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1. Introduction 

Multidrug resistance (MDR), the intrinsic or acquired ability to tolerate toxic concentrations 

of structurally and functionally diverse chemicals, is a widespread phenomenon that can be 

found in all living organisms, from bacteria to man (Hayes and Wolf 1997). Its negative 

consequences include the failure of many therapeutic, antimicrobial and crop protection 

actions. At the same time, the ability to tolerate multiple stresses is a highly desirable 

phenotype in organisms used as cell factories that have to cope with fermentation-related 

stresses (Teixeira et al. 2011b). It is, thus, crucial to understand the molecular basis 

underlying this phenomenon to be able to circumvent it or to explore it to design more 

robust industrial strains. 

Oxidative stress, on the other hand, is usually considered the result from an imbalance 

between the generation or influx of reactive oxygen species and the cell ability to readily 

neutralize these molecules (Ikner and Shiozaki 2005; Lushchak 2011). Increased ROS 

concentration may lead, in term, to the modification of susceptible biomolecules, such as 

[Fe-S]-clusters-containing enzymes, proteins exhibiting reactive thiol groups, DNA and 

lipids, which may undergo peroxidation. These corrupted molecules may, in a small 

number of cases, be regenerated, but in most cases are degraded or accumulated in cells. 

The steady-state accumulation of ROS and associated ROS-damaged biomolecules has been 

linked to ageing and to the development of certain pathologies, such as diabetes mellitus, 

atherosclerosis and cardiovascular and neurodegenerative diseases (Lushchak 2011). 

Oxidative stress is usually linked to cell exposure to reactive oxygen species, including 

hydrogen peroxide, or to redox-cycling agents such as menadione, which leads to 

superoxide radical generation. However, mounting evidence appears to suggest that many 
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chemical compounds, including widely used pesticides and pharmaceuticals, can induce 

oxidative stress indirectly, acting as pro-oxidant agents, at the same time that drug 

resistance mechanisms are activated. The comprehension of the underlying molecular 

mechanisms is, thus crucial to evaluate the toxicity of these xenobiotics and to design 

strategies to deal with the arising of multidrug resistance.  

Being now clear that these cellular protection programs, crucial to prevent or delay disease 
progression and ageing, are highly interconnected, it is pivotal to fully understand the 
underlying cross-mechanisms. Thus, this chapter integrates current knowledge of the link 
between oxidative stress and multidrug resistance transcriptional control in S. cerevisiae, 
extending it to pathogenic yeasts. The particular case of the regulation of the multidrug 
resistance transporter Flr1 is further explored as an example of the use of systems biology 
approaches, including the combination of experimental and computational techniques, to 
increase our understanding of complex regulatory networks, shedding light into the cross-
talk between the MDR phenomenon and oxidative stress response. 

2. The multidrug resistance network in yeast 

Multidrug resistance is often acquired through the activation of multidrug efflux pumps, 
belonging to the ATP-Binding Cassette (ABC) or Major Facilitator Superfamilies (MFS), this 
activation occurring, many times, at the transcriptional level. This fact has led to years of 
research aiming the definition of the transcription regulatory networks that control the 
expression of multidrug transporters under stress. The first finding in this field was the 
discovery that the PDR1 gene (Saunders and Rank 1982), latter characterized as a 
transcription factor (Balzi et al. 1987), confers multidrug resistance in the model eukaryote S. 
cerevisiae. Soon after, the so-called PDR (Pleiotropic Drug Resistance) network was first 
described (Balzi and Goffeau 1995) as a very simple network in which Pdr1, and its 
homologous transcription factor Pdr3, were found to control the transcription of the PDR5 
gene (Balzi et al. 1994), encoding an ABC drug efflux pump. This network was rapidly 
extended to include other ABC multidrug transporters, such as Snq2 (Decottignies et al. 
1995), but also members of a new family of multidrug transporters of the MFS (Sá-Correia et 
al. 2009), predicted to function as Drug:H+ Antiporters (DHA) and uncovered mostly upon 
the release of the S. cerevisiae genome sequence (Goffeau et al. 1996), including Flr1 (Brôco et 
al. 1999; Tenreiro et al. 2001) and Tpo1 (do Valle Matta et al. 2001; Teixeira and Sá-Correia 
2002). The use of genome-wide expression analysis tools helped to enlarge this network, 
while the genome-wide targets of Pdr1 and Pdr3 were uncovered (DeRisi et al. 2000). 
Apparently, several unrelated drugs and xenobiotics are able to bind to the so-called 
xenobiotic-binding domain of Pdr1p family members in budding yeast and in the human 
pathogen Candida glabrata, resulting in the over-expression of drug efflux pumps, this 
finding, providing new clues for the development of novel targets for antifungal drugs 
(Thakur et al. 2008). Additionally, new transcription factors were also found to belong to the 
PDR network, based on their homology to Pdr1 and Pdr3. These include Yrr1 (Le Crom et 
al. 2002), Pdr8 (Hikkel et al. 2003) and Yrm1 (Lucau-Danila et al. 2003), their target-genes 
also being identified through microarray analysis and, more directly, through 
ChIP(Chromatine ImmunoPrecipitation)-on-chip analysis. Considering only the canonical 
PDR transcription factors and the genes encoding predicted multidrug transporters of the 
ABC and MFS superfamilies, we get a relatively small, but intricate network controlling 
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multidrug resistance in S. cerevisiae, as depicted in Fig. 1. However, if we consider all the 
targets of the same five transcription factors, the PDR network is found to include nearly 500 
target genes with a broad scope of biological functions. 

 

 

Fig. 1. A: The PDR network, considering only the canonical PDR transcription factors and 

the genes encoding predicted multidrug transporters of the ABC and MFS superfamilies. B: 

The PDR network, considering the canonical PDR transcription factors, the oxidative stress 

response regulator Yap1, and the genes encoding predicted multidrug transporters of the 

ABC and MFS superfamilies. Both networks were built based on the information gathered in 

the YEASTRACT database (www.yeastract.com), considering as evidence for transcriptional 

association between transcription factor and target genes either expression and/or DNA-

binding evidence. 

Further extending this network, it became clear that other transcription factors, whose 

function is not primarily linked to multidrug resistance, are also involved in the 

transcriptional control of drug efflux pumps. The first non-PDR transcription factor to join 

this network was Yap1, the major regulator of oxidative stress response in yeast (Rodrigues-

Pousada et al. 2010), found to confer resistance to the drug diazaborine via the Pdr3 and, 

less significantly, Pdr1 transcription factors (Jungwirth et al. 2000; Wendler et al. 1997). Two 

other transcriptions factors found to relate to the PDR network are Rpn4 (Owsianik et al. 

2002; Teixeira et al. 2008) and Hsf1 (Hahn et al. 2006), regulators of proteasomal genes and 

of the heat shock response, respectively. 

3. The role of yap1 in multidrug resistance in yeast 

Recent studies in this field focusing the model eukaryote Saccharomyces cerevisiae have 
shown that there seems to be a close cross-talk between the multidrug resistance regulatory 
network and the oxidative stress response transcription factor Yap1. Indeed, Yap1 was 
demonstrated to confer resistance against a wide variety of drugs, including quinine, 
rapamycin, trenimon and diazaborine, but also to antifungal agents, such as cerulenin, 

A 

B 
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benomyl, cycloheximide, fenpropimorph, mancozeb, to herbicides, including sulfometuron 
methyl, 2,4-dichlorophenoxyacetic acid (2,4-D) and paraquat and to the food preservative 
acetic acid. Although some of these compounds have been described as pro-oxidants 
molecules (Dias et al. 2010; Semchyshyn et al.; Teixeira et al. 2004), the role of Yap1 in drug 
resistance seems to rely not only in the control of antioxidant defenses, but also on the 
control of multidrug resistance transporters. In fact, Yap1 has been shown to underlie the 
stress-induced up-regulation of the multidrug ABC transporters Pdr5, Pdr18, Snq2, and Ycf1 
(Cabrito et al. 2011; Jungwirth and Kuchler 2006; Teixeira et al. 2006) and of the drug:H+ 
antiporters Atr1, Azr1, Dtr1, Flr1, Qdr3, Tpo1, Tpo2, Tpo4, and Yhk8 (Sá-Correia et al. 2009; 
Teixeira et al. 2011a) (Table 1). If we take a global look, it becomes clear that the role of Yap1 
in the regulation of the PDR network is even broader. Indeed, using the YEASTRACT 
database, a repository of all demonstrated regulatory associations in S. cerevisiae 
(Abdulrehman et al. 2011; Monteiro et al. 2008; Teixeira et al. 2006), it is possible to see that 
Yap1 co-regulates around 18% of the Pdr1-target genes (Fig. 2A). 

Interestingly, Yap1 displays two different activation mechanisms depending on the nature 

of the imposed stress. In both cases, the molecular events triggering Yap1 activation are 

apparently responsible for releasing this transcription factor from the interaction with the 

exportin Crm1, thus leading to its nuclear accumulation (Yan et al. 1998). One of the 

activation mechanisms occurs due to the increase in intracellular ROS concentration, due, 

for example, to cellular exposure to H2O2. Hydrogen peroxide appears to, indirectly, lead to 

the formation of an intramolecular disulfide bond between Cys303 and Cys598 of Yap1 

(Delaunay et al. 2000). On the other hand, a second redox centre was later found in this 

transcription factor, and suggested to involve the direct binding of electrophiles such as N-

ethylmaleimide (Azevedo et al. 2003) to Cys598, Cys620 and Cys629, thus inducing a 

conformational change that also prevents Yap1-Crm1 binding and, thus, leads to Yap1 

accumulation in the nucleus. Given this differential activation mechanism, the question of 

whether Yap1 could regulate distinct target-gene sets under different stress conditions 

arose.  

Microarray analysis was recently used to compare the Yap1-dependent transcriptional 

response to hydrogen peroxide and to the thiol-reactive compounds N-ethylmaleimide 

(NEM) and acrolein (Ouyang et al. 2011). The obtained results showed that 56 genes are 

exclusive of the response to H2O2, while 327 are exclusive of the response to NEM or 

acrolein. Although both responses were primarily under the control of the same 

transcription factor, in each case the elicited response resulted in the expression of protective 

genes specific for  each of the imposed stresses (Ouyang et al. 2011). This specificity appears 

to result from the differential mechanisms of Yap1 activation imposed by the analyzed stress 

agents. The global analysis of the role of Yap1 in yeast response to benomyl induced stress 

had also highlighted the differences between the gene-sets up-regulated by Yap1 in 

response to ROS or to thiol-reactive compounds (Lucau-Danila et al. 2005). Genes  required 

for the maintenance of redox balance were shown to be up-regulated in both cases, while 

specific genes such as SOD1 and CTT1, encoding the cytosolic superoxide dismutase and 

catalase, respectively, are only responsive to ROS. An interesting discovery from this study 

was that the promoter occupancy by Yap1, when activated by benomyl, increases in all the 

promoters of Yap1 targets genes, including highly up-regulated genes such as FLR1, but also 

non-responsive genes such as CTT1 and SOD1 (Lucau-Danila et al. 2005). This finding  
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Gene Binding 
evidence 

Expression evidence  
(under stress) 

References 

Drug:H+ Antiporters 
ATR1 + Arsenic, Arsenite, 

Hydrogen peroxide, 
Nitric oxide, Selenite 

(Coleman et al. 1997; Harbison et al. 
2004; Haugen et al. 2004; Horan et al. 
2006; Kelley and Ideker 2009; Lucau-
Danila et al. 2005; Salin et al. 2008; 
Thorsen et al. 2007; Workman et al. 
2006) 

AZR1 + Arsenic (Haugen et al. 2004; Salin et al. 2008) 
DTR1 + - (Salin et al. 2008) 
FLR1 + Arsenic, Arsenite, 

Benomyl, Diamide, 
Diazaborine, 
Diethylmaleate, 
Hydrogen peroxide, 
Hydroxyurea, 
Methylmethane 
sulfonate, Tert-butyl 
hydroperoxide, 
Selenite 

(Alarco et al. 1997; Brôco et al. 1999; 
Dubacq et al. 2006; Haugen et al. 2004; 
Jungwirth et al. 2000; Kelley and Ideker 
2009; Lucau-Danila et al. 2005; Nguyen 
et al. 2001; Salin et al. 2008; Teixeira et 
al. 2010; Teixeira et al. 2008; Tenreiro et 
al. 2001; Thorsen et al. 2007; Workman 
et al. 2006) 

QDR3 - Spermine, 
Spermidine 

(Teixeira et al. 2011a) 

TPO1 - Benomyl (Lucau-Danila et al. 2005) 
TPO2 - Arsenite (Thorsen et al. 2007) 
TPO4 - Arsenic (Haugen et al. 2004) 
YHK8 + Nitric oxide (Harbison et al. 2004; Horan et al. 2006; 

Lee et al. 2002) 

Pleiotropic Drug Resistance ABC transporters 
PDR5 + Arsenite, Benomyl, 

Hydrogen peroxide 
(Kelley and Ideker 2009; Lucau-Danila 
et al. 2005; Salin et al. 2008; Thorsen et 
al. 2007) 

PDR18 + 2,4-D (Cabrito et al. 2011; Salin et al. 2008) 
SNQ2 + Arsenite, Benomyl (Harbison et al. 2004; Lee et al. 2002; 

Lucau-Danila et al. 2005; Salin et al. 
2008; Thorsen et al. 2007; Workman et 
al. 2006) 

YCF1 + Arsenic, Cadmium, 
Diazaborine 

(Haugen et al. 2004; Jungwirth et al. 
2000; Lucau-Danila et al. 2005; Salin et 
al. 2008; Wemmie et al. 1994) 

 

Table 1. S. cerevisiae multidrug resistance transporter encoding genes under the control of 
Yap1, according to the YEASTRACT database (www.yeastract.com). Whether there is 
evidence (+) or not (-) for Yap1 binding to the promoter regions of the selected genes is 
indicated. The stress conditions leading to target gene up-regulation under Yap1 control are 
also highlighted. Supporting references are provided. 
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reinforces the possibility that the different mechanisms of Yap1 activation lead to diverse 
conformational changes which do not deeply affect Yap1 binding ability, but rather its 
action as a transcriptional activator, allowing this transcription factor to discriminate, 
among its target genes, those that should be up-regulated in each condition.  

 

Fig. 2. Global overlapping between the Yap1 and the PDR regulatory networks. On the left, 
the participation of the Yap1 transcription factor in the regulation of around 18% of the Pdr1 
targets is highlighted, while the right panel emphasizes the role of Pdr1 in the regulation of 
about 15% of the Yap1 regulon. Both networks were built based on the information gathered 
in the YEASTRACT database (www.yeastract.com), considering only DNA-binding 
evidence for the establishment of transcriptional association between transcription factors 
and target genes. 

4. The role of the pdr network in oxidative stress response 

Since there is a clear role of Yap1 in MDR, the hypothesis that the PDR network may also 

play a role in oxidative stress seems logical. Although, to date there is no evidence 

supporting that the PDR network plays a clear role in the response to oxidative stress 

induced by ROS, several studies have highlighted the role of this multidrug resistance 

network in the response to pro-oxidant drugs and xenobiotics (Lelandais and Devaux). 

These include the agricultural fungicides mancozeb (Teixeira et al. 2010; Teixeira et al. 2008) 

and benomyl (Lucau-Danila et al. 2005), the herbicide 2,4-dichlorophenoxyacetic acid 

(Teixeira et al. 2007), the redox-cycling agent menadione  and selenite (Salin et al. 2008). 

Indeed, in yeast cells exposed to pro-oxidants and metalloids, a cooperation between the 

transcription factors Pdr1/Pdr3 and Yap1, Rpn4 and Hsf1 in the modulation of oxidative 

stress response appears to exist.  

In the particular case of the seletine stress response, microarray analysis was used to check 

the transcriptome-wide effect of the deletion of the transcription factor encoding genes 

YAP1, RPN4, PDR1 and PDR3. It was found that the absence of Pdr1 or Pdr3 affected the 

expression of around 20% of the Yap1 targets genes induced under selenite stress. These 

shared genes were found to include chemical stress response genes such as FLR1, as 

expected, but also a sub-group of oxidative stress responsive genes. When taking a global 

A B 
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look at the information gathered in the YEASTRACT database (Abdulrehman et al. 2011; 

Monteiro et al. 2008; Teixeira et al. 2006), it becomes clear that around 15% of the Yap1 target 

genes are also Pdr1 targets (Fig. 2B). Among these shared targets a small, but significant set 

of genes encoding direct antioxidant enzymes have been shown to be direct targets of the 

PDR transcription factors, including the cytosolic catalase Ctt1 (Devaux et al. 2002; Hikkel et 

al. 2003), and the alkyl hydroperoxide reductase Ahp1 (Larochelle et al. 2006) (Fig. 3). 

 

Fig. 3. The core oxidative stress response regulatory control, focused on the transcription 
factor Yap1 and on the yeast genes encoding antioxidant enzymes or proteins required for 
the maintenance of cellular redox balance. The role of the PDR network transcription factors 
in the regulation of these genes is displayed, based on the information gathered in the 
YEASTRACT database (www.yeastract.com). 

In this context, it is also important to point out the specific role of Pdr3, but not of Pdr1, in 
the response to mitochondrial dysfunction (Devaux et al. 2002; Hallstrom and Moye-Rowley 
2000), one of the main natural sources of oxidative imbalance. Indeed, upon the deletion of 
the mitochondrial genome, Pdr3 was seen to play a role in the activation of 14, out of 54, 
genes whose expression changes in these circumstances, placing Pdr3 as one of the 
transcription factors responsible for the retrograde response pathway (Devaux et al. 2002). 
Differently from what happens under chemical stress, upon mitochondrial dysfunction Pdr3 
was seen to be post-translationally modified, but the exact nature of this modification was 
not clarified to date. The proposed role of this transcription factor in the response to 
mitochondrial dysfunction, as a controller of plasma membrane properties, still remains to 
be elucidated. 

5. Cross-talk between multidrug resistance control and oxidative stress 
response in pathogenic yeasts 

The study of multidrug resistance in pathogenic yeast species has been guided, to some 

extent, by the knowledge gathered for S. cerevisiae, as a model organism. A particularly close 

degree of similarity can be found when comparing this model organism with Candida 

glabrata, while the observations made for C. albicans and other Candida species reveal a lower 

conservation in terms of MDR regulation. 

Clinical multiple antifungal drug resistance in C. albicans is mostly found to be based on the 
over-expression of the ABC multidrug efflux pumps encoded by CDR1 (Prasad et al. 1995) 
and CDR2 (Sanglard et al. 1997) genes, which share a high degree of homology with S. 
cerevisiae PDR5, and of the MFS drug:H+ antiporter MDR1 (Goldway et al. 1995), a close 
homologue to S. cerevisiae FLR1 gene. FLU1, another C. albicans drug:H+ antiporter encoding 
gene, was also found to confer fluconazole resistance, but to a lesser extent (Calabrese et al. 
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2000). Interestingly, the regulation of these multidrug transporters shares some similarity to 
that of their homologues in budding yeast. The C. albicans transcription factor Tac1, 
belonging to the S. cerevisiae Pdr1/Pdr3 protein family, was found to be required for CDR1 
and CDR2 up-regulation induced by the drug fluphenazine (Coste et al. 2004). Another 
Pdr1/Pdr3 homologous transcription factor, Mrr1, was found to control the expression of 
MDR1, in both fluconazole-resistant clinical isolates and in benomyl-or hydrogen peroxide-
challenged cells (Morschhauser et al. 2007). Of particular interest, in the context of this 
review, is the fact that the Yap1 homologue from C. albicans, named Cap1, is also involved in 
multidrug resistance (Alarco et al. 1997; Alarco and Raymond 1999), controlling MDR1 
expression, directly binding to its promoter region (Znaidi et al. 2009).  

In C. glabrata, multidrug resistance relies mostly on the ABC drug efflux pumps CgCDR1 (a 
ScPDR5 homologue), CgPDH1/CgCDR2 (a ScPDR15 homologue) and CgSNQ2 (a ScSNQ2 
homologue), but also on the drug-H+ antiporter CgFLR1 (Chen et al. 2007). In this 
pathogenic yeast a single homologue of the budding yeast transcription factors Pdr1/Pdr3, 
CgPdr1, appears to control antifungal drug resistance through its action as an activator of all 
of the above mentioned ABC transporter encoding genes. This role is not only seen in the 
response of laboratory strains to suddenly imposed stress, but also in azole-resistant clinical 
isolates (Torelli et al. 2008; Tsai et al. 2006). The role of other C. glabrata CgPdr1 homologues, 
such as CgYrm1, has not been inspected so far. The C. glabrata Yap1 homologue, Cgap1, has 
also been related to the control of multidrug resistance transporters. Specifically, it was 
found to be required for CgFLR1 up-regulation in response to benomyl-induced stress (Chen 
et al. 2007). Although this transcription factor was not seen to confer antifungal drug 
resistance its expression does increase C. glabrata tolerance to toxic concentrations of various 
oxidants and other xenobiotics (Chen et al. 2007). It is expectable that the understanding of 
the complex transcriptional regulation of MDR in this less well-studied organism will 
increase in the near future, guided by the huge amount of information that is being 
provided through genome-wide approaches. For example, microarray analysis revealed that 
ORF CAGL0G08624g, encoding a close homolog to the S. cerevisiae MFS-MDR transporter 
Qdr2 [T4, (Vargas et al. 2004)], is transcriptionally activated in response to fluconazole 
induced stress, in the dependency of the CgPdr1 transcription factor (Vermitsky and Edlind 
2004). A more recent transcriptomics study showed that the expression of CgFLR1 and ORF 
CAGLOG03927g (a ScTPO1 homologue) genes is up-regulated in cells challenged with 
benomyl, under the control of the Cgap1 transcription factor (Lelandais et al. 2008). 
Although this subject has only now began to be unraveled in C. glabrata, current results 
already allow us to build a relatively small PDR network (Caudle et al.; Ferrari et al.; 
Lelandais et al. 2008; Tsai et al. 2006), including Cgap1, as depicted in Fig. 4.  

Altogether, these results reinforce the notion that the transcriptional control of multidrug 

resistance and oxidative stress response are highly interconnected processes in yeasts and 

suggest that this crosstalk may be extended to other more complex eurakyotes. 

6. The combinatorial regulation of the multidrug transporter Flr1: A systems 
biology case-study 

The FLR1 gene, encoding a plasma membrane drug:H+ antiporter, was one of the first of its 

family to be characterized. Although it derives its name from FLuconazol Resistance (Alarco 

et al. 1997), Flr1 has been shown to confer resistance to a large number of chemically and  
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Fig. 4. The PDR network in the human pathogen Candida glabrata, based on the results of the 
few global studies carried so far on the subject (Caudle et al.; Ferrari et al.; Lelandais et al. 
2008; Tsai et al. 2006). The role of the transcription factors CgPdr1 and Cgap1 in the 
regulation of the genes encoding predicted drug:H+ antiporters of the MFS (upper box) or 
multidrug resistance ABC efflux pumps (lower box) is highlighted. 

structurally unrelated xenobiotics and drugs, including cycloheximide, 4-nitroquinoline-1-

oxide (4-NQO), benomyl, methotrexate, diazaborine, cerulenin, diamide, diethylmaleate, 

menadione, paracetamol and mancozeb (Alarco et al. 1997; Brôco et al. 1999; Jungwirth et al. 

2000; Srikanth et al. 2005; Teixeira et al. 2008). Unlike many of the DHA encoding genes (Sá-

Correia et al. 2009), FLR1 is highly induced at the transcriptional level when yeast cells are 

exposed to the stresses this gene confers resistance to. This high responsiveness to stress, 

made FLR1 transcriptional control an attractive working model to study complex 

transcriptional regulation mechanisms. The first indication on FLR1 transcriptional control, 

came very early on, when FLR1 was identified as a Yap1 target in S. cerevisiae (Alarco et al. 

1997). Upon Yap1 deletion, the up-regulation of FLR1, found to occur in yeast cells exposed 

to the fungicide benomyl, was seen to be completely abrogated (Brôco et al. 1999; Tenreiro et 

al. 2001). At the same time, maximal activation of FLR1 under benomyl stress was found to 

be dependent on the presence of an additional transcription factor, Pdr3 (Brôco et al. 1999; 

Tenreiro et al. 2001). Interestingly, FLR1 promoter region was found to include three 

putative Yap1-Responsive Elements (YRE1-3) (Fig. 6). In a detailed study of the role of each 

of these predicted binding sites, Nguyen and co-workers found that the three binding sites 

were functional, but that their relative importance depends on the imposed stress (Nguyen 

et al. 2001). Indeed, using site-directed mutagenesis to remove each of the Yap1-binding 

sites, YRE3 (-364) was found to be the major player in FLR1 activation under stress imposed 

by benomyl and diethylmaleate. However, YRE2 (-167) becomes the most significant YRE in 

FLR1 up-regulation induced by hydrogen peroxide, diamide and tert-butyl hydroperoxide. 

Finally, all three YREs are equally important to assure full activation of FLR1 in response to 
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methylmethane sulfonate (Nguyen et al. 2001). This finding may relate to the fact that at 

least some of these stresses lead to different Yap1 conformations, which in term may change 

the transcription factor’s affinity towards the possible variations of the Yap1-Responsive 

Element. Furthermore, the fact that YRE3 is responsible for 90% of the FLR1 up-regulation 

induced by benomyl, may relate to the fact this Yap1-binding site is in the proximity of the 

predicted Pdr1/Pdr3-Responsive Element. The possibility that the binding of Pdr3 to the 

FLR1 promoter facilitates Yap1 activity in the nearby YRE3 was then proposed by Tenreiro 

et al (Tenreiro et al. 2001).  

Additional clues to unveil the complete FLR1 regulatory network came from functional 
genomics approaches. Using all available information gathered in the YEASTRACT 
database, based on either microarray or ChIP-on-chip analysis, it is now possible to predict 
that a very complex regulatory network including 15 transcription factors is responsible for 
FLR1 regulation (Fig. 5). In an attempt to understand whether this network could be 
working together to control FLR1 expression in a single stress condition, an FLR1 promoter-
lacZ fusion was used to study FLR1 expression under stress induced by the fungicide 
mancozeb, in the presence or absence of each of the transcription factors found to occur in 
the predictive network. FLR1 activation in yeast cells exposed to mancozeb was found to 
depend upon Yap1 and Pdr3, as previously registered under benomyl stress. However, two 
additional transcription factors were found to be required for mancozeb-induced FLR1 
maximal activation: Yrr1, one of the transcription factors controlling the PDR network, and 
Rpn4, a proteasomal gene regulator (Teixeira et al. 2008).  

 

Fig. 5. Network of transcription factors documented as affecting FLR1 expression, as 
retrieved from the YEASTRACT database (www.yeastract.com). The L-shaped box indicates 
the sub-network found to affect FLR1 up-regulation occurring in yeast cells challenged with 
the fungicide mancozeb (Teixeira et al. 2008). 
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Given the fact that it is becoming increasingly clear that transcriptional regulation is far 
more complex that initially foreseen, the use of systems biology approaches seems to be the 
only way to pursue the goal of understanding such biological processes in all their depth. 
Indeed, Systems Biology aims at understanding living processes as systems of multiple 
interacting components, preferably at a genome-wide scale, and through the combination of 
experimental and computational approaches. Such an approach was undertaken to further 
analyze the FLR1 regulatory network. The profiles of FLR1, YAP1, PDR3, YRR1 and RPN4 
transcript levels were registered during the period of adaptation of a yeast cell population to 
stress imposed by the fungicide mancozeb, in wild-type cells and in mutants devoid of each 
of the four transcription factors (Teixeira et al. 2008). This information was used to build a 
mathematical description of the FLR1 network (Teixeira et al. 2010), taking advantage of the 
freely available GNA software (de Jong et al. 2003). This modeling approach allowed the 
testing of new hypothesis in silico (Monteiro et al. 2011), providing guidance for the design 
of further experimental work (Teixeira et al. 2010). The comparison between simulated and 
experimentally obtained results led to a refined understanding of the network, including the 
realization that a fifth still unidentified transcription factor, denominated FactorX, has to be 
included in the network to fully explain the observed transcriptional profiles (Fig. 6). 
Furthermore, combined results suggested that Yap1 and Yrr1 may function together, 
eventually working as a heterodimer, in the co-regulation of their shared target genes, 
which include the multidrug transporter encoding genes FLR1, AZR1 and SNQ2 and the 
transcription factor encoding genes PDR3, YRR1 and RPN4 (Teixeira et al. 2010). 

 

Fig. 6. FLR1 regulatory network structure, found to be functional in yeast cells exposed to 
mancozeb stress, as obtained from the combination of computational and experimental 
approaches described by Teixeira et al (Monteiro et al. 2011; Teixeira et al. 2010). Dashed 
arrows indicate the new aspects of the network suggested by the used systems biology 
approach that are still to be validated. 

Studies in C. glabrata and C. albicans showed that the ScFLR1 homologues CgFLR1 and 

CaMDR1 are regulated by Yap1p homologs in either species (Chen et al. 2007; Znaidi et al. 

2009). Whether the C. glabrata homologs of the S. cerevisiae Yrr1 and Rpn4 transcription 

factors also play a role in CgFLR1 regulation is still an open question. An interesting clue 

comes from the fact that the C. albicans homologue of ScPdr3, CaMrr1, is also required for 

full CaMDR1 activation (Morschhauser et al. 2007). These results strongly suggest that there 
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may be a significant degree of conservation between multidrug resistance control in these 

related yeast species.  

The current version of the FLR1 regulatory network is small but intricate. We believe that it 

is a good example of how complex transcription control in eukaryotes may be. Furthermore, 

it provides a good platform for further studies on the connection between oxidative stress 

response and two additional biological processes: multidrug resistance and protein 

degradation through the proteasome.  

7. Conclusion and perspectives 

Multidrug resistance control and stress response, in particular oxidative stress response, are 
now recognized as two complex cellular processes that coexist and interplay to allow cells to 
thrive in harsh environments. This chapter highlights current knowledge on the cross-talk 
between oxidative stress and MDR regulation in the model eukaryote S. cerevisiae. It 
emphasizes that, although being more focused on their canonical roles, both Yap1 and the 
PDR regulators play important functions in the regulation of multidrug efflux pumps and 
antioxidant enzymes, respectively.  

At the moment, the logical explanation for this cross-talk appears to lie on the fact that many 
drugs and other xenobiotics may exert pro-oxidant effects, thus activating both multidrug 
resistance and oxidative stress response pathways. A question that still remains to be 
answered relates to why multidrug transporters should be controlled by Yap1 and more 
specifically what might be their role, if any, in oxidative stress response. For the single case 
of the vacuolar membrane ABC transporter Ycf1, there seems to be a possible connection. 
Ycf1, a close homologue to the human MRP1 multidrug transporter, confers resistance to 
chemical stress, including metal ions, antimonite, arsenite, 1-chloro-2,4-dinitrobenzene and 
diazaborine. The role of Ycf1 in metal ion resistance was further explored and this 
transporter was found to mediate the vacuolar compartmentalization of S-glutathione 
conjugates (Li et al. 1996). Glutathione, whose concentration is controlled by Yap1, through 
the regulation of the glutathione synthetase encoding gene GSH1, plays a crucial role in the 
maintenance of the intracellular redox potential. It is thus reasonable to think that the 
oxidative stress response regulator Yap1 may coordinately control the expression of GSH1 
and YCF1, to assure the maintenance of the physiological concentration of free cytosolic 
reduced glutathione. As for the remaining multidrug transporters controlled by Yap1, such 
a close link between drug detoxification and oxidative stress response remains to be 
established. Nonetheless, it is reasonable to think that, since many of the natural chemical 
stress inducers are also capable of unbalancing the cellular redox state, the oxidative stress 
signaling would also control the expression of membrane transporters capable of relieving 
the cell from the exogenous source of oxidative stress. Interestingly, in bacterial systems a 
rather similar coordination of the response to xenobiotics and oxidants can also be found, 
under the control of the SoxRS regulon. Indeed, the E. coli SoxRS transcription factor 
controls the expression of both antioxidant enzymes and also of, at least, the outer 
membrane protein (porin) F, OmpF, suggested to play a role in reducing cell membrane 
permeability towards ROS or ROS-generating compounds (reviewed in (Lushchak 2011)). 

Altogether, the results reviewed herein also highlight the fact that transcriptional control is 
much more complex than initially foreseen. Indeed, we come to realize that it is not possible 
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to study individual phenomena, as if there was no influence from the surrounding, and 
even interconnected, cellular processes. The compilation of all the regulatory associations 
identified, so far, in S. cerevisiae, deposited in the YEASTRACT database (Abdulrehman et al. 
2011; Monteiro et al. 2008; Teixeira et al. 2006), reveals that there are more than 48,000 
regulatory associations between transcription factors and target genes. This number, which 
indicates that, on average, each yeast gene is controlled by at least 8 different transcription 
factors, rises up to nearly 375,000, when making in silico predictions based on the 
occurrence of transcription factor recognition sequences in the yeast promoter regions. 
Given this high degree of complexity, the study of biological networks using the new 
interdisciplinary approaches of Systems Biology seems to be the most suitable way to tackle 
this issue. The small, but intricate case-study explored herein, focused on the S. cerevisiae 
FLR1 regulatory network, suggests that the use of computer modeling, as a systems biology 
tool, will be crucial to increase our understanding of the cross-talk between regulatory 
networks.  
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