al., 1997), the 
response to reactive oxygen species (Brown et al., 1999), neuritogenesis (Graner et al., 2000, 
Lopes et al., 2005) and calcium homeostasis (Colling et al., 1996, Fuhrmann et al., 2006, 
Herms et al., 2001). A key recent finding in PrPC knockout mice was defects in the 
maintenance of the myelin sheath surrounding peripheral nerves, a phenotype that 
appeared specifically to result from depletion of PrPC from neurons (Bremer et al., 2010). 
Thus, prion protein knockout mice have a range of physiological phenotypes primarily 
related to neuronal functions and this has led to a consensus that PrPC is a neuroprotective 
molecule, although it is not clear how, specifically, this neuroprotection is manifest 
(Resenberger et al., 2011b). A thorough review of prion protein function is beyond the scope 
of this chapter but, in the context of TSE disease, a key question is whether the loss of a 
neuroprotective function of PrPC plays a role in neurodegenerative mechanisms. Some 
intriguing observations came from experiments in which tissue from PrP-expressing mice 
was grafted into the brains of PrP knockout mice. After intracerebral prion infection, the 
grafted tissue developed pathology typical of prion disease, including PrPSc deposition, 
neuronal loss and vacuolation (Brandner, et al., 1996). However, despite PrPSc spreading 
from the grafted tissue into the surrounding brain area, no loss of PrP-null neurons was 
observed. These data strongly suggest that PrPSc is not neurotoxic in the absence of PrPC 
expression in neurons, results that were backed up by experiments in which PrPC expression 
in neurons was conditionally turned off in mice during an ongoing prion infection (Mallucci 
et al., 2003). Further evidence comes from infection of PrPC-GPI-/- mice (discussed further 
below), which do not express PrPC on the surface of neurons or indeed any neural cells 
(Chesebro et al., 2005). In GPI-/- mice, significant levels of PrPSc accumulated during disease 
but neuronal loss was not observed. These lines of evidence suggest that PrPC loss does not 
play a role in neurotoxicity and actually suggests the contrary – that normal neuronal PrPC 
expression is required for neurotoxicity (Resenberger, et al., 2011a). 

Contradictory evidence comes from studies in PrPC-null mice transgenically expressing 

hamster PrPC exclusively on astrocytes; these mice were capable of supporting hamster-

passaged prion disease and developed clinical signs, indicating that neuronal PrPC was not 

necessary for neuronal degeneration (Raeber et al., 1997). In the same studies, astrocytic 

hamster PrPC was expressed in mice in addition to wild type murine PrPC and these mice 

propagated hamster prion infectivity but did not develop disease, suggesting a role for 

mouse PrPC in protecting neurons from the toxicity of PrPSc. There are also several studies 

demonstrating that the toxicity of prion-related polypeptides is independent of the 

expression of PrPC on neurons. Hence, the role of PrPC in neurotoxicity is not clear and 

further understandings of how misfolded proteins can lead to synaptic degeneration and/or 

neurodegeneration will require a closer relationship between in vivo and in vitro studies. It 

seems likely that the initiation and progression of pathology leading from synaptopathy to 

neuronal loss requires a combination of (i) interaction of PrPSc with the synaptic 

membrane/vesicle membranes (ii) ongoing PrPSc propagation (iii) loss of PrPC function and 

(iv) extracellular toxic PrPSc deposits. Since misfolding of PrP is required for the pathology 

associated with TSE disease, understanding the factors that aid this process will also aid our 

understanding of neurotoxicity and neuronal loss. 
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4. The mechanisms of prion protein misfolding leading to neuronal loss 

The prion protein is an obligatory component of TSE disease and its misfolding appears 
central to disease pathogenesis. Understanding how protein misfolding leads to pathology 
is of crucial importance but it is extremely challenging to study mechanistic aspects of 
protein folding and misfolding in vivo, hence in vitro studies have contributed almost all 
knowledge that currently exists in this area. This has involved solving and/or modelling 
structures of normal and aberrant forms of PrP and modelling the structural transition. The 
normal form of the protein has been investigated by use of recombinant prion proteins 
expressed in prokaryotic systems and refolded in vitro. The atomic level structures of such 
isoforms have been defined by both nuclear magnetic resonance (NMR) spectroscopy, for a 
range of different prion proteins e.g. (Calzolai et al., 2005, Christen et al., 2008, Gossert et al., 
2005, Lysek et al., 2005, Perez et al., 2010, Wuthrich & Riek, 2001), and X-ray crystallography 
for sheep (Eghiaian et al., 2004, Haire et al., 2004) human (Antonyuk et al., 2009, Knaus et al., 
2001, Lee et al., 2010) and rabbit proteins (Khan et al., 2010). These studies found that the C-
terminal region of PrP has globular structure (depicted in Fig 3) and NMR investigations of 
native PrPC purified from cattle brains confirmed these structural assignments (Hornemann 
et al., 2004).   

 

Fig. 3. The tertiary structure of PrPC with two average sized N-linked glycans added at the 
two N-linked consensus sites (human numbering), to scale, demonstrating the contribution 
that these moieties make to the total volume of the prion protein 

By contrast, the N-terminal region appears dynamically disordered. This domain incorporates 
4-5 glycine-rich octapeptide repeats, which bind copper ions in vitro (Nadal et al., 2009, 
Pauly & Harris, 1998, Whittal et al., 2000, Wong et al., 2000a) and possibly in vivo (Brown, et 
al., 1997, Waggoner et al., 2000) and the region also mediates the binding of PrPC to 
polyanionic compounds (Brimacombe et al., 1999). Although the N-terminal domain has 
been reported to be flexibly disordered, there have also been several reports of polyproline 
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II structure in this region (Blanch et al., 2004, Gill et al., 2000, Taubner et al., 2010). The N-
terminal region is present in the majority of PrPSc in diseased brains (Hope et al., 1986), but 
it seems to be dispensable for disease-specific misfolding, since transgenic mice expressing 
protein lacking the N-terminal domain are fully susceptible to disease (Fischer et al., 1996). 
The globular C-terminal region incorporates two consensus sites for N-linked glycosylation, 
a single disulphide bond and a glycosylphosphatidyl inositol (GPI) membrane anchor is 
appended to the extreme C-terminus. After conversion of PrPC to PrPSc, the C-terminal 
domain is resistant to protease digestion, indicating that it is this section of the protein that 
undergoes conformational change during prion protein misfolding. 

By contrast to PrPC, atomic level detail of PrPSc tertiary structure is lacking, which is a result 
of the insolubility of PrPSc-containing aggregates and the heterogeneity of morphologies of 
these aggregates. The structure of PrPSc has been probed by use of several low resolution 
techniques and Fourier-transform infra red (FT-IR) spectroscopic analysis suggests that the 
transition from PrPC to PrPSc is associated with a partial increase in ┚-sheet structure 
(Caughey et al., 1991). Initially it was proposed that the second and third ┙-helices are not 
misfolded and theoretical structures followed, the most detailed of which is based upon 
empirical structural investigations by electron crystallography (Govaerts et al., 2004, Wille et 
al., 2002). However, recent data from hydrogen/deuterium-exchange experiments in 
conjunction with mass spectrometry has cast doubt on the existence of ┙-helical sections in 
PrPSc (Smirnovas et al., 2011). Instead, H/D exchange rates in PrPSc appear consistent with 
formation of ┚-sheet across the entire C-terminal domain, a result that challenges 
conventional wisdom of PrPSc structure. The problems associated with solving the structure 
of PrPSc appear insurmountable, at least at the present time and we are more likely to derive 
useful information from reasonable models of PrPSc. 

4.1 Misfolding of PrP can be modelled in vitro 

The structural transition from PrPC to PrPSc can be mimicked in vitro by a variety of 
techniques and this has allowed various determinants of protein misfolding to be 
investigated. By mixing together PrPSc and recPrP expressed in mammalian cell lines to 
result in newly protease resistant PrP (PrPRes) the group of Byron Caughey showed that 
PrPSc can auto-catalytically seed the conformational conversion of recPrP (Kocisko et al., 
1994). This technique was termed the cell free conversion assay (CFCA) and it was 
subsequently shown to mimic many aspects of disease seen in vivo, including species 
barriers (Kirby et al., 2003, Kocisko et al., 1995) and the inhibitory effects of specific 
chemicals (Caughey et al., 1998, Demaimay et al., 2000, Demaimay et al., 1998). Quantifying 
conversion efficiency allows insights into mechanistic aspects of conversion: for example, 
there are two distinct phases of prion protein conversion – binding followed by 
conformational alteration (Horiuchi & Caughey, 1999) – and single amino acid substitutions 
were shown to dramatically affect the efficiency of conversion of the substrate (Bossers et al., 
1997, Eiden et al., 2011, Kirby et al., 2010, Kirby et al., 2006). Furthermore, use of microsomes 
containing PrPSc and PrPC in CFCA reactions indicated that the two proteins must be in the 
same vesicle for conversion to take place (Baron et al., 2002).  

More recently, a second generation of in vitro prion misfolding assays has arisen, principally 
in response to the need for improved prion diagnostics. By the use of exogenous sources of 
energy to agitate the classical CFCA reaction, coupled with replenishment of the substrate, 
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conversion efficiencies can be dramatically enhanced. Conversion reactions driven by 
sonication or shaking have been developed and include methods known as protein misfolding 
cyclic amplification (PMCA) (Saa et al., 2006, Saborio et al., 2001), quaking induced conversion 
(QuIC) (Atarashi et al., 2011, Atarashi et al., 2008) and amyloid seeding assay (ASA) (Colby et 
al., 2007). The PMCA technique has also been shown to be capable of creating prion infectivity 
de novo from PrPC substrate in the absence of a PrPSc seed (Castilla et al., 2005). The protocols 
for CFCA, PMCA or QuIC assays differ in detail but generic principles underlie all such 
assays, as depicted in figure 4. In all cases a catalytic seed of PrPSc causes misfolding of a 
substrate, and this phenomenon firmly establishes that auto-catalytic, templated misfolding is 
a generic process in prion diseases. In addition to sources of physical energy, believed to aid 
fragmentation of large fibrils thereby generating fresh seed, many of the prion amplification 
techniques also require facilitation with other factors to amplify both infectivity and misfolded 
protein (Deleault et al., 2007, Wang et al., 2010). In this context, it is notable that several 
techniques exist to misfold recPrP in the absence of a physiological seed. Pathways leading to 
fibrils (Baskakov et al., 2002, Stohr et al., 2011) or oligomers (Rezaei, 2008, Tahiri-Alaoui et al., 
2004, Tahiri-Alaoui et al., 2006) have been described, where misfolding is promoted by 
partially denaturing conditions. These processes occur comparatively rapidly and generally do 
not replicate features of disease, such as species barriers (Makarava et al., 2007) or 
polymorphic control of susceptibility (Baskakov et al., 2005, Kirby, et al., 2010), and also do not 
appear to generate bona fide prion infectivity (Legname et al., 2004, Makarava et al., 2010). 
These lines of evidence argue for a role for molecular cofactors in disease-specific prion protein 
misfolding (Birkmann & Riesner, 2008, Gill et al., 2010, Graham et al., 2010). Identifying these 
co-factors in vivo will allow significant progress in the prevention of disease transmission. 

 

PrPC or 

recPrP 

PrPSc  

+ 

Auxiliary 

cofactors  

(A)

 

Fig. 4. Schematic pathways for seeded conversion of normal PrP to a protease-resistant 
isoform. In the absence of auxiliary cofactors, conversion is inefficient and only a small 
amount of available substrate is converted (A). This pathway is exemplified by the classic 
CFCA. By addition of auxiliary cofactors, conversion efficiency can be improved and 
periodic shaking (QuIC) or sonication (PMCA), coupled with replenishment of substrate, 
allows cyclic conversion leading to amplification of PrPRes 
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4.2 Factors contributing to prion protein misfolding 

Dramatic breakthroughs in the search for determinants of the prion protein misfolding 
process have been made in recent years. Deleault et al used the PMCA technique to amplify 
PrPC that had been highly purified from brain tissue to which polyanionic species (RNA or 
glycosaminoglycans) were added. This mixture was sufficient to allow amplification of 
abnormal PrP when seeded with PrPSc, but also allowed the generation of abnormal PrP de 
novo in the absence of a catalytic seed. Crucially, the newly-synthesised abnormal PrP was 
shown to cause a TSE-like disease after inoculation to wild type animals. These data imply 
that purified PrPC (along with lipids that co-purified with the protein) in addition to a 
polyanionic cofactor are the minimal requirements for creation of prion infectivity (Deleault, 
et al., 2007). Various researchers have since replicated or extended this work (Barria et al., 
2009, Edgeworth et al., 2010, Weber et al., 2007), culminating in the publication of a study 
describing prion infectivity, created de novo, from bacterially-expressed recPrP 
supplemented with just synthetic lipid and total RNA extracted from murine liver (Wang, et 
al., 2010). What are the identities of molecules playing the roles of cofactors in vivo? 

One approach to determine in vivo cofactors is to investigate the aggregates present in prion-

infected animals for molecules that may have played a role in their formation. Other than 

PrP, various proteinaceous molecules appear specifically enriched in infectious prion fibrils 

(Giorgi et al., 2009, Moore et al., 2010, Petrakis et al., 2009) and recent data from our 

laboratory suggest that at least one such protein can enhance prion protein conversion 

efficiency (Graham et al., 2011). The most likely places for PrPC to encounter PrPSc and for 

conversion to take place are on the cell surface or within the endocytic pathway and it 

would appear reasonable to expect cofactors to reside in these locations. Results from 

experiments in cell lines supporting either location as a site for conversion have been 

published (Borchelt et al., 1992, Hooper, 2011). Recent data from our laboratories (Graham, 

et al., 2010, Graham, et al., 2011) and others (Abid et al., 2010), suggest that the plasma 

membrane is a more likely source of cofactors modulating prion protein misfolding. It is 

plausible that specific compositions of lipid can modulate prion protein structure thereby 

creating conditions for strain specific misfolding. Misfolding in or around the plasma 

membrane would facilitate toxic mechanisms that involve disturbances in membrane 

permeability. There are also various properties intrinsic to the prion protein that exert an 

influence on misfolding and which therefore may impact on neuronal toxicity of the 

resulting aggregates. Amino acid substitutions in the prion protein affect susceptibility of 

animals to prion disease and mutations in the human PRNP gene (encoding the prion 

protein) appear to be a direct cause of familial prion diseases. In general, those amino acid 

substitutions associated with resistance to prion disease in animals appear to decrease the 

stability of recombinant prion proteins in vitro (Bujdoso et al., 2005, Kirby, et al., 2010, Paludi 

et al., 2007, Thackray et al., 2004) potentially leading to differing levels of cellular toxicity. By 

contrast, there is conflicting data on the ability of mutations associated with human familial 

disease to affect the structure and stability of PrPC (e.g. (Apetri et al., 2004, Bae et al., 2009, 

Inouye et al., 2000, Rossetti et al., 2011, van der Kamp & Daggett, 2010, Vanik & Surewicz, 

2002, Yin et al., 2007)) and there is a lack of clear data suggesting that human mutations 

confer increased neurotoxicity upon misfolded PrP. It seems likely that the effects of 

individual amino acid changes depend on the specific substitution as well as the position 

within the sequence of PrPC and potentially the species that the amino acid change is in. 
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PrPC undergoes various post translational modifications in vivo and many have been 
investigated for their impact on prion protein misfolding. In transgenic mice that express 
prion protein lacking the C-terminal signal sequence, the GPI anchor is not attached (GPI-/-) 
and this results in secretion of PrPC into the extracellular milieu. When GPI-/- mice are 
infected with a prion disease there is dramatic accumulation of large amyloid plaques 
composed of anchorless PrP but no evidence of neurodegeneration (Chesebro, et al., 2005). 
The reasons for this are unclear but presumably result from the lack of association of PrPC 
with the plasma membrane (Caughey et al., 2009), however, preventing GPI anchor addition 
also inhibits glycosylation of PrPC and this may be a compounding factor in the lack of 
pathology/disease. Nevertheless, as mentioned earlier, these results further indicate that 
large aggregates composed of prion protein are not neurotoxic per se. 

N-linked glycosylation of PrPC occurs at two sites in the C-terminal region of the protein 

(Rudd et al., 2002) and a variety of techniques have been used to study the effect of 

glycosylation on prion protein misfolding. In vitro studies suggest that glycosylation of PrPC 

affects its interaction with PrPSc (Priola & Lawson, 2001), but that glycosylation is not 

required for strain properties (Nishina et al., 2006, Piro et al., 2009). Initial reports from 

studies in cell lines suggested that removing prion glycosylation produced spontaneously 

misfolded protein (Lehmann & Harris, 1997), however, this may have been a result of over-

expression, since more recent studies have shown that blocking glycosylation of 

endogenously expressed PrPC does not produce this phenotype (Cancellotti, et al., 2005). In 

some cases, studies have been hampered by the folding and trafficking abnormalities that 

can occur when PrPC is expressed without glycosylation (Cancellotti, et al., 2005, DeArmond 

et al., 1997) depending on the specific mutations used to prevent glycosylation (Capellari et 

al., 2000, Ikeda et al., 2008, Salamat et al., 2011, Wong et al., 2000b). Neuendorf et al selected 

deglycosylating mutations that retained authentic PrPC cellular trafficking and mice in 

which these proteins were over-expressed were susceptible to both scrapie and BSE 

(Neuendorf et al., 2004). However, in some cases, incubation times were shorter than with 

wild type mice, which is probably an artefact of over-expression. In our laboratories we 

have produced gene-targeted mice lacking prion protein glycosylation (Cancellotti, et al., 

2005) and analysis of these mice confirm that glycosylation is important for efficient 

trafficking of PrPC, but that glycosylation is not always required to sustain prion infection 

after intracranial inoculation (Tuzi, et al., 2008). Intra-cranial infection of these mice with 

multiple prion strains indicates dramatically different requirements for occupation of each 

of the glycosylation sites of host PrP for infection. However, since disease outcomes are 

significantly modulated following peripheral infection of glycosylation-deficient, gene-

targeted mice, our data also suggest that glycosylation of PrP is important for either 

peripheral replication of PrPSc or for trafficking of the infection to the CNS (Cancellotti, et 

al., 2010). The glycans present at either site are highly heterogeneous (Ritchie et al., 2002, 

Rudd et al., 1999, Stimson et al., 1999); at least 60 different glycan moieties can be present on 

the protein and genetic removal of glycosylation does not distinguish between individual 

glycan structures. Thus, it is unclear whether any individual carbohydrate chains render the 

prion protein particularly susceptible to misfolding. 

In summary, although we know the structure of PrPC to atomic resolution and we can 

model the conversion to PrPSc in vitro, the details of how this process takes place in vivo are 

still unknown. Although various factors are known to affect the way that PrPC may misfold, 
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the only factor absolutely known to direct this process is exogenous PrPSc. It is assumed that 

the PrPSc catalysed misfolding of PrPC results in a species that is neurotoxic, but it remains 

possible that loss of PrPC is an important process in mediating neurotoxicity. Once 

neurotoxicity results, it appears clear that synaptic dysfunction is one of the first 

pathological alterations that can be detected. Approaches that integrate studies of protein 

misfolding, in vitro toxicity and in vivo toxicity are required to allow us to address the many 

unknowns of neuronal loss in prion disease 
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