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1. Introduction

The study of knowledge and belief has a long tradition in philosophy. An early treatment
of a formal logical analysis of reasoning about knowledge and belief came from Hintikka’s
work [15]. More recently, researchers in such diverse fields as economics, linguistics,
artificial intelligence and theoretical computer science have become increasingly interested in
reasoning about knowledge and belief [1–5, 10–13, 18, 20, 24]. In wide areas of application of
reasoning about knowledge and belief, it is necessary to reason about uncertain information.
Therefore the representation and reasoning of probabilistic information in belief is important.

There has been a lot of works in the literatures related to the representation and reasoning
of probabilistic information, such as evidence theory [25], probabilistic logic [4], probabilistic
dynamic logic [7], probabilistic nonmonotonic logic [21], probabilistic knowledge logic [3]
and etc. A distinguished work is done by Fagin and Halpern [3], in which a probabilistic
knowledge logic is proposed. It expanded the language of knowledge logic by adding
formulas like “wi(ϕ) ≥ 2wi(ψ)” and “wi(ϕ) < 1/3”, where ϕ and ψ are arbitrary formulas.
These formulas mean “ϕ is at least twice probable as ψ” and “ϕ has probability less than 1/3”.
The typical formulas of their logic are “a1wi(ϕ1) + ... + akwi(ϕk) ≥ b”, “Ki(ϕ)” and “Kb

i (ϕ)”,
the latter formula is an abbreviation of “Ki(wi(ϕ) ≥ b)”. Here formulas may contain nested
occurrences of the modal operators wi and Ki, and the formulas in [4] do not contain nested
occurrences of the modal operators wi. On the basis of knowledge logic, they added axioms
of reasoning about linear inequalities and probabilities. To provide semantics for such logic,
Fagin and Halpern introduced a probability space on Kripke models of knowledge logic, and
gave some conditions about probability space, such as OBJ, SDP and UNIF. At last, Fagin
and Halpern concluded by proving the soundness and completeness of their probabilistic
knowledge logic.

Fagin and Halpern’s work on probabilistic epistemic logic is well-known and original.
However, there are several aspects worth further investigation: First, the completeness proof
of Fagin and Halpern can only deal with the finite set of formulas for that their method reduces
the completeness to the existence of a solution of a set of finitely many linear inequalities. In
the case of an infinite set of formulas, their method reduces the problem to the existence of
a solution of infinitely many linear inequalities with infinitely many variables, which does
not seem to be captured by the axioms in [3] for their language only contains finite-length
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2 Will-be-set-by-IN-TECH

formulas. Second, their inference system includes axioms about linear inequalities and
probabilities, which makes the system complicated. Third, the semantics in [3] was given
by adding a probability space on Kripke structure, correspondingly there are restrictions on
probability spaces and accessible relations, but in fact a simpler model is possible for the
semantics of probabilistic epistemic logic.

Kooi’s work [18] combines the probabilistic epistemic logic with the dynamic epistemic logic
yielding a new logic, PDEL, that deals with changing probabilities and takes higher-order
information into account. The syntax of PDEL is an expansion of Fagin and Halpern’s
logic by introducing formula “[ϕ1]ϕ2”, which can be read as “ϕ2 is the case, after everyone
simultaneously and commonly learns that ϕ1 is the case”. The semantics of PDEL is
essentially same as Fagin and Halpern’s semantics, which is based on a combination of Kripke
structure and probability functions. Kooi proved the soundness and weak completeness of
PDEL, but like Fagin and Halpern’s paper, completeness of PDEL was not given.

In [22], the authors also propose a probabilistic belief logic, called PEL, which is essentially
a restricted version of the logic proposed by Fagin and Halpern. But in this chapter, the
inference system was not given and the corresponding properties such as soundness and
completeness of PEL were not studied.

In [16], Hoek investigated a probabilistic logic PFD. This logic is enriched with operators
P>

r , (r ∈ [0, 1]) where the intended meaning of P>
r ϕ is “the probability of ϕ is strictly greater

than r”. The author gave a completeness proof of PFD by the construction of a canonical
model for PFD considerably. Furthermore, the author also proved finite model property of
the logic by giving a filtration-technique for the intended models. Finally, the author prove
the decidability of the logic. In [16], the logic PFD is based on a set F, where F is a finite set
and {0, 1} ⊆ F ⊆ [0, 1]. The completeness of PFD was not proved in [16] for the case that F
is infinite. Hoek presented this problem as an open question and considered it as a difficult
task. He think this problem may be tackled by introducing infinitary rules.

In this chapter, we propose some probabilistic belief logics. There is no axiom and rule about
linear inequalities and probabilities in the inference system of probabilistic belief logics. Hence
the inference system looks simpler and uniform than Fagin and Halpern’s logic. We also
propose a simpler semantics for probabilistic belief logics, where is no accessible relation and
can be generalized to description semantics of other probabilistic modal logics. Moreover, we
present the new completeness proofs for our probabilistic belief logics, which can deal with
infinite sets of formulas.

The remainder of the chapter is organized as follows: In Section 2, we propose a probabilistic
belief logic, called PBLω . We provide the probabilistic semantics of PBLω , and prove the
soundness and completeness of PBLω with respect to the semantics. We are unable to prove
or disprove the finite model property of PBLω in this chapter even though we conjecture it
holds. We turn to look at a variant of PBLω , which has the finite model property. In Section
3, we present a weaker variant of PBLω , called PBL f , which is the same as PBLω but without
Axiom 6 and Rule 6. We give the semantics of PBL f and prove the soundness and finite
model property of PBL f . As a consequence, the weak completeness of PBL f is given, i.e.,
for any finite set of formulas Γ, Γ |= PBL f

ϕ ⇒ Γ ⊢PBL f
ϕ. But there is an infinite inference

rule, namely Rule 5, in PBL f , which is inconvenient for application. Therefore we consider
another variant PBLr in Section 4. The axioms and rules of PBLr are same as PBL f except for
Rule 5. PBLr has a syntax restriction that the probability a in the scope of Bi(a, ϕ) must be a

18 Semantics – Advances in Theories and Mathematical Models

www.intechopen.com



Probabilistic Belief Logics for Uncertain Agents 3

rational number. The soundness and finite model property of PBLr are proved. From the finite
model property, we obtain the weak completeness of PBLr. Note that a logic system has the
compactness property if and only if the weak completeness is equivalent to the completeness
in that logic. The compactness property does not hold in PBLr, for example, {Bi(1/2, ϕ),
Bi(2/3, ϕ), ..., Bi(n/n + 1, ϕ),...} ∪ {¬Bi(1, ϕ)} is not satisfied in any PBLr-model, but any
finite subset of it has a model. Therefore the weak completeness of PBLr is not equivalent to
the completeness. PBLr is proved to be weak complete. Furthermore, the decidability of PBLr

is shown. In Section 5, we mainly compare our logics with the logic in [3] in terms of their
syntax, inference system, semantics and proof technique. The chapter is concluded in Section
6.

2. PBLω and its probabilistic semantics

In this section, we first review the standard belief logic system and the standard Kripke
semantics. Some examples are given to illustrate why it is necessary to extend belief to
probabilistic belief. Then we introduce a probabilistic belief logic PBLω .

In belief logic, the formula Bi ϕ says that agent i believes ϕ. Consider a system with n agents,
say 1, ..., n, and we have a nonempty set Φ of primitive propositions about which we wish
to reason. We construct formulas by closing off Φ under conjunction, negation and modal
operators Bi, for i = 1, ..., n (where Bi ϕ is read as “agent i believes ϕ”).

The semantics to these formulas is given by means of Kripke structure [19]. A Kripke
structure for belief (for n agents) is a tuple (S, π, R1, ..., Rn), where S is a set of states,
π(s) is a truth assignment to the primitive propositions of Φ for each state s ∈ S, and
Ri is an accessible relation on S, which satisfies the following conditions: Euclideanness
(∀s∀s′∀s′′(sRis

′ ∧ sRis
′′ → s′Ris

′′)), transitivity (∀s∀s′∀s′′(sRis
′ ∧ s′Ris

′′ → sRis
′′)) and

definality (∀s∃s′(sRis
′)).

We now assign truth values to formulas at each state in the structure. We write (M, s)|= ϕ if
the formula ϕ is true at state s in Kripke structure M.

(M, s) |= p (for p ∈ Φ) iff π(s)(p) = true

(M, s) |= ¬ϕ iff (M, s) |= ϕ

(M, s) |= ϕ ∧ ψ iff (M, s) |= ϕ and (M, s) |= ψ

(M, s)|= Bi ϕ iff (M, t) |= ϕ for all t ∈ Ri(s) with Ri(s) = {s′|(s, s′) ∈ Ri}

The last clause in this definition captures the intuition that agent i believes ϕ in world (M, s)
exactly if ϕ is true in all worlds that i considers possible.

It is well known that the following set of axioms and inference rules provides a sound and
complete axiomatization for the logic of belief with respect to the class of Kripke structures
for belief:

All instances o f propositional tautologies and rules.

(Bi ϕ ∧ Bi(ϕ → ψ)) → Biψ

Bi ϕ → ¬Bi¬ϕ

Bi ϕ → BiBi ϕ

19Probabilistic Belief Logics for Uncertain Agents
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¬Bi ϕ → Bi¬Bi ϕ

⊢ ϕ ⇒ ⊢ Bi ϕ

There are examples of probabilistic belief in daily life. For example, one may believe that the
probability of “it will rain tomorrow” is less than 0.4; in a football game, one may believe
that the probability of “team A will win” is no less than 0.7 and so on. In distribute systems,
there may be the cases that “agent i believes that the probability of ‘agent j believes that the
probability of ϕ is at least a’ is no less than b”. Suppose there are two persons communicating
by email, agent A sends an email to agent B. Since the email may be lost in network, A does
not know whether B has received the email. Therefore A may believe that the probability of “B
has received my email” is less than 0.99, or may believe that the probability of “B has received
my email” is at least 0.8, and so on. On the other hand, B may believe that the probability
of “A believes that the probability of ‘B has received my email’ is at least 0.9” is less than
0.8. In order to reply to A, B sends an acknowledgement email to A, A receives the email,
and sends another acknowledgement email to B, now B believes that the probability of “A
believes that the probability of ‘B has received my first email’ is equal to 1” is equal to 1. In
order to represent and reason with probabilistic belief, it is necessary to extend belief logic to
probabilistic belief logic. In following, we propose a probabilistic belief logic PBLω , the basic
formula in PBLω is Bi(a, ϕ), which says agent i believes that the probability of ϕ is no less
than a.

2.1 Language of PBLω

Throughout this chapter, we let LPBLω be a language which is just the set of formulas of interest
to us.

Definition 2.1 The set of formulas in PBLω , called LPBLω , is given by the following rules:

(1) If ϕ ∈Atomic formulas set Prop, then ϕ ∈ LPBLω ;

(2) If ϕ ∈ LPBLω , then ¬ϕ ∈ LPBLω ;

(3) If ϕ1,ϕ2 ∈ LPBLω , then ϕ1 ∧ ϕ2 ∈ LPBLω ;

(4) If ϕ ∈ LPBLω and a ∈[0,1], then Bi(a, ϕ) ∈ LPBLω , where i belongs to the set of agents
{1, ..., n}. Intuitively, Bi(a, ϕ) means that agent i believes the probability of ϕ is no less than a.

2.2 Semantics of PBLω

We will describe the semantics of PBLω , i.e., a formal model that we can use to determine
whether a given formula is true or false. We call the formal model probabilistic model, roughly
speaking, at each state, each agent has a probability on a certain set of states.

Definition 2.2 A probabilistic model PM of PBLω is a tuple (S, π, P1, ..., Pn), where

(1) S is a nonempty set, whose elements are called possible worlds or states;

(2) π is a map: S × Prop → {true, f alse}, where Prop is a set of atomic formulas;

(3) Pi is a map, it maps every possible world s to a PBLω-probability space Pi(s) =
(S, Xi,s, μi,s).

Where Xi,s ∈ ℘(S), which satisfies the following conditions:

20 Semantics – Advances in Theories and Mathematical Models
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Probabilistic Belief Logics for Uncertain Agents 5

(a) If p is an atomic formula, then evPM(p) = {s′|π(s′, p) = true} ∈ Xi,s;

(b) If A ∈ Xi,s, then S − A ∈ Xi,s;

(c) If A1, A2 ∈ Xi,s, then A1 ∩ A2 ∈ Xi,s;

(d) If A ∈ Xi,s and a ∈ [0, 1], then {s′|μi,s′ (A) ≥ a} ∈ Xi,s.

μi,s is a PBLω- finite additivity probability measure assigned to the set Xi,s, i.e., μi,s satisfies
the following conditions:

(a) μi,s(A) ≥ 0 for all A ∈ Xi,s;

(b) μi,s(S) = 1;

(c) (finite additivity) μi,s(A1 ∪ A2) = μi,s(A1) + μi,s(A2), where A1 and A2 are disjoint
members of Xi,s;

(d) If A ∈ Xi,s and μi,s(A) ≥ a, then μi,s({s′|μi,s′ (A) ≥ a}) = 1; if A ∈ Xi,s and μi,s(A) < b,
then μi,s({s′|μi,s′ (A) < b}) = 1.

Notice that from the definition of Xi,s, we have {s′|μi,s′ (A) ≥ a} ∈ Xi,s and {s′|μi,s′ (A) <

b} = S − {s′|μi,s′ (A) ≥ b} ∈ Xi,s. Intuitively, the probability space Pi(s) describes agent i’s
probabilities on events, given that the state is s. W is the sample space, which is the set of
states that agent i considers possible. Xi,s is the set of measurable sets. The measure μi,s does
not assign a probability to all subsets of S but only to the measurable sets.

As an example, we consider a PBLω-model such that PM = (S, π, P1). Here S = {s1, s2, s3};
π(s1, p) = f alse, π(s2, p) = f alse, π(s3, p) = true, π(s1, q) = true, π(s2, q) = true,
π(s3, q) = true; P1 is defined as follows: for every s ∈ S, P1(s) = (S, X1,s, μ1,s), where
X1,s1

= X1,s2
= ℘(S), X1,s3

= {∅, {s1, s2}, {s3}, S}, μ1,s1
(∅) = μ1,s2

(∅) = μ1,s3
(∅) = 0,

μ1,s1
({s1}) = μ1,s2

({s1}) = 1/2, μ1,s1
({s2}) = μ1,s2

({s2}) = 1/2, μ1,s1
({s3}) = μ1,s2

({s3}) =
0, μ1,s3

({s3}) = 1, μ1,s1
({s1, s2}) = μ1,s2

({s1, s2}) = 1, μ1,s3
({s1, s2}) = 0, μ1,s1

({s1, s3}) =
μ1,s2

({s1, s3}) = 1/2, μ1,s1
({s2, s3}) = μ1,s2

({s2, s3}) = 1/2, μ1,s1
(S) = μ1,s2

(S) = μ1,s3
(S) =

1. It is easy to check that the above model satisfies the conditions in Definition 2.2. In this
model, it is clear that the set of measurable sets X1,s and probability measure μ1,s varies with
s, and consequently the probability space also varies with s, hence we index probability space
by s.

We now define what it means for a formula to be true at a given world s in a probabilistic
model PM.

Definition 2.3 Probabilistic semantics of PBLω

(PM, s) |= p iff π(s, p) = true, where p is an atomic formula;

(PM, s) |= ¬ϕ iff (PM, s) |= ϕ;

(PM, s) |= ϕ ∧ ψ iff (PM, s) |= ϕ and (PM, s) |= ψ;

(PM, s) |= Bi(a, ϕ) iff μi,s(evPM(ϕ)) ≥ a, where evPM(ϕ) = {s′|(PM, s′) |= ϕ}.

The intuitive meaning of the semantics of Bi(a, ϕ) is that agent i believes that the probability
of ϕ is at least a in world (PM, s) if the measure of possible worlds satisfying ϕ is at least a.

21Probabilistic Belief Logics for Uncertain Agents
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In the above example, according to Definition 2.3, we have (PM, s1) |= B1(1/2, q), (PM, s2) |=
B1(0, p ∧ q), (PM, s3) |= B1(1, p ∧ q), etc.

In order to characterize the properties of probabilistic belief, we will characterize the formulas
that are always true. More formally, given a probabilistic model PM, we say that ϕ is valid in
PM, and write PM |= ϕ, if (PM, s) |= ϕ for every state s in S, and we say that ϕ is satisfiable
in PM if (PM, s) |= ϕ for some s in S. We say that ϕ is valid, and write |= ϕ, if ϕ is valid in
all probabilistic models, and that ϕ is satisfiable if it is satisfiable in some probabilistic model.
We write Γ |= ϕ, if ϕ is valid in all probabilistic models in which Γ is satisfiable.

2.3 Inference system of PBLω

Now we list a number of valid properties of probabilistic belief, which form the inference
system of PBLω .

Axioms and in f erence rules o f proposition logic

Axiom 1. Bi(0, ϕ) (For any proposition ϕ, agent i believes that the probability of ϕ is no less
than 0.)

Axiom 2. Bi(a, ϕ)∧ Bi(b, ψ)→ Bi(max(a+ b− 1, 0), ϕ∧ψ) (For any ϕ and ψ, if agent i believes
that the probability of ϕ is no less than a, and believes that the probability of ψ is no less than
b, then agent i believes that the probability of ϕ ∧ ψ is no less than max(a + b − 1, 0).)

Axiom 3. Bi(a, ϕ) → Bi(1, Bi(a, ϕ)) (If agent i believes that the probability of ϕ is no less than
a, then agent i believes that the probability of his belief being true is no less than 1.)

Axiom 4. ¬Bi(a, ϕ) → Bi(1,¬Bi(a, ϕ)) (If agent i believes that the probability of ϕ is less than
a, then agent i believes that the probability of his belief being true is no less than 1.)

Axiom 5. Bi(a, ϕ) → Bi(b, ϕ), where 1 ≥ a ≥ b ≥ 0. (If agent i believes that the probability of
ϕ is no less than a, and 1 ≥ a ≥ b ≥ 0, then agent i believes that the probability of ϕ is no less
than b.)

Axiom 6. Bi(a + b, ϕ ∨ ψ) → (Bi(a, ϕ)∨ Bi(b, ψ)), where 1 ≥ a + b ≥ 0. (If agent i believes that
the probability of ϕ ∨ ψ is no less than a + b, then agent i believes that the probability of ϕ is
no less than a or believes that the probability of ψ is no less than b.)

Rule 1. ⊢ ϕ ⇒⊢ Bi(1, ϕ) (If ϕ is a tautology proposition, then agent i believes that the
probability of ϕ is no less than 1.)

Rule 2. ⊢ ϕ → ψ ⇒⊢ Bi(a, ϕ) → Bi(a, ψ) (If ϕ → ψ is a tautology proposition, and agent i
believes that the probability of ϕ is no less than a, then agent i believes that the probability of
ψ is no less than a.)

Rule 3. ⊢ ¬(ϕ ∧ ψ) ⇒⊢ ¬(Bi(a, ϕ)∧ Bi(b, ψ)) for any a, b ∈ [0, 1] such that a + b > 1. (If ϕ and
ψ are incompatible propositions, then it is impossible that agent i believes that the probability
of ϕ is no less than a, and believes that the probability of ψ is no less than b, where a + b > 1.)

Rule 4. ⊢ ¬(ϕ ∧ ψ) ⇒⊢ Bi(a, ϕ) ∧ Bi(b, ψ) → Bi(a + b, ϕ ∨ ψ), where a + b ≤ 1. (If ϕ and ψ
are incompatible propositions, agent i believes that the probability of ϕ is no less than a, and
believes that the probability of ψ is no less than b, where a + b ≤ 1, then agent i believes that
the probability of ϕ ∨ ψ is no less than a + b.)

22 Semantics – Advances in Theories and Mathematical Models
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Rule 5. Γ ⊢ Bi(an, ϕ) for all n ∈ M ⇒ Γ ⊢ Bi(a, ϕ), where a = supn∈M({an}). (If agent i
believes that the probability of ϕ is no less than an, where n is any element in the index set M,
then agent i believes that the probability of ϕ is no less than a, where a = supn∈M({an}).)

Rule 6. Given a set of formulas Σ, Γ ∪ (∪ϕ∈Σ({Bi(a, ϕ)|0 ≤ a ≤ ai,ϕ} ∪ {¬Bi(b, ϕ)|1 ≥ b >

ai,ϕ})) ⊢ ψ for any ai,ϕ ∈ [0, 1] ⇒ Γ ⊢ ψ. (If ψ can be proved from Γ with any possible
probabilistic belief of agent i for Σ, then ψ can be merely proved from Γ.)

Remark: In Rule 5, the index set M may be an infinite set, therefore we call Rule 5 an infinite
inference rule. For example, let Γ = {Bi(1/2, ϕ), Bi(2/3, ϕ), ..., Bi(n/n + 1, ϕ), ...}, we have
Γ ⊢ Bi(n/n + 1, ϕ) for all n ∈ M = {1, 2, ..., k, ...}, by Rule 5, we get Γ ⊢ Bi(1, ϕ) since
1 = supn∈M({n/n + 1}).

In Rule 6, {Bi(a, ϕ)|0 ≤ a ≤ ai,ϕ} ∪ {¬Bi(b, ϕ)|1 ≥ b > ai,ϕ} means that agent i believes the
probability of ϕ is exactly ai,ϕ. Therefore Γ ∪ {Bi(a, ϕ)|0 ≤ a ≤ ai,ϕ} ∪ {¬Bi(b, ϕ)|1 ≥ b >

ai,ϕ} ⊢ ψ for any ai,ϕ ∈ [0, 1] means that under any possible probabilistic belief of agent i for
ϕ, ψ can be proved from Γ. Intuitively, in this case, the correctness of ψ is independent of the
exact probability of ϕ that agent i believes, so we can get ψ from Γ. In Rule 6, formula ϕ here
is generalized to arbitrary set Σ of formulas. Since the premises of Rule 6 are infinite, it is also
an infinite inference rule.

We will show that in a precise sense these properties completely characterize the formulas
of PBLω that are valid with respect to probabilistic model. To do so, we have to consider
the notion of provability. Inference system PBLω consists of a collection of axioms and
inference rules. We are actually interested in (substitution) instances of axioms and inference
rules (so we in fact think of axioms and inference rules as schemes). For example, the
formula Bi(0.7, ϕ) ∧ Bi(0.8, ψ) → Bi(0.5, ϕ ∧ ψ) is an instances of the propositional tautology
Bi(a, ϕ)∧ Bi(b, ψ)→ Bi(max(a+ b− 1, 0), ϕ∧ψ), obtained by substituting Bi(0.7, ϕ), Bi(0.8, ψ)
and Bi(0.5, ϕ ∧ ψ) for Bi(a, ϕ), Bi(b, ψ) and Bi(max(a + b − 1, 0), ϕ ∧ ψ) respectively. A proof
in PBLω consists of a sequence of formulas, each of which is either an instance of an axiom in
PBLω or follows from an application of an inference rule. (If “ϕ1, ..., ϕn infer ψ” is an instance
of an inference rule, and if the formulas ϕ1, ..., ϕn have appeared earlier in the proof, then we
say that ψ follows from an application of an inference rule.) A proof is said to be from Γ to ϕ
if the premise is Γ and the last formula is ϕ in the proof. We say ϕ is provable from Γ in PBLω ,
and write Γ ⊢PBLω

ϕ, if there is a proof from Γ to ϕ in PBLω .

2.4 Soundness of PBLω

We will prove that PBLω characterizes the set of formulas that are valid with respect to
probabilistic model. Inference system of PBLω is said to be sound with respect to probabilistic
models if every formula provable in PBLω is valid with respect to probabilistic models. The
system PBLω is complete with respect to probabilistic models if every formula valid with
respect to probabilistic models is provable in PBLω . We think of PBLω as characterizing
probabilistic models if it provides a sound and complete axiomatization of that class;
notationally, this amounts to saying that for all formulas set Γ and all formula ϕ, we have
Γ ⊢PBLω

ϕ if and only if Γ |=PBLω
ϕ. The following soundness and completeness provide

a tight connection between the syntactic notion of provability and the semantic notion of
validity.

Firstly, we need the following obvious lemmas.

23Probabilistic Belief Logics for Uncertain Agents
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Lemma 2.1 μi,s(A1 ∪ A2) = μi,s(A1) + μi,s(A2), here A1 and A2 are any disjoint members of
Xi,s ⇒ for any members A1 and A2 of Xi,s, μi,s(A1 ∪ A2)+ μi,s(A1 ∩ A2) = μi,s(A1)+ μi,s(A2).

Proo f . μi,s(A1 ∪ A2) + μi,s(A1 ∩ A2) = μi,s(A1 ∪ (A2 − A1)) + μi,s(A1 ∩ A2) = μi,s(A1) +
μi,s(A1 ∩ A2) + μi,s(A2 − A1) = μi,s(A1) + μi,s((A1 ∩ A2)∪ (A2 − A1)) = μi,s(A1) + μi,s(A2).

Lemma 2.2 μi,s(A1 ∩ A2) ≥ μi,s(A1) + μi,s(A2)− 1.

Proo f . It follows from Lemma 2.1 immediately.

Lemma 2.3 μi,s(A1) + μi,s(A2) ≥ μi,s(A1 ∪ A2). If A1 ∩ A2 = ∅, then μi,s(A1) + μi,s(A2) =
μi,s(A1 ∪ A2).

Proo f . It follows from Lemma 2.1.

Now, we can prove the following proposition:

Proposition 2.1 (Soundness of PBLω) If Γ ⊢PBLω
ϕ, then Γ |=PBLω

ϕ.

Proo f . We show each axiom and each rule of PBLω is sound, respectively.

Axiom 1: By the definition of PBLω-probability measure, for any s, if A ∈ Xi,s then μi,s(A) ≥ 0.
Since by the definition of Xi,s, for any ϕ, evPM(ϕ) = {s′|(PM, s′) |= ϕ} ∈ Xi,s, we have
μi,s(evPM(ϕ)) ≥ 0, therefore Bi(0, ϕ) holds.

Axiom 2: Suppose (PM, s) |= Bi(a, ϕ) ∧ Bi(b, ψ), so μi,s(evPM(ϕ)) ≥ a and μi,s(evPM(ψ)) ≥
b. For μi,s is PBLω - probability measure, by Lemma 2.2, we get μi,s(evPM(ϕ ∧ ψ)) =
μi,s(evPM(ϕ) ∩ evPM(ψ)) ≥ μi,s(evPM(ϕ)) + μi,s(evPM(ψ)) − 1 ≥ a + b − 1, which implies
(PM, s) |= Bi(max(a + b − 1, 0), ϕ ∧ ψ).

Axiom 3: Suppose (PM, s) |= Bi(a, ϕ), so μi,s(evPM(ϕ)) ≥ a. Let Λa
i (ϕ) =

{s′|μi,s′ (evPM(ϕ)) ≥ a}, by the definition of μi,s, we get μi,s(Λ
a
i (ϕ)) = 1. Assume s′ ∈ Λa

i (ϕ),
then s′ ∈ evPM(Bi(a, ϕ)), hence Λa

i (ϕ) ⊆ evPM(Bi(a, ϕ)), so μi,s(evPM(Bi(a, ϕ))) = 1, which
implies (PM, s) |= Bi(1, Bi(a, ϕ)).

Axiom 4: Suppose (PM, s) |= ¬Bi(a, ϕ), so μi,s(evPM(ϕ)) < a. Let Θa
i (ϕ) =

{s′|μi,s′ (evPM(ϕ)) < a}, by the definition of μi,s, we get μi,s(Θ
a
i (ϕ)) = 1. Assume s′ ∈ Θa

i (ϕ),
then s′ ∈ evPM(¬Bi(a, ϕ)), hence μi,s(evPM(¬Bi(a, ϕ))) = 1, which implies (PM, s) |=
Bi(1,¬Bi(a, ϕ)).

Axiom 5: Suppose (PM, s) |= Bi(a, ϕ), so μi,s(evPM(ϕ)) ≥ a. If 1 ≥ a ≥ b ≥ 0, then
μi,s(evPM(ϕ)) ≥ b, so (PM, s) |= Bi(b, ϕ), therefore Bi(a, ϕ) → Bi(b, ϕ) holds.

Axiom 6: Suppose (PM, s) |= Bi(a + b, ϕ ∨ ψ), then μi,s(evPM(ϕ ∨ ψ)) ≥ a + b. Since
μi,s(evPM(ϕ)) + μi,s(evPM(ψ)) ≥ μi,s(evPM(ϕ) ∪ evPM(ψ)) ≥ a + b, we have μi,s(evPM(ϕ)) ≥
a or μi,s(evPM(ψ)) ≥ b. Hence (PM, s) |= Bi(a, ϕ) ∨ Bi(b, ψ).

Rule 1: Since |= ϕ, so for any possible world s, μi,s(evPM(ϕ)) ≥ 1, therefore |= Bi(1, ϕ) holds.

Rule 2: Since |= ϕ → ψ, so evPM(ϕ) ⊆ evPM(ψ). Suppose (PM, s) |= Bi(a, ϕ), therefore
μi,s(evPM(ϕ)) ≥ a, by the property of PBLω-probability space, we get μi,s(evPM(ϕ)) ≤
μi,s(evPM(ψ)). So μi,s(evPM(ψ)) ≥ a. Therefore (PM, s)| = Bi(a, ψ), and Rule 2 of PBLω

holds.

Rule 3: Suppose |= ¬(ϕ ∧ ψ), so evPM(ϕ) ∩ evPM(ψ) = ∅. By the property of
PBLω-probability space and Lemma 2.3, for any possible world s, we get μi,s(evPM(ϕ) ∪
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evPM(ψ)) = μi,s(evPM(ϕ)) + μi,s(evPM(ψ)) and μi,s(evPM(ϕ) ∪ evPM(ψ)) ≤ 1, therefore
μi,s(evPM(ϕ)) + μi,s(evPM(ψ)) ≤ 1. Assume (PM, s) |= (Bi(a, ϕ) ∧ Bi(b, ψ)) where a + b > 1,
then μi,s(evPM(ϕ)) ≥ a, μi,s(evPM(ψ)) ≥ b, but a + b > 1, it is a contradiction.

Rule 4: Suppose |= ¬(ϕ ∧ ψ) and for possible world s, (PM, s) |= Bi(a, ϕ) ∧ Bi(b, ψ), so
evPM(ϕ) ∩ evPM(ψ) = ∅, μi,s(evPM(ϕ)) ≥ a, and μi,s(evPM(ψ)) ≥ b. By the property of
PBLω-probability space and Lemma 2.3, for any possible world s, we get μi,s(evPM(ϕ) ∪
evPM(ψ)) = μi,s(evPM(ϕ)) + μi,s(evPM(ψ)). Hence, μi,s(evPM(ϕ)) + μi,s(evPM(ψ)) ≥ a + b
and μi,s(evPM(ϕ) ∪ evPM(ψ)) ≥ a + b, which means (PM, s) |= Bi(a + b, ϕ ∨ ψ).

Rule 5: Suppose Γ |= Bi(an, ϕ) for all n ∈ M, therefore for every s, if (PM, s) |= Γ,
then (PM, s) |= Bi(an, ϕ) for all n ∈ M, so μi,s(evPM(ϕ)) ≥ an for all n ∈ M. We get
μi,s(evPM(ϕ)) ≥ supn∈M({an}). Therefore, (PM, s) |= Bi(a, ϕ) and a = supn∈M({an}), we
get Γ |= Bi(a, ϕ) and a = supn∈M({an}) as desired.

Rule 6: Suppose Γ ∪ (∪ϕ∈Σ({Bi(a, ϕ)|0 ≤ a ≤ ai,ϕ} ∪ {¬Bi(b, ϕ)|1 ≥ b > ai,ϕ})) |= ψ for any
ai,ϕ ∈ [0, 1], let (PM, s) |= Γ and ci,ϕ = μi,s(evPM(ϕ)), it is clear that ci,ϕ ∈ [0, 1] and (PM, s) |=
Γ ∪ (∪ϕ∈Σ({Bi(a, ϕ)|0 ≤ a ≤ ci,ϕ} ∪ {¬Bi(b, ϕ)|1 ≥ b > ci,ϕ)). Since Γ ∪ (∪ϕ∈Σ({Bi(a, ϕ)|0 ≤
a ≤ ai,ϕ} ∪ {¬Bi(b, ϕ)|1 ≥ b > ai,ϕ})) |= ψ for any ai,ϕ ∈ [0, 1], we have (PM, s) |= ψ,
therefore Γ |= ψ.

2.5 Completeness of PBLω

We shall show that the inference system of PBLω provides a complete axiomatization for
probabilistic belief with respect to a probabilistic model. To achieve this aim, it suffices to
prove that every PBLω-consistent set is satisfiable with respect to a probabilistic model. We
prove this by using a general technique that works for a wide variety of probabilistic modal
logic. We construct a special structure PM called a canonical structure for PBLω . PM has a
state sV corresponding to every maximal PBLω-consistent set V and the following property
holds: (PM, sV) |= ϕ iff ϕ ∈ V.

We need some definitions before giving the proof of the completeness. Given an inference
system of PBLω , we say a set of formulas Γ is a consistent set with respect to LPBLω exactly if
false is not provable from Γ. A set of formulas Γ is a maximal consistent set with respect to
LPBLω if (1) it is PBLω-consistent, and (2) for all ϕ in LPBLω but not in Γ, the set Γ ∪ {ϕ} is not
PBLω-consistent.

Definition 2.7 The probabilistic model PM with respect to PBLω is (S, P1, ..., Pn, π).

(1) S = {Γ|Γ is a maximal consistent set with respect to PBLω};

(2) Pi maps every element of S to a probability space: Pi(Γ) = (S, Xi,Γ, μi,Γ), where Xi,Γ =
{X(ϕ)|ϕ is a formula of PBLω}, here X(ϕ) = {Γ′|ϕ ∈ Γ′}; μi,Γ is a probability assignment:
Xi,Γ → [0, 1], and μi,Γ(X(ϕ)) = sup({a|Bi(a, ϕ) ∈ Γ});

(3) π is a truth assignment as follows: for any atomic formula p, π(p, Γ) = true ⇔ p ∈ Γ.

Lemma 2.4 S is a nonempty set.

Proo f . Since the rules and axioms of PBLω are consistent, S is nonempty.

Lemma 2.5 Xi,Γ satisfies the conditions of Definition 2.2.
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Proo f . We only prove the following claim: if A ∈ Xi,Γ, then {Γ′|μi,Γ′ (A) ≥ a} ∈ Xi,Γ. Other
cases can be proved similarly. Since A ∈ Xi,Γ, so there is ϕ with A = X(ϕ). It is clear that
X(Bi(a, ϕ)) ∈ Xi,Γ, so {Γ′|μi,Γ′ (A) ≥ a} = {Γ′|μi,Γ′ (X(ϕ)) ≥ a} = X(Bi(a, ϕ)) ∈ Xi,Γ.

In classical logic, it is easy to see that every consistent set of formulas can be extended to a
maximal consistent set, but with the infinitary rules in PBLω it cannot simply be proved in a
naive fashion because the union of an increasing sequence of consistent sets need no longer
be consistent. Therefore we give a detailed proof for this claim in the following lemma.

Lemma 2.6 For any PBLω-consistent set of formulas ∆, there is a maximal PBLω-consistent
set Γ such that ∆ ⊆ Γ.

Proo f . To show that ∆ can be extended to a maximal PBLω-consistent set, we construct a
sequence Γ0, Γ1, ... of PBLω-consistent sets as follows. Let ψ1, ψ2, ... be a sequence of the
formulas in LPBLω . This sequence is not an enumeration sequence since the cardinal number
of the set of real number is not enumerable, however, we can get a well-ordered sequence of
the formulas by the choice axiom of set theory.

At first, we construct Γ0 which satisfies the following conditions:

(1) ∆ ⊆ Γ0;

(2) Γ0 is consistent;

(3) For any agent i ∈ {1, ..., n} and every ϕ ∈ LPBLω , there is some ci,ϕ ∈ [0, 1] such that
{Bi(a, ϕ)|0 ≤ a ≤ ci,ϕ} ∪ {¬Bi(b, ϕ)|1 ≥ b > ci,ϕ} ⊆ Γ0.

Let Σ0 = ∆, then for agent 1 and every ϕ ∈ LPBLω , there is some c1,ϕ ∈ [0, 1] such that
Σ0 ∪ (∪ϕ∈LPBLω ({B1(a, ϕ)|0 ≤ a ≤ c1,ϕ} ∪ {¬B1(b, ϕ)|1 ≥ b > c1,ϕ})) is consistent, otherwise,

for all a1,ϕ ∈ [0, 1], Σ0 ∪ (∪ϕ∈LPBLω ({B1(a, ϕ)|0 ≤ a ≤ a1,ϕ} ∪ {¬B1(b, ϕ)|1 ≥ b > a1,ϕ})) ⊢
f alse. By Rule 6, we have Σ0 ⊢ f alse, and since Σ0 = ∆ is consistent, it is a contradiction.
Let Σ1 = Σ0 ∪ (∪ϕ∈LPBLω ({B1(a, ϕ)|0 ≤ a ≤ c1,ϕ} ∪ {¬B1(b, ϕ)|1 ≥ b > c1,ϕ})), similarly, for

agent i and for each ϕ ∈ LPBLω there is ci,ϕ ∈ [0, 1] such that Σi−1 ∪ (∪ϕ∈LPBLω ({Bi(a, ϕ)|0 ≤

a ≤ ci,ϕ} ∪ {¬Bi(b, ϕ)|1 ≥ b > ci,ϕ})) is consistent. Let Σi = Σi−1 ∪ (∪ϕ∈LPBLω ({Bi(a, ϕ)|0 ≤

a ≤ ci,ϕ} ∪ {¬Bi(b, ϕ)|1 ≥ b > ci,ϕ})) for i ∈ {1, ..., n} and Γ0 = ∪i∈{1,...,n}Σi = Σn, here

{1, ..., n} is the set of agent. Since Σn is consistent, Γ0 is also consistent.

Now we inductively construct the rest of the sequence according to ψk: (a) in the case of k =
n+ 1, take Γn+1 = Γn ∪{ψn+1} if the set is PBLω-consistent and otherwise take Γn+1 = Γn. (b)
in the case that k is a limit ordinal, take Γk = ∪n<kΓn ∪ {ψk} if the set is PBLω-consistent and
otherwise take Γk = ∪n<kΓn. Let Γ = ∪Γk. We will prove that Γ is a maximal PBLω-consistent
set and ∆ ⊆ Γ.

Firstly, we prove that Γk is consistent by induction. We have already known that Γ0 is
consistent. Now we prove the claim when k > 0. In the case of (a), it is clear. In the case of (b),
we only need to prove that ∪n<kΓn is consistent. Suppose ∪n<kΓn is not consistent, then there
is a proof C of falsity from ∪n<kΓn. If this proof does not apply Rule 5 and Rule 6, then one
of Γn contains the formulas in the proof, since Γn is consistent, then there is a contradiction.
If this proof does apply Rule 5, since our construction of Γ0 ensures: for some ci,ϕ ∈ [0, 1],
{Bi(a, ϕ)|0 ≤ a ≤ ci,ϕ} ∪ {¬Bi(b, ϕ)|1 ≥ b > ci,ϕ} ⊆ Γ0, hence if {Bi(a1, ϕ), Bi(a2, ϕ), ...}
can be deduced from ∪n<kΓn, then {Bi(a1, ϕ), Bi(a2, ϕ), ...} ∪ {Bi(c, ϕ)} ⊆ Γ0, here c =
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sup({am|Bi(am, ϕ)}), hence Γ0 ⊢ Bi(c, ϕ). This proof can be transferred to a new proof D of
falsity from ∪n<kΓn which does not apply Rule 5, this reduces to the case that the proof does
not apply Rule 5. If this proof does apply Rule 6, since our construction of Γ0 ensures: for any
ϕ ∈ Σ there is some ci,ϕ ∈ [0, 1], ∪ϕ∈Σ({Bi(a, ϕ)|0 ≤ a ≤ ci,ϕ} ∪ {¬Bi(b, ϕ)|1 ≥ b > ci,ϕ}) ⊆
Γ0, hence if (∪n<kΓn) ∪ (∪ϕ∈Σ({Bi(a, ϕ)|0 ≤ a ≤ ai,ϕ} ∪ {¬Bi(b, ϕ)|1 ≥ b > ai,ϕ})) ⊢ ψ
for any ai,ϕ ∈ [0, 1] then (∪n<kΓn) = (∪n<kΓn) ∪ Γ0 ⊢ (∪n<kΓn) ∪ (∪ϕ∈Σ({Bi(a, ϕ)|0 ≤ a ≤
ci,ϕ} ∪ {¬Bi(b, ϕ)|1 ≥ b > ci,ϕ})) ⊢ ψ. This proof can be transferred to a new proof E of falsity
from ∪n<kΓn which does not apply Rule 6, this reduces to the case that the proof does not
apply Rule 6. Therefore a proof of falsity from ∪n<kΓn can be transferred to a proof without
applying Rule 5 and Rule 6. This case has been discussed above.

The proof of that Γ is consistent is similar to the above proof of that ∪n<kΓn is consistent.

We claim that Γ is maximal, for suppose ψ ∈ LPBLω and ψ /∈ Γ, since ψ must appear in
our sequence, say as ψk, here we assume k is a successor ordinal, the case of limit ordinal
k can be proved similarly. If Γk ∪ {ψk} were PBLω-consistent, then our construction would
guarantee that ψk ∈ Γk+1. Hence ψk ∈ Γ. Because ψk = ψ /∈ Γ, it follows that Γk ∪ {ψ} is not
PBLω-consistent. Hence Γ is maximal.

By the above discussion, we have a maximal PBLω-consistent set Γ such that ∆ ⊆ Γ.

Lemma 2.7 For any Γ, Pi(Γ) is well defined, i.e., for any S ∈ Xi,Γ, the value of μi,Γ(S) is unique.

Proo f . It suffices to prove the following claim: if S1, S2 ∈ Xi,Γ and S1 = S2, then μi,Γ(S1) =
μi,Γ(S2). Since S1, S2 ∈ Xi,Γ, by the construction of Xi,Γ, there are ϕ and ψ such that S1 = X(ϕ)
and S2 = X(ψ). Assume S1 = S2, then X(ϕ) = X(ψ). It is clear that ⊢ ϕ ↔ ψ, suppose
not, w.l.o.g, assume ⊢ ϕ → ψ does not hold, then by Lemma 2.6, {ϕ,¬ψ} is consistent and
there is a maximal consistent set Γ′ such that {ϕ,¬ψ} ⊆ Γ′, this contradicts X(ϕ) = X(ψ).
Furthermore, by rule: ⊢ ϕ → ψ ⇒⊢ Bi(a, ϕ) → Bi(a, ψ), we have ⊢ Bi(a, ϕ) ↔ Bi(a, ψ), so
μi,Γ(X(ϕ)) = μi,Γ(X(ψ)).

Lemma 2.8 Let Proi,Γ(ϕ) = {a|Bi(a, ϕ) is in Γ}, then sup(Proi,Γ(ϕ)) ∈ Proi,Γ(ϕ).

Proo f . Suppose Proi,Γ(ϕ) = {a|Bi(a, ϕ) is in Γ}, therefore Γ ⊢ Bi(an, ϕ) for all an ∈ Proi,Γ(ϕ),
by Rule 5 of PBLω , Γ ⊢ Bi(a, ϕ), where a = supn∈M({an}) = sup(Proi,Γ(ϕ)), so we get
sup(Proi,Γ(ϕ)) ∈ Proi,Γ(ϕ) as desired.

Lemma 2.9 If A ∈ Xi,Γ, then 0 ≤ μi,Γ(A) ≤ 1. Furthermore, μi,Γ(∅) = 0, μi,Γ(S) = 1.

Proo f . By the construction of model, it is obvious that if A ∈ Xi,Γ then 0 ≤ μi,Γ(A) ≤ 1.

By rule: ⊢ ϕ ⇒⊢ Bi(1, ϕ), therefore we have μi,Γ(S) = μi,Γ(X(true)) = 1 as desired. By
axiom: Bi(0, ϕ), we get Bi(0, f alse), so μi,Γ(∅) = μi,Γ(X( f alse)) ≥ 0. By rule: ⊢ ¬(ϕ ∧ ψ) ⇒⊢
Bi(a, ϕ) ∧ Bi(b, ψ) → Bi(a + b, ϕ ∨ ψ), where a + b ≤ 1, we have μi,Γ(S) = μi,Γ(X(true ∨
f alse)) ≥ μi,Γ(X(true)) + μi,Γ(X( f alse)) = μi,Γ(S) + μi,Γ(∅), since μi,Γ(S) = 1, 1 ≥ 1 +
μi,Γ(∅) holds, therefore μi,Γ(∅) = 0.

Lemma 2.10 If A1 and A2 are disjoint members of Xi,Γ, then μi,Γ(A1 ∪ A2) = μi,Γ(A1) +
μi,Γ(A2).

Proo f . Suppose Ai = X(ϕi), and ⊢ ¬(ϕ1 ∧ ϕ2). By Rule 4, ⊢ Bi(a1, ϕ1) ∧ Bi(a2, ϕ2) →
Bi(a1 + a2, ϕ1 ∨ ϕ2)), therefore μi,Γ(X(ϕ1 ∨ ϕ2)) ≥ μi,Γ(X(ϕ1)) + μi,Γ(X(ϕ2)). Since X(ϕ1 ∨
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ϕ2) = A1 ∪ A2, we have μi,Γ(A1 ∪ A2) = μi,Γ(X(ϕ1 ∨ ϕ2)) ≥ μi,Γ(X(ϕ1)) + μi,Γ(X(ϕ2)) =
μi,Γ(A1) + μi,Γ(A2).

Now, we prove μi,Γ(A1) + μi,Γ(A2) ≥ μi,Γ(A1 ∪ A2). Suppose μi,Γ(A1 ∪ A2) > μi,Γ(A1) +
μi,Γ(A2). Let μi,Γ(A1) = a1, μi,Γ(A2) = a2, μi,Γ(A1 ∪ A2) > a1 + a2. Choose e > 0 such that
2e + a1 + a2 = μi,Γ(A1 ∪ A2), then μi,Γ(A1) < a1 + e, μi,Γ(A2) < a2 + e.

Therefore we have Γ |= Bi(a1 + a2 + 2e, ϕ1 ∨ ϕ2)∧¬Bi(a1 + e, ϕ1)∧¬Bi(a2 + e, ϕ2). Since Γ is
a maximal consistent set, so Γ ⊢ Bi(a1 + a2 + 2e, ϕ1 ∨ ϕ2) ∧ ¬Bi(a1 + e, ϕ1) ∧ ¬Bi(a2 + e, ϕ2),
which contradicts Axiom 6 of PBLω .

Lemma 2.11 For any ϕ, let ∆a
i (ϕ) = {Γ′|μi,Γ′ (X(ϕ)) ≥ a}. If μi,Γ(X(ϕ)) ≥ a, then

μi,Γ(∆
a
i (ϕ)) = 1.

Proo f . It is clear that Bi(a, ϕ) ∈ Γ ⇒ Γ ∈ ∆a
i (ϕ), therefore X(Bi(a, ϕ)) ⊆ ∆a

i (ϕ).
Since Bi(a, ϕ) → Bi(1, Bi(a, ϕ)), so Bi(1, Bi(a, ϕ)) ∈ Γ, thereby μi,Γ(X(Bi(a, ϕ))) =
sup({b|Bi(b, Bi(a, ϕ)) ∈ Γ}) = 1. For X(Bi(a, ϕ)) ⊆ ∆a

i (ϕ), we have μi,Γ(∆
a
i (ϕ)) = 1 as

desired.

Lemma 2.12 For any ϕ, let Θa
i (ϕ) = {Γ′|μi,Γ′ (X(ϕ)) < a}. If μi,Γ(X(ϕ)) < a, then

μi,Γ(Θ
a
i (ϕ)) = 1.

Proo f . By the construction of the canonical model and Lemma 2.8, ¬Bi(a, ϕ) ∈ Γ ⇒ Γ ∈
Θa

i (ϕ), so X(¬Bi(a, ϕ)) ⊆ Θa
i (ϕ). Since ¬Bi(a, ϕ) → Bi(1,¬Bi(a, ϕ)), so ¬Bi(a, ϕ) ∈ Γ ⇒

Bi(1,¬Bi(a, ϕ)) ∈ Γ, thereby μi,Γ(X(¬Bi(a, ϕ))) = sup({b|Bi(b,¬Bi(a, ϕ)) ∈ Γ}) = 1. For
X(¬Bi(a, ϕ)) ⊆ Θa

i (ϕ), we have μi,Γ(Θ
a
i (ϕ)) = 1 as desired.

Lemma 2.13 For any Γ, Pi(Γ) is a PBLω-probability space.

Proo f . By Lemma 2.4-2.12, it is obvious.

Lemma 2.14 The model PM is a PBLω-probabilistic model.

Proo f . It follows from Lemma 2.4 and Lemma 2.13.

The above lemmas state that the probability space Pi(Γ) = (S, Xi,Γ, μi,Γ) of the model satisfies
all conditions in Definition 2.2, then as a consequence, the model PM is a PBLω-probabilistic
model. In order to get the completeness, we further prove the following lemma, which states
that PM is “canonical”.

Lemma 2.15 In the model PM, for any Γ and any ϕ, (PM, Γ) |= ϕ ⇔ ϕ ∈ Γ.

Proo f . We argue by the cases on the structure of ϕ, here we only give the proof in the case of
ϕ ≡ Bi(a, ψ).

It suffices to prove that: (PM, Γ) |= Bi(a, ψ) ⇔ Bi(a, ψ) ∈ Γ.

If Bi(a, ψ) ∈ Γ, by the definition of PM, μi,Γ(X(ψ)) = b ≥ a, therefore (PM, Γ) |= Bi(a, ψ).

If Bi(a, ψ) /∈ Γ, by Lemma 2.8, there exists b = sup({c|Bi(c, ψ) ∈ Γ}) such that Bi(b, ψ) ∈ Γ

and a > b. By the definition of PM, μi,Γ(X(ψ)) = b, therefore (PM, Γ) |= Bi(a, ψ).

Now it is ready to get the completeness of PBLω :

Proposition 2.2 (Completeness of PBLω) If Γ |=PBLω
ϕ, then Γ ⊢PBLω

ϕ.
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Proo f . Suppose not, then there is a PBLω - consistent formulas set Φ = Γ ∪ {¬ϕ}, and there
is no model PM such that Φ is satisfied in PM. For there is a PBLω - maximal consistent
formula set Σ such that Φ ⊆ Σ, by Lemma 2.15, Φ is satisfied in possible world Σ of PM. It is
a contradiction.

Our proof of the above completeness is different from the proof in [3]. The main idea of our
proof is to give a canonical model, which can be regarded as a generalization of canonical
model method in Kripke semantics. In [3], Fagin and Halpern adopt another technique to get
the completeness. Let ϕ be consistent with AXMEAS, they show firstly that an i-probability
formula ψ ∈ Sub+(ϕ) is provably equivalent to a formula of the form Σs∈Scsμi(ϕs) ≥ b,
for some appropriate coefficients cs, where S consists of all maximal consistent subsets of
Sub+(ϕ). Then for a fixed agent i and a fixed state s, they describe a set of linear equalities
and inequalities corresponding to i and s, over variables of the form xiss′ , for s′ ∈ S. We can
think of xiss′ as representing μi,s(s

′), i.e., the probability of state s′ under agent i’s probability
distribution at state s. Assume that ψ is equivalent to Σs∈Scsμi(ϕs) ≥ b. Observe that exactly
one of ψ and ¬ψ is in s. If ψ ∈ s, then the corresponding inequality is Σs′∈Scs′ xiss′ ≥ b. If
¬ψ ∈ s, then the corresponding inequality is Σs′∈Scs′ xiss′ < b. Finally, we have the equality
Σs′∈Sxiss′ = 1. As shown in Theorem 2.2 in Fagin et al. [4], sinceϕs is consistent, this set of
linear equalities and inequalities has a solution x∗iss′ , s′ ∈ S. From their idea, it is clear that their
proof depends tightly on the axioms of linear equalities and inequalities, whereas there are no
such axioms in our inference system. On the other hand, their proof cannot deal with the case
of infinite set of formulas, because in this case, we will get an infinite set of linear equalities and
inequalities, which contains infinite variables. But their axioms seem insufficient to describe
the existence of solutions of an infinite set of linear equalities and inequalities.

Proposition 2.1 and Proposition 2.2 show that the axioms and inference rules of PBLω give
us a sound and complete axiomatization for probabilistic belief. Moreover, we can prove the
finite model property and decidability of the provability problem for some variants of PBLω

in the following sections.

It is not difficult to see that Axioms 1-6 and Rules 1-4 are not complete for our model. Because
otherwise, the compactness property of PBLω holds, but we can give the following example to
show that the compactness property fails in PBLω : any finite sub set of {Bi(1/2, ϕ), Bi(2/3, ϕ),
..., Bi(n/n + 1, ϕ),...} ∪ {¬Bi(1, ϕ)} has model, whereas the whole set does not. But we do not
know whether Axioms 1-6 and Rules 1-5 are complete for our model, i.e., whether Rule 6 is
redundant in the inference system. Although we believe that Rule 6 is not redundant, we have
no proof up to now.

3. PBL f and its inner probabilistic semantics

As is often the case in modal logics, the ideas in our completeness proof can be extended to
get a finite model property. Therefore the question arises whether finite model property holds
for PBLω , i.e., for every consistent formula ϕ, whether there is a finite sates model satisfies
ϕ. Unfortunately, we cannot give a positive or negative answer here. Therefore, we seek for
some weak variant of PBLω whose finite model property can be proved. We call the variant
PBL f , its reasoning system is the result of deleting Axiom 6 and Rule 6 from PBLω . In the
semantics of PBL f , we assign an inner probability space to every possible world in the model,
here “inner” means the measure does not obey the additivity condition, but obeys some weak
additivity conditions satisfied by inner probability measure.
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The well formed formulas set LPBL f of PBL f is the same as LPBLω .

3.1 Semantics of PBL f

Definition 3.1 An inner probabilistic model PM of PBL f is a tuple (S, π, P1, ..., Pn), where

(1) S is a nonempty finite set whose elements are called possible worlds or states;

(2) π is a map: S × Prop → {true, f alse}, where Prop is an atomic formulas set;

(3) Pi is a map, it maps every possible world s to a PBL f -probability space Pi(s) = (S, X, μi,s).
Here X = ℘(S).

μi,s is a PBL f -inner probability measure assigned to the set X, which means μi,s satisfies the
following conditions:

(a) 0 ≤ μi,s(A) ≤ 1 for all A ∈ X.

(b) μi,s(∅) = 0 and μi,s(S) = 1.

(c) If A1, A2 ∈ X and A1 ⊆ A2, then μi,s(A1) ≤ μi,s(A2);

(d) If A1, A2 ∈ X and A1 ∩ A2 = ∅, then μi,s(A1 ∪ A2) ≥ μi,s(A1) + μi,s(A2);

(e) If A1, A2 ∈ X, then μi,s(A1 ∩ A2) ≥ μi,s(A1) + μi,s(A2)− 1;

(f) Let Λi,s = {s′|Pi(s) = Pi(s
′)}, then μi,s(Λi,s) = 1.

Remark: Since X = ℘(S), therefore X is a constant set, and we omit the subscript of Xi,s as
was used in Definition 2.2.

It is easy to see that the conditions (d) and (e) in Definition 3.1 are weaker than the finite
additivity condition in Definition 2.2. One can check that if μ is a probability measure, then
inner measure μ∗ induced by μ obeys the conditions (d) and (e) in Definition 3.1, i.e., the
reason we call μi,s inner probability measure.

The notation Λi,s in the condition (f) represents the set of states whose probability space is
same as the probability space of state s. Therefore the condition (f) means that for any state s,
the probability space of almost all states is same as the probability space of s.

Definition 3.2 Inner probabilistic semantics of PBL f

(PM, s) |= p iff π(s, p) = true, where p is an atomic formula;

(PM, s) |= ¬ϕ iff (PM, s) |= ϕ;

(PM, s) |= ϕ1 ∧ ϕ2 iff (PM, s) |= ϕ1 and (PM, s) |= ϕ2;

(PM, s) |= Bi(a, ϕ) iff μi,s(evPM(ϕ)) ≥ a, where evPM(ϕ) = {s′|(PM, s′) |= ϕ}.

3.2 Inference system of PBL f

The inference system of PBL f is the same as PBL̟ except without Axiom 6 and Rule 6. Axiom
6 corresponds to the finite additivity property of probability. Since the inner probabilistic
measure in the model of PBL f does not obey the finite additivity property, therefore Axiom 6
fails with respect to the semantics of PBL f .
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3.3 Soundness of PBL f

The proof of soundness of PBL f is similar to the proof in Proposition 2.1, but because there
are some differences between PBLω-probabilistic model and PBL f -probabilistic model, there
are a few differences. For example, in the following proof, we can use the property μi,s(A1 ∩
A2) ≥ μi,s(A1) + μi,s(A2)− 1 directly, rather than as a corollary of finite additivity property;
we apply the property μi,s(Λi,s) = 1 (where Λi,s = {s′|Pi(s) = Pi(s

′)}) in the proof, which
also differs from the last property of PBLω-probabilistic model (If A ∈ Xi,s and μi,s(A) ≥ a,
then μi,s({s′|μi,s′ (A) ≥ a}) = 1; if A ∈ Xi,s and μi,s(A) < b, then μi,s({s′|μi,s′ (A) < b}) = 1.).

Proposition 3.1 (Soundness of PBL f ) If Γ ⊢PBL f
ϕ, then Γ |=PBL f

ϕ.

Proo f . We only discuss Axiom 2, Axiom 3 and Axiom 4 of PBL f , other cases can be proved
similarly as in Proposition 2.1.

Axiom 2: Suppose (PM, s) |= Bi(a, ϕ) ∧ Bi(b, ψ), so μi,s(evPM(ϕ)) ≥ a and μi,s(evPM(ψ)) ≥ b.
For μi,s is PBL f -probability measure, we get μi,s(evPM(ϕ ∧ ψ)) = μi,s(evPM(ϕ) ∩ evPM(ψ)) ≥
μi,s(evPM(ϕ)) + μi,s(evPM(ψ)) − 1 ≥ a + b − 1, which implies (PM, s) |= Bi(max(a + b −
1, 0), ϕ ∧ ψ).

Axiom 3: Suppose (PM, s) |= Bi(a, ϕ), therefore μi,s(evPM(ϕ)) ≥ a. Let Λi,s = {s′|Pi(s) =
Pi(s

′)}, then Λi,s ∈ X and μi,s(Λi,s) = 1. Let Ξ = {s′|μi,s′ (evPM(ϕ)) ≥ a}. Since s′ ∈ Λi,s

implies s′ ∈ Ξ, it is clear Λi,s ⊆ Ξ, since μi,s(Λi,s) = 1, so μi,s(Ξ) = 1. If s′ ∈ Ξ, then
s′ ∈ evPM(Bi(a, ϕ)), therefore μi,s(evPM(Bi(a, ϕ))) = 1, we get (PM, s) |= Bi(1, Bi(a, ϕ)) as
desired.

Axiom 4: Suppose (PM, s) |= ¬Bi(a, ϕ), so μi,s(evPM(ϕ)) < a. Let Λi,s = {s′|Pi(s) = Pi(s
′)},

then Λi,s ∈ X and μi,s(Λi,s) = 1. Let Ξ = {s′|μi,s′ (evPM(ϕ)) < a} , for s′ ∈ Λi,s implies s′ ∈ Ξ,
it is clear Λi,s ⊆ Ξ, since μi,s(Λi,s) = 1, so μi,s(Ξ) = 1. If s′ ∈ Ξ, then s′ ∈ evPM(Bi(a, ϕ)),
therefore μi,s(evPM(¬Bi(a, ϕ))) = 1, we get (PM, s) |= Bi(1,¬Bi(a, ϕ)) as desired.

3.4 Finite model property of PBL f

We now turn our attention to the finite model property of PBL f . It needs to show that if a
formula is PBL f -consistent, then it is satisfiable in a finite structure. The idea is that rather than
considering maximal consistent formulas set when trying to construct a structure satisfying a
formula ϕ, we restrict our attention to sets of subformulas of ϕ.

Definition 3.3 Suppose ζ is a consistent formula with respect to PBL f , Sub∗(ζ) is a set of

formulas defined as follows: let ζ ∈ LPBL f , Sub(ζ) is the set of subformulas of ζ, then
Sub∗(ζ) = Sub(ζ) ∪ {¬ψ|ψ ∈ Sub(ζ)}. It is clear that Sub∗(ζ) is finite.

Definition 3.4 The inner probabilistic model PMζ with respect to formula ζ is
(Sζ , P1,ζ , ..., Pn,ζ , πζ).

(1) Here Sζ = {Γ|Γ is a maximal consistent formulas set with respect to PBL f and Γ ⊆
Sub∗(ζ)}.

(2) For any Γ ∈ Sζ , Pi,ζ(Γ) = (Sζ , Xζ , μζ,i,Γ), where Xζ = {X(ϕ)| X(ϕ) = {Γ′| ϕ is a Boolean
combination of formulas in Sub∗(ζ) and Γ ⊢PBL f

ϕ}}; μζ,i,Γ is an inner probability assignment:

Xζ → [0, 1], and μζ,i,Γ(X(ϕ)) = sup({a|Bi(a, ϕ) is provable from Γ in PBL f }).

(3) πζ is a truth assignment as follows: For any atomic formula p, πζ(p, Γ) = true ⇔ p ∈ Γ.
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Similar to the proof of completeness of PBLω , we mainly need to show that the above
canonical model PMζ is a PBL f -inner probabilistic model. The following lemmas from
Lemma 3.1 to Lemma 3.13 contribute to this purpose. Furthermore, Lemma 3.14 states that
PMζ is “canonical”, i.e., for any consistent formula ϕ ∈ Sub∗(ζ), there is a state s, such that
(PMζ , s) |= ϕ. Since we can prove that PMζ is a finite model, these lemmas imply the finite
model property of PBL f .

Lemma 3.1 Sζ is a nonempty finite set.

Proo f . Since the rules and axioms of PBL f are consistent, Sζ is nonempty. For Sub∗(ζ) is
a finite set, by the definition of Sζ , the cardinality of Sζ is no more than the cardinality of
℘(Sub∗(ζ)).

Lemma 3.2 Xζ is the power set of Sζ .

Proo f . Firstly, since Sub∗(ζ) is finite, so if Γ ∈ Sζ then Γ is finite. We can let ϕΓ be the
conjunction of the formulas in Γ. Secondly, if A ⊆ Sζ , then A = X(∨Γ∈A ϕΓ). By the above
argument, we have that Xζ is the power set of Sζ .

Lemma 3.3 If ϕ is consistent (here ϕ is a Boolean combination of formulas in Sub∗(ζ)), then
there exists Γ such that ϕ can be proved from Γ, here Γ is a maximal consistent set with respect
to PBL f and Γ ⊆ Sub∗(ζ).

Proo f . For ϕ is a Boolean combination of formulas in Sub∗(ζ), therefore by regarding the
formulas in Sub∗(ζ) as atomic formulas, ϕ can be represented as disjunctive normal form.
Since ϕ is consistent, so there is a consistent disjunctive term in disjunctive normal form
expression of ϕ, let such term be ψ1∧...∧ψn, then ϕ can be derived from the maximal consistent
set Γ which contains {ψ1, ..., ψn}.

Lemma 3.4 For any Γ ∈ Sζ , Pi,ζ(Γ) is well defined.

Proo f . It suffices to prove the following claim: if X(ϕ) = X(ψ), then μζ,i,Γ(X(ϕ)) =
μζ,i,Γ(X(ψ)). If X(ϕ) = X(ψ), it is clear that ⊢ ϕ ↔ ψ. For suppose not, then ϕ ∧ ¬ψ
is consistent, by Lemma 3.3, there is Γ′ such that ϕ ∧ ¬ψ can be proved from Γ′, therefore
Γ′ ∈ X(ϕ) and Γ′ /∈ X(ψ), it is a contradiction. Thus ⊢ ϕ ↔ ψ. By rule: ⊢ ϕ → ψ ⇒
⊢ Bi(a, ϕ) → Bi(a, ψ), we get ⊢ Bi(a, ϕ) ↔ Bi(a, ψ), which means μζ,i,Γ(X(ϕ)) = μζ,i,Γ(X(ψ)).

Lemma 3.5 Let Proζ,i,Γ(ϕ) = {a|Bi(a, ϕ) can be proved from Γ in PBL f }, then
sup(Proζ,i,Γ(ϕ)) ∈ Proζ,i,Γ(ϕ).

Proo f . Suppose Proζ,i,Γ(ϕ) = {a|Bi(a, ϕ) can be proved from Γ in PBL f }, therefore Γ ⊢
Bi(an, ϕ) for all an ∈ Proζ,i,Γ(ϕ), by Rule 5 of PBL f , Γ ⊢ Bi(a, ϕ), where a = supn∈M({an}) =
sup(Proζ,i,Γ(ϕ)), so we get sup(Proζ,i,Γ(ϕ)) ∈ Proζ,i,Γ(ϕ) as desired.

Lemma 3.6 If A ∈ Xζ , then 0 ≤ μζ,i,Γ(A) ≤ 1. Furthermore, μζ,i,Γ(∅) = 0, μζ,i,Γ(Sζ) = 1.

Proo f . By the definition, if Bi(a, ϕ) is a well formed formula, then 0 ≤ a ≤ 1; furthermore,
check the axioms and rules of PBL f , any formula derived from well formed formulas is also a
well formed formula, so 0 ≤ μζ,i,Γ(X(ϕ)) ≤ 1. Therefore, if A ∈ Xζ , then 0 ≤ μζ,i,Γ(A) ≤ 1.

By rule: ⊢ ϕ ⇒ ⊢ Bi(1, ϕ), therefore we have μζ,i,Γ(Sζ) = 1 as desired. By axiom: Bi(0, ϕ),
we get Bi(0, f alse), so μζ,i,Γ(∅) ≥ 0. By rule: ⊢ ¬(ϕ ∧ ψ) ⇒ ⊢ Bi(a, ϕ) ∧ Bi(b, ψ) → Bi(a +
b, ϕ ∨ ψ), where a + b ≤ 1, we have ⊢ Bi(a, f alse) ∧ Bi(b, true) → Bi(a + b, f alse ∨ true),
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hence μζ,i,Γ(Sζ) ≥ μζ,i,Γ(Sζ) + μζ,i,Γ(∅). Since μζ,i,Γ(Sζ) = 1, so 1 ≥ 1 + μζ,i,Γ(∅), therefore
μζ,i,Γ(∅) = 0 as desired.

Lemma 3.7 If A1, A2 ∈ Xζ and A1 ⊆ A2, then μζ,i,Γ(A1) ≤ μζ,i,Γ(A2).

Proo f . Since A1, A2 ∈ Xζ , assume A1 = X(ϕ), A2 = X(ψ). If X(ϕ) ⊆ X(ψ), by rule: ⊢ ϕ → ψ
⇒ ⊢ Bi(a, ϕ) → Bi(a, ψ), we have μζ,i,Γ(X(ϕ)) ≤ μζ,i,Γ(X(ψ)). Therefore if A1, A2 ∈ Xζ and
A1 ⊆ A2, then μζ,i,Γ(A1) ≤ μζ,i,Γ(A2).

Lemma 3.8 If A1, A2 ∈ Xζ and A1 ∩ A2 = ∅, then μζ,i,Γ(A1 ∪ A2) ≥ μζ,i,Γ(A1) + μζ,i,Γ(A2).

Proo f . Since A1, A2 ∈ Xζ , assume A1 = X(ϕ), A2 = X(ψ), by rule: ⊢ ¬(ϕ∧ψ) ⇒⊢ Bi(a, ϕ)∧
Bi(b, ψ) → Bi(a + b, ϕ ∨ ψ), where a1 + a2 ≤ 1, we have μζ,i,Γ(X(ϕ) ∪ X(ψ)) ≥ μζ,i,Γ(X(ϕ)) +
μζ,i,Γ(X(ψ)). Therefore if A1, A2 ∈ Xζ and A1 ∩ A2 = ∅, then μζ,i,Γ(A1 ∪ A2) ≥ μζ,i,Γ(A1) +
μζ,i,Γ(A2).

Lemma 3.9 For any C, D ∈ Xζ , μζ,i,Γ(C ∩ D) ≥ μζ,i,Γ(C) + μζ,i,Γ(D)− 1.

Proo f . Since C, D ∈ Xζ , assume C = X(ϕ), D = X(ψ), by axiom: Bi(a, ϕ) ∧ Bi(b, ψ) →
Bi(max(a + b − 1, 0), ϕ ∧ ψ), we get μζ,i,Γ(X(ϕ) ∩ X(ψ)) ≥ μζ,i,Γ(X(ϕ)) + μζ,i,Γ(X(ψ))− 1.

Lemma 3.10 Let B−
i (Γ) = {Γ′|{ϕ : Bi(1, ϕ) ∈ Γ} ⊆ Γ′}, then μζ,i,Γ(B−

i (Γ)) = 1.

Proo f . For Γ is a finite formulas set, therefore B−
i (Γ) = X(∧Bi(1,ϕn)∈Γ ϕn), by axiom:

Bi(a, ϕ) ∧ Bi(b, ψ) → Bi(max(a + b − 1, 0), ϕ ∧ ψ), we have that ∧Bi(1, ϕn) → Bi(1,∧ϕn),
so Bi(1,∧Bi(1,ϕn)∈Γ ϕn) can be proved from Γ in PBL f , so μζ,i,Γ(B−

i (Γ)) = 1.

Lemma 3.11 Let Λi,Γ = {Γ′|Pi,ζ(Γ) = Pi,ζ(Γ
′)}, then μζ,i,Γ(Λi,Γ) = 1.

Proo f . Suppose Γ′ ∈ B−
i (Γ). If Bi(a, ϕ) ∈ Γ, by rule: Bi(a, ϕ) → Bi(1, Bi(a, ϕ)), we get

Bi(1, Bi(a, ϕ)) ∈ Γ, for Γ′ ∈ B−
i (Γ), hence Bi(a, ϕ) ∈ Γ′. If ¬Bi(a, ϕ) ∈ Γ, by rule: ¬Bi(a, ϕ) →

Bi(1,¬Bi(a, ϕ)), we get Bi(1,¬Bi(a, ϕ)) ∈ Γ, for Γ′ ∈ B−
i (Γ), hence ¬Bi(a, ϕ) ∈ Γ′. Therefore

Bi(a, ϕ) ∈ Γ iff Bi(a, ϕ) ∈ Γ′, which means for any A ∈ Xζ , μζ,i,Γ(A) = μζ,i,Γ′ (A), so Γ′ ∈ Λi,Γ,

and furthermore B−
i (Γ) ⊆ Λi,Γ. By Lemma 3.10, μζ,i,Γ(B−

i (Γ)) = 1, we get μζ,i,Γ(Λi,Γ) = 1 as
desired.

Lemma 3.12 For any Γ ∈ Sζ , Pi,ζ(Γ) is a PBL f -inner probability space.

Proo f . By Lemma 3.6 to Lemma 3.11, we can get the claim immediately.

Lemma 3.13 The inner probabilistic model PMζ is a finite model.

Proo f . By the definition of Sζ , the cardinality of Sζ is no more than the cardinality of

℘(Sub∗(ζ)), which means |Sζ | ≤ 2|Sub∗(ζ)|.

Similar to the proof of completeness of PBLω , the above lemmas show that PMζ is a finite
PBL f -model and the following lemma states that PMζ is canonical.

Lemma 3.14 For the finite canonical model PMζ , for any Γ ∈ Sζ and any ϕ ∈ Sub∗(ζ),
(PMζ , Γ) |= ϕ ⇔ ϕ ∈ Γ.

Proo f . We argue by cases on the structure of ϕ, here we only give the proof in the case of
ϕ ≡ Bi(a, ψ):

It suffices to prove: (PMζ , Γ) |= Bi(a, ψ) ⇔ Bi(a, ψ) ∈ Γ.
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If Bi(a, ψ) ∈ Γ, by the definition of PMζ , μζ,i,Γ(X(ψ)) = b ≥ a, therefore (PMζ , Γ) |= Bi(a, ψ).

If Bi(a, ψ) /∈ Γ, by Lemma 3.5, there exists b = sup({c|Bi(c, ψ) ∈ Γ}) such that Bi(b, ψ) ∈ Γ

and a > b. By the definition of PMζ , μζ,i,Γ(X(ψ)) = b, therefore (PMζ , Γ) |= Bi(a, ψ).

From the above lemmas, we know that PMζ is a finite PBL f -model that is canonical. Now it
is no difficult to get the following proposition.

Proposition 3.2 (Finite model property of PBL f ) If Γ is a finite set of consistent formulas, then
there is a finite PBL f -model PM such that PM |=PBL f

Γ.

Proo f . By Lemma 3.14, there exists a finite PBL f -model PM∧Γ such that Γ is satisfied in PM∧Γ.

Proposition 3.3 (Weak completeness of PBL f ) If Γ is a finite set of formulas, ϕ is a formula,
and Γ |= PBL f

ϕ, then Γ ⊢PBL f
ϕ.

Proo f . Suppose not, then (∧Γ) ∧ ¬ϕ is consistent with respect to PBL f , by Proposition
3.2, there exists an inner probabilistic model PM(∧Γ)∧¬ϕ such that (∧Γ) ∧ ¬ϕ is satisfied in

PM(∧Γ)∧¬ϕ, but this contradicts our assumption that Γ |= PBL f
ϕ, thus the proposition holds.

As to PBLω case, the construction of canonical model like Definition 3.4 fails to get the
finite model property. The main problem lies in how to define measure assignment μζ,i,Γ,
in Definition 3.4, μζ,i,Γ(X(ϕ)) = sup({a|Bi(a, ϕ) is provable from Γ in PBL f }), but Rule 6 fails
under this definition. Thus there is an unsolved problem about how to construct a finite model
with respect to a PBLω-consistent formula.

Usually, in the case of modal logics, one can get decidability of the provability problem from
finite model property. At first, one can simply construct every model with finite (for example,

say 2|Sub∗(ϕ)|) states. One then check if ϕ is true at some state of one of these models (note

that the number of models that have 2|Sub∗(ϕ)| states is finite). By finite model property, if a
formula ϕ is consistent, then ϕ is satisfiable with respect to some models. Conversely, if ϕ is
satisfiable with respect to some models, then ϕ is consistent.

But it becomes different for PBL f . Because there may be infinitely many PBL f -inner
probability measure assigned to the set X (since real number in [0,1] is infinite), there are
infinitely many probabilistic models associated to a given number of states (for example, say

2|Sub∗(ϕ)|). Therefore the above argument fails. On the contrary, in the next section, we will
present another variant-PBLr, and prove that the decidability of the provable problem holds
for PBLr.

4. PBLr and its inner probabilistic semantics

The inference systems of PBLω and PBL f both have the infinite inference rules, but in
application, an infinite inference rule is inconvenient. Whether we can get the weak
completeness for a variant of PBLω or PBL f without Rule 5? In this section, we propose
another probabilistic belief logic-PBLr. The inference system of PBLr is that of PBL f without
Rule 5. Another notable difference between PBLr and PBL f is that the probability a in the
scope of Bi(a, ϕ) must be a rational number. Similar to the semantics of PBL f , we assign an
inner probability space to every possible world in the model.

We prove the soundness and finite model property of PBLr. At last, as a consequence of
the finite model property, we obtain weak completeness and decidability of the provability
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problem of PBL f . Roughly speaking, let Γ be a finite set of formulas, weak completeness
means Γ |= ϕ ⇒ Γ ⊢ ϕ, and decidability of the provability problem of PBL f means there is an
algorithm that, given as input a formula ϕ, will decide whether ϕ is provable in PBL f .

Definition 4.1 The set of well formed formulas set of PBLr, called LPBLr , is given by the
following grammar:

(1) If ϕ ∈Atomic formulas set, then ϕ ∈ LPBLr ;

(2) If ϕ ∈ LPBLr , then ¬ϕ ∈ LPBLr ;

(3) If ϕ1,ϕ2 ∈ LPBLr , then ϕ1 ∧ ϕ2 ∈ LPBLr ;

(4) If ϕ ∈ LPBLr and a is a rational number in [0,1], then Bi(a, ϕ) ∈ LPBLr .

Remark: A significant difference between PBLr and PBL̟ (PBL f ) is that in the definition of
syntax, the probability in the scope of Bi(a, ϕ) in the former is a rational number.

The inner probabilistic model of PBLr is the same as the inner probabilistic model of PBL f ,
except that the value of PBLr-inner probability measure is a rational number.

The inference system of PBLr consists of axioms and inference rules of proposition logic and
the Axioms 1-5 and Rules 1-4 of PBL̟ . But it is necessary to note that by the definition of well
formed formulas of PBLr, all the probabilities in the axioms and inference rules of PBLr should
be modified to be rational numbers. For example, Axiom 5 of PBLω : “Bi(a, ϕ) → Bi(b, ϕ),
where 1 ≥ a ≥ b ≥ 0” should be modified as “Bi(a, ϕ) → Bi(b, ϕ), where 1 ≥ a ≥ b ≥
0 and a, b are rational numbers” in PBLr. Since the probabilities a and b in the formulas
Bi(a, ϕ) and Bi(b, ψ) are rational numbers, so the probability max(a + b − 1, 0) in the scope of
Bi(max(a+ b− 1, 0), ϕ∧ψ) in Axiom 2 and the probability a+ b in the scope of Bi(a+ b, ϕ∨ψ)
in Rule 4 are also rational numbers.

The proof of the soundness of PBLr is similar to the soundness of PBL f , and we do not give
the details.

Proposition 4.1 (Soundness of PBLr) If Γ ⊢PBLr
ϕ then Γ |=PBLr

ϕ.

4.1 Finite model property and decidability of PBLr

In order to prove the weak completeness of PBLr, we first present a probabilistic belief logic -
PBLr(N), where N is a given natural number. The finite model property of PBLr(N) is then
proved. From this property, we get the weak completeness and the decidability of PBLr.

The syntax of PBLr(N) is the same as the syntax of PBLr except that the probabilities in
formulas should be rational numbers like k/N. For example, every probability in formulas of
PBLr(3) should be one of 0/3, 1/3, 2/3 or 3/3. Therefore, Bi(1/3, ϕ) and Bi(2/3, Bj(1/3, ϕ))
are well formed formulas in PBLr(3), but Bi(1/2, ϕ) is not a well formed formula in PBLr(3).

The inner probabilistic model of PBLr(N) is also the same as PBLr except that the measure
assigned to every possible world should be the form of k/N respectively. Therefore, in an
inner probabilistic model of PBLr(3), the measure in a possible world may be 1/3, 2/3 and
etc, but can not be 1/2 or 1/4.

The inference system of PBLr(N) is also similar to PBLr but all the probabilities in the axioms
and inference rules should be the form of k/N respectively. For example, Axiom 5 of PBLω :
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“Bi(a, ϕ) → Bi(b, ϕ), where 1 ≥ a ≥ b ≥ 0” should be modified to “Bi(a, ϕ) → Bi(b, ϕ), where
1 ≥ a ≥ b ≥ 0 and a, b are the from of k1/N, k2/N” in Axiom 5 of the inference system of
PBLr(N). Since the probabilities a and b in the formulas Bi(a, ϕ) and Bi(b, ϕ) are in the form
of k1/N, k2/N, so the probability max(a + b − 1, 0) in the scope of Bi(max(a + b − 1, 0), ϕ ∧ ψ)
in Axiom 2 and the probability a + b in the scope of Bi(a + b, ϕ ∨ ψ) in Rule 4 are also in the
form of k/N.

It is easy to see that the soundness of PBLr(N) holds. We omit the detail proof here.

Proposition 4.2 (Soundness of PBLr(N)) If Γ ⊢PBLr(N) ϕ then Γ |=PBLr(N) ϕ.

In the following, we prove the finite model property of PBLr(N). By this proposition, we can
obtain the weak completeness of PBLr immediately.

Definition 4.2 Suppose ζ is a consistent formula with respect to PBLr(N). Sub∗(ζ) is a set

of formulas defined as follows: let ζ ∈ LPBLr(N), Sub(ζ) is the set of subformulas of ζ, then
Sub∗(ζ) = Sub(ζ) ∪ {¬ψ|ψ ∈ Sub(ζ)}. It is clear that Sub∗(ζ) is finite.

Definition 4.3 The inner probabilistic model PMζ with respect to formula ζ is
(Sζ , P1,ζ , ..., Pn,ζ , πζ).

(1) Here Sζ = {Γ|Γ is a maximal consistent formulas set with respect to PBLr(N) and Γ ⊆
Sub∗(ζ)}.

(2) For any Γ ∈ Sζ , Pi,ζ(Γ) = (Sζ , Xζ , μζ,i,Γ), where Xζ = {X(ϕ)|X(ϕ) = {Γ′|ϕ is a
Boolean combination of formulas in Sub∗(ζ) and Γ′ ⊢PBLr(N) ϕ}}; μζ,i,Γ is an inner probability

assignment: Xζ → [0, 1], and μζ,i,Γ(X(ϕ) = sup({a|Bi(a, ϕ) is provable from Γ in PBLr(N)}).

(3) πζ is a truth assignment as follows: for any atomic formula p, πζ(p, Γ) = true ⇔ p ∈ Γ.

The following lemmas show that the above model PMζ is an inner probabilistic model of
PBLr(N), and it is canonical: for any Γ ∈ Sζ and any ϕ ∈ Sub∗(ζ), ϕ ∈ Γ ⇔ (PMζ , Γ) |= ϕ.
This implies the finite model property of PBLr(N).

Lemma 4.1 Sζ is a nonempty finite set.

Proo f . Since the rules and axioms of PBLr(N) are consistent, Sζ is nonempty. For Sub∗(ζ)
is a finite set, by the definition of Sζ , the cardinality of Sζ is no more than the cardinality of
℘(Sub∗(ζ)).

Lemma 4.2 Xζ is the power set of Sζ .

Proo f . Firstly, since Sub∗(ζ) is finite, so if Γ ∈ Sζ then Γ is finite. We can let ϕΓ be the
conjunction of the formulas in Γ. Secondly, if A ⊆ Sζ , then A = X(∨Γ∈A ϕΓ). By the above
argument, we have that Xζ is the power set of Sζ .

Lemma 4.3 If ϕ is consistent (here ϕ is a Boolean combination of formulas in Sub∗(ζ)), then
there exists Γ such that ϕ can be proved from Γ, here Γ is a maximal consistent set with respect
to PBLr(N) and Γ ⊆ Sub∗(ζ).

Proo f . For ϕ is obtainable from the Boolean connective composition of formulas in Sub∗(ζ),
therefore by regarding the formulas in Sub∗(ζ) as atomic formulas, ϕ can be represented
in disjunctive normal form. Since ϕ is consistent, there is a consistent disjunctive term in
disjunctive normal form expression of ϕ, let such term be ψ1 ∧ ... ∧ ψn, then ϕ can be derived
from the maximal consistent set Γ that contains {ψ1, ..., ψn}.
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Lemma 4.4 For any Γ ∈ Sζ , Pζ(Γ) is well defined.

Proo f . It suffices to prove the following claim: if X(ϕ) = X(ψ), then μζ,i,Γ(X(ϕ)) =
μζ,i,Γ(X(ψ)). If X(ϕ) = X(ψ), it is clear that ⊢ ϕ ↔ ψ. For suppose not, ϕ ∧ ¬ψ is consistent.
By Lemma 4.3, there is Γ′ such that ϕ ∧ ¬ψ can be proved from Γ′, therefore Γ′ ∈ X(ϕ) and
Γ′ /∈ X(ψ), it is a contradiction. Thus ⊢ ϕ ↔ ψ. By rule: ⊢ ϕ → ψ ⇒ ⊢ Bi(a, ϕ) → Bi(a, ψ), we
get ⊢ Bi(a, ϕ) ↔ Bi(a, ψ), which means μζ,i,Γ(X(ϕ)) = μζ,i,Γ(X(ψ)).

Lemma 4.5 Let Proζ,i,Γ(ϕ) = {a|Bi(a, ϕ) ∈ Γ} , then sup(Proζ,i,Γ(ϕ)) ∈ Proζ,i,Γ(ϕ).

Proo f . By the construction of model, Proζ,i,Γ(ϕ) is one of the numbers 0/N, 1/N,...,N/N.
Since the set 0/N, 1/N, ..., N/N is finite, therefore sup(Proζ,i,Γ(ϕ)) ∈ Proζ,i,Γ(ϕ).

Lemma 4.6 If A ∈ Xζ , then 0 ≤ μζ,i,Γ(A) ≤ 1. Furthermore, μζ,i,Γ(∅) = 0 and μζ,i,Γ(Sζ) = 1.

Proo f . By the construction of model, it is clear that μζ,i,Γ has the following property: if A ∈ Xζ ,
then 0 ≤ μζ,i,Γ(A) ≤ 1.

By rule: ⊢ ϕ ⇒ ⊢ Bi(1, ϕ), it is clear μζ,i,Γ(Sζ) = 1. By axiom: Bi(0, ϕ), we get Bi(0, f alse), so
μζ,i,Γ(∅) ≥ 0. By Rule 4 of PBLr, we get μζ,i,Γ(Sζ) ≥ μζ,i,Γ(Sζ) + μζ,i,Γ(∅), so 1 ≥ 1+ μζ,i,Γ(∅),
which implies μζ,i,Γ(∅) = 0.

Lemma 4.7 If A1, A2 ∈ Xζ and A1 ⊆ A2, then μζ,i,Γ(A1) ≤ μζ,i,Γ(A2).

Proo f . Since A1, A2 ∈ Xζ assume A1 = X(ϕ), A2 = X(ψ). If X(ϕ) ⊆ X(ψ), by rule: ⊢ ϕ →
ψ ⇒⊢ Bi(a, ϕ) → Bi(a, ψ), we have μζ,i,Γ(A1) ≤ μζ,i,Γ(A2). Therefore if A1, A2 ∈ Xζ and
A1 ⊆ A2, then μζ,i,Γ(A1) ≤ μζ,i,Γ(A2).

Lemma 4.8 If A1, A2 ∈ Xζ and A1 ∩ A2 = ∅, then μζ,i,Γ(A1 ∪ A2) ≥ μζ,i,Γ(A1) + μζ,i,Γ(A2).

Proo f . Since A1, A2 ∈ Xζ , assume A1 = X(ϕ), A2 = X(ψ). By rule: ⊢ ¬(ϕ ∧ ψ) ⇒
⊢ Bi(a1, ϕ)∧ Bi(a2, ψ) → Bi(a1 + a2, ϕ∨ψ), where a1 + a2 ≤ 1, we have μζ,i,Γ(X(ϕ)∪X(ψ)) ≥
μζ,i,Γ(X(ϕ)) + μζ,i,Γ(X(ψ)). Therefore if A1, A2 ∈ Xζ and A1 ∩ A2 = ∅, then μζ,i,Γ(A1 ∪ A2) ≥
μζ,i,Γ(A1) + μζ,i,Γ(A2).

Lemma 4.9 For any C, D ∈ Xζ , μζ,i,Γ(C ∩ D) ≥ μζ,i,ΓC) + μζ,i,Γ(D)− 1.

Proo f . Since C, D ∈ Xζ , assume C = X(ϕ), D = X(ψ), by axiom: Bi(a, ϕ) ∧ Bi(b, ψ) →
Bi(max(a + b − 1, 0), ϕ ∧ ψ), we get μζ,i,Γ(X(ϕ) ∩ X(ψ)) ≥ μζ,i,Γ(X(ϕ)) + μζ,i,Γ(X(ψ))− 1.

Lemma 4.10 Let B−
i (Γ) = {Γ′|{ϕ|Bi(1, ϕ) ∈ Γ} ⊆ Γ′}, then μζ,i,Γ(B−

i (Γ)) = 1.

Proo f . For Γ is a finite formulas set, therefore B−
i (Γ) = X(∧Bi(1,ϕn)∈Γ ϕn), by axiom:

Bi(a, ϕ) ∧ Bi(b, ψ) → Bi(max(a + b − 1, 0), ϕ ∧ ψ), we have that ∧Bi(1, ϕn) → Bi(1,∧ϕn),
so Bi(1,∧Bi(1,ϕn)∈Γ ϕn) can be proved from Γ in PBLr(N), so μζ,i,Γ(B−

i (Γ)) = 1.

Lemma 4.11 Let Λi,Γ = {Γ′|Pi,ζ(Γ) = Pi,ζ(Γ
′)}, then μζ,i,Γ(Λi,Γ) = 1.

Proo f . Suppose Γ′ ∈ B−
i (Γ). If Bi(a, ϕ) ∈ Γ, by rule: Bi(a, ϕ) → Bi(1, Bi(a, ϕ)), we get

Bi(1, Bi(a, ϕ)) ∈ Γ, for Γ′ ∈ B−
i (Γ), hence Bi(a, ϕ) ∈ Γ′. If ¬Bi(a, ϕ) ∈ Γ, by rule: ¬Bi(a, ϕ) →

Bi(1,¬Bi(a, ϕ)), we get Bi(1,¬Bi(a, ϕ)) ∈ Γ, for Γ′ ∈ B−
i (Γ), hence ¬Bi(a, ϕ) ∈ Γ′. Therefore

Bi(a, ϕ) ∈ Γ iff Bi(a, ϕ) ∈ Γ′, which means for any A ∈ Xζ , μζ,i,Γ(A) = μζ,i,Γ′ (A), so Γ′ ∈ Λi,Γ,

and furthermore B−
i (Γ) ⊆ Λi,Γ. For μζ,i,Γ(B−

i (Γ)) = 1, we get μζ,i,Γ(Λi,Γ) = 1 as desired.
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Lemma 4.12 For any Γ ∈ Sζ , Pi,ζ(Γ) is a PBLr(N)-inner probability space.

Proo f . By Lemma 4.2 to Lemma 4.11, we can get the claim immediately.

Lemma 4.13 The inner probabilistic model PMζ is a finite model.

Proo f . By the definition of Sζ , the cardinality of Sζ is no more than the cardinality of

℘(Sub∗(ζ)), which means |Sζ | ≤ 2|Sub∗(ζ)|.

Lemma 4.14 In the canonical PBLr(N)-model PMζ , for any Γ ∈ Sζ and any ϕ ∈ Sub∗(ζ),
ϕ ∈ Γ ⇔ (PMζ , Γ) |= ϕ.

Proo f . We prove the lemma by induction on the structure of ϕ. In the following, we only
prove that Bi(a, ψ) ∈ Γ ⇔ (PMζ , Γ) |= Bi(a, ψ).

If Bi(a, ψ) ∈ Γ, by the construction of PMζ , μζ,i,Γ(X(ψ)) = b ≥ a, we get (PMζ , Γ) |= Bi(a, ψ).

If Bi(a, ψ) /∈ Γ, then ¬Bi(a, ψ) ∈ Γ, by the construction of PMζ and Lemma 4.5, since
sup(Proζ,i,Γ(ψ)) ∈ Proζ,i,Γ(ψ), so we have sup(Proζ,i,Γ(ψ)) = b < a, and μζ,i,Γ(X(ψ)) = b,
which implies (PMζ , Γ) |= ¬Bi(a, ψ), therefore (PMζ , Γ) |= Bi(a, ψ).

Proposition 4.3 (Finite model property of PBLr(N)) If Γ is a finite set of consistent formulas,
then there is a finite model PM such that PM |=PBLr(N) Γ.

Proo f . By Lemma 4.14, there exists a finite PBLr(N)-model PM∧Γ such that Γ is satisfied in
PM∧Γ.

Since any inner probabilistic model of PBLr(N) is also an inner probabilistic model of PBLr,
and any formula of PBLr can be regarded as a formula of PBLr(N), given a consistent
PBLr-formula ζ, we can construct a PBLr(N)-inner probabilistic model PMζ that satisfies
formula ζ by the above lemmas. Since PMζ is also PBLr-inner probabilistic model, so
we can construct a PBLr- inner probabilistic model PMζ that satisfies the given consistent
PBLr-formula ζ, this implies the finite model property of PBLr.

Proposition 4.4 (Finite model property of PBLr) If Γ is a finite set of consistent formulas, then
there is a finite model PM such that PM |=PBLr

Γ.

Proo f . Let a1, a2, ..., an be all rational numbers occur in the formulas in Γ. There are natural
numbers k1, k2, ..., kn, N such that ai = ki/N. Firstly, since the axioms and rules of PBLr(N)
is also the axioms and rules of PBLr, therefore it is clear that if a finite set of formulas Γ is
consistent with PBLr, then it is also consistent with PBLr(N). By Proposition 4.3, there is a
finite model of PBLr(N), PM, satisfying Γ. Since the model of PBLr(N) is also a model of
PBLr, so we get the proposition.

Proposition 4.5 (Weak completeness of PBLr) If Γ is a finite set of formulas, ϕ is a formula,
and Γ |=PBLr

ϕ, then Γ ⊢PBLr
ϕ.

Proo f . Suppose not, then (∧Γ) ∧ ¬ϕ is consistent with respect to PBLr, by Proposition 4.4,
there exists an inner probabilistic model PM(∧Γ)∧¬ϕ such that (∧Γ) ∧ ¬ϕ is satisfied in

PM(∧Γ)∧¬ϕ, but this contradicts our assumption that Γ |=PBLr
ϕ, thus the proposition holds.

From Proposition 4.4, we can get a procedure for checking if a formula ϕ is PBLr-consistent.

We simply construct every probabilistic model with 2|Sub∗(ϕ)| states (Remember that in the
construction of the finite model of ϕ, the values of inner probability measure are in the form
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of k/N, where N is a constant natural number. Since there are finite numbers having the form
of k/N, where 0 ≤ k ≤ N, therefore the number of inner probability measures assigned to the

measurable sets is also finite, and consequently, the number of models with 2|Sub∗(ϕ)| states is
finite). We then check if ϕ is true at some state of one of these models. By Proposition 4.4, if a
formula ϕ is PBLr -consistent, then ϕ is satisfiable with respect to some models. Conversely,
if ϕ is satisfiable with respect to some models, then ϕ is PBLr-consistent.

As a consequence, we can now show that the provability problem for PBLr is decidable.

Proposition 4.6 (Decidability of PBLr) The provability problem for PBLr is decidable.

Proo f . Since ϕ is provable in PBLr iff ¬ϕ is not PBLr-consistent, we can simply check if
¬ϕ is PBLr-consistent. By the above discussion, there is a checking procedure. Hence the
provability problem for PBLr is decidable.

5. Comparison of Fagin and Halpern’s logic with our work

The probabilistic knowledge logic proposed by Fagin and Halpern in [3] is a famous epistemic
logic with probabilistic character. In this section, we mainly compare the logic in [3] with our
logics in terms of their syntax, inference system, semantics and proof technique.

1. Syntax. The basic formulas of logic in [3] can be classified into two categories: the standard
knowledge logic formula such as Ki ϕ, and the probability formula such as a1wi(ϕ1) + ... +
akwi(ϕk) ≥ b. The formula Kb

i (ϕ) is an abbreviation for Ki(wi(ϕ) ≥ b), intuitively, this says
that “agent i knows that the probability of ϕ is greater than or equal to b”. Except the difference
of knowledge and belief operators, the formula Kb

i (ϕ) is similar to the formula Bi(b, ϕ) of
this chapter. But in this chapter, Bi(b, ϕ) is a basic formula, and there is no formula such
as a1wi(ϕ1) + ... + akwi(ϕk) ≥ b, because a1wi(ϕ1) + ... + akwi(ϕk) ≥ b contains non-logical
symbols such as “×”, “+” and “≥”, and accordingly, the language and reasoning system have
to deal with linear inequalities and probabilities. We get a tradeoff between expressive power
and complexity, and the only basic formula of this chapter is Bi(b, ϕ), which makes the syntax
and axioms of our logic system simpler.

2. Inference system. The inference system in [3] consists of four components: the first
component includes axioms and rules for propositional reasoning; the second component
includes the standard knowledge logic; the third component allows us to reason about
inequalities (so it contains axioms that allow us to deduce, for example, that 2x ≥ 2y follows
from x ≥ y); while the fourth is the only one that has axioms and inference rules for reasoning
about probability. It is worthy to note that W3 (wi(ϕ ∧ ψ) + wi(ϕ ∧ ¬ψ) = wi(ϕ)) in [3]
corresponds to finite additivity, not countable infinite additivity, i.e., μ(A1 ∪ A2 ∪ ...∪ An...) =
μ(A1)+μ(A2)+ ...+μ(An)+ ..., if A1, ..., An, ... is a countable collection of disjoint measurable
sets. As Fagin and Halpern indicated, they think it is enough to introduce an axiom
corresponding to finite additivity for most applications. They could not express countable
infinite additivity in their language.

In this chapter, there are two components in our inference systems: the first component
includes axioms and rules for propositional reasoning; the second component includes axioms
and rules for probabilistic belief reasoning. In our system, when one perform reasoning, one
need not to consider different kinds of axioms and rules that may involve linear inequalities
or probabilities. In order to express the properties of probability (such as finite additivity,
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monotonicity or continuity) by probabilistic modal operator directly instead of by inequalities
and probabilities, we introduce some new axioms and rules. While in Fagin and Halpern’s
paper, these properties are expressed by the axioms for linear inequalities or probabilities.
Similar to Fagin and Halpern’s logic system, we only express finite additivity, but not
countable infinite additivity, because we cannot express such property in our language, in
fact, we believe that this property cannot be expressed by finite length formula in reasoning
system. On the other hand, we think the finite additivity property is enough for the most of
meaningful reasoning about probabilistic belief.

3. Semantics. In [3], a Kripke structure for knowledge and probability (for n agents) is a
tuple (S, π, K1, ..., Kn, P), where P is a probability assignment, which assigns to each agent
i ∈ {1, ..., n} and state s ∈ S a probability space P(i, s) = (Si,s, Xi,s, μi,s), where Si,s ⊆ S.

To give semantics to formula such as wi(ϕ) ≥ b, the obvious way is (M, s) |= wi(ϕ) ≥ b iff
μi,s(Si,s(ϕ)) ≥ b, here Si,s(ϕ) = {s′ ∈ Si,s|(M, s′) |= ϕ}. The only problem with this definition
is that the set Si,s(ϕ) might not be measurable (i.e., not in Xi,s), so that μi,s(Si,s(ϕ)) might
not be well defined. They considered two models. One model satisfies MEAS condition
(for every formula ϕ, the set Si,s(ϕ) ∈ Xi,s) to guarantee that this set is measurable, and
the corresponding inference system AXMEAS has finite additivity condition W3. The other
model does not obey MEAS condition, and the corresponding inference system AX has no
finite additivity condition W3. To deal with the problem in this case, they adopted the inner
measures (μi,s)

∗ rather than μi,s, here (μi,s)
∗(A) = sup({μi,s(B)|B ⊆ A and B ∈ X}), here

sup(A) is the least upper bound of A. Thus, (M, s) |= wi(ϕ) ≥ b iff (μi,s)
∗(Si,s(ϕ)) ≥ b.

Similar to the model of AXMEAS in [3], in the model of PBLω , Xi,s satisfies the following
conditions: (a) If p is an atomic formula, then evPM(p) = {s′|π(s′, p) = true} ∈ Xi,s; (b) If
A ∈ Xi,s, then Si,s − A ∈ Xi,s; (c) If A1, A2 ∈ Xi,s, then A1 ∩ A2 ∈ Xi,s; (d) If A ∈ Xi,s and
a ∈ [0, 1], then {s′|μi,s′ (A) ≥ a} ∈ Xi,s. From these conditions, we can prove by structural
induction that for every formula ϕ, the set evPM(ϕ) ∈ Xi,s. Therefore, the model of PBLω

also satisfies the condition MEAS. Moreover, similar to the model of AXMEAS, probability
measure in the model of PBLω satisfies finite additivity property.

In contrast with PBLω , the models of PBL f and PBLr are similar to the model of AX in [3].
There is an inner probability measure rather than probability measure in the models of PBL f

and PBLr. In the model of AX, the semantics of formula is given by inner probability measure
induced by probability measure. Meanwhile, in the models of PBL f and PBLr, we introduce
inner probability measure directly, which satisfies some weaker additivity properties.

Since there is no accessible relation in our model, we need not to consider the conditions about
accessible relations. The only conditions we have to consider are probability space at different
states, which simplifies the description and construction of model.

4. Proof technique of completeness. In [3], they prove the completeness by reducing the
problem to the existence of solution of a finite set of linear inequalities. But this method
does not provide the value of measure assigned to every possible world, and just assures the
existence of measure. Moreover, this method cannot provide completeness property in the
case of infinite set of formulas, which needs some linear inequalities axioms to characterize
the existence of solutions of infinitely many linear inequalities that contain infinitely many
variables. This seems impossible when we have only finite-length formulas in the language.
In this chapter, the proof for completeness is significant different from the proof in [3]. There
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are no auxiliary axioms such as the probability axioms and linear inequality axioms, which
are necessary in the proof of [3]. We prove the completeness by constructing the model that
satisfies the given consistent formulas set, our proof can also be used to deal with the case of
infinite set of formulas. Furthermore, our proof can be generalized to get the completeness of
other probabilistic logic systems because it depends very lightly on the concrete axioms and
rules.

6. Conclusions

In this chapter, we proposed probabilistic belief logics PBLω , PBL f and PBLr, and gave the
respective probabilistic semantics of these logics. Furthermore we proved the soundness
and completeness of PBLω , the finite model property of PBL f and the decidability of PBLr.
The above probabilistic belief logics allow the reasoning of uncertain information of agent in
artificial intelligent systems.

The probabilistic semantics of probabilistic belief logic can also be applied to describe
other probabilistic modal logic by adding the respective restricted conditions on probability
space. Just as different assumptions about the relationship between worlds, can be captured
with different axioms in modal logics, different assumptions about the interrelationships
between probability assignment spaces at different states, can also be captured axiomatically.
Furthermore, the completeness proof in this chapter can be applied to prove the completeness
of other probabilistic modal logics.

It seems to us that some further research directions lie in the following several problems:
whether the finite model property for PBLω holds, whether the decidability for the provability
problem of PBLω or PBL f holds, moreover, if the decidability holds, what is the complexity
of the corresponding provability problem. These problems seem to be much more difficult
and remain open. The techniques used in classical modal logics are not suit to solve such
problems, and some new techniques may be necessary.
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