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1. Introduction 

The retina is a highly specialized sensory organ that transduces light energy into neural 
signal. It also has high energy requirement and an extensive vascular network.  Reactive 
oxygen species (ROS) generated via light exposure, normal energy production, phagocytosis 
of spent photoreceptor membranes by retinal pigment epithelium (RPE) cells, and 
circulating toxins render retina at an increased risk for oxidative stress (Hardy et al., 2005; 
Siu et al., 2008). To cope with the high oxidant load, the retina is equipped with various 
antioxidant defense mechanisms, such as the expression of glutathione peroxidase and 
superoxide dismutase, the production of glutathione by Müller cells, high levels of vitamins 
C and E, and the presence of free radical scavenger melanin in RPE cells (Siu et al., 2008). 
However, when the redox balance is disrupted, retinal pathologies could result, and one of 
the consequences is impairment of the blood retinal barrier (BRB). Indeed, several retinal 
diseases have been shown or postulated to be linked to a state of oxidative stress and 
resulting BRB dysfunction.  

Previously, we investigated the molecular mechanisms towards the development of retinal 

vein occlusion (RVO) in cancer patients treated with a mitogen-activated protein kinase 

kinase (MEK) inhibitor, PD0325901 (LoRusso et al., 2010). Through gene expression profiling 

analysis, we identified several mechanisms relevant to the development of RVO, including 

oxidative stress response, acute phase and inflammatory response, blood-retinal barrier 

(BRB) breakdown, leukostasis, and coagulation cascade (Huang et al., 2009). 

This chapter aims to provide an overview of BRB structures and functions, the role of 
oxidative stress in BRB disruption and development of retinal pathologies, a detailed overview 
of RVO, and finally, a description of proposed mechanisms of PD0325901-induced RVO, 
highlighting several important cellular and molecular processes relevant to this pathology. 

2. Blood-retinal barrier 

The BRB has an endothelial and an epithelial component, namely the tight junctions 
between the endothelial cells of the inner retinal vessels, and those between cells of the RPE; 
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these cell types comprise integral components of the inner and outer BRB, respectively (Siu 
et al., 2008; Fig. 1A). The BRB regulates the transport of fluid and molecules between the 
retinal tissue and vasculature, hence playing an important role in maintaining the 
homeostatsis of the retinal microenvironment (Kaur et al., 2008; Siu et al., 2008).  

2.1 Inner blood-retinal barrier 

The inner BRB is composed of endothelial cells, astrocytes, Müller cells, and pericytes (Fig. 
1A). Tight junctions between capillary endothelial cells form the basis of the inner BRB (Fig. 
1B). Astrocytes, Müller cells and pericytes, all closely associated with the endothelial cells of 
the inner BRB, contribute to proper BRB functions.  

The endothelial cells of inner retinal capillaries are not fenestrated, contributing to their low 
permeability. Solutes traverse the retinal endothelium via both the transcellular and 
paracellular pathways: the former involves vesicle-mediated transport of macromolecules, 
and the latter, passage through minute intercellular space safeguarded by junctional 
proteins (Vandenbroucke et al., 2008; Fig. 1B). Tight junctions consist of occludins, claudins, 
and junctional adhesion molecules (JAMs), all of which form complexes between adjacent 
endothelial cells. Zonula occludens (ZO) proteins link occludins and claudins to the 
endothelial actin cytoskeleton via cingulin. In addition to tight junctions, adherens junctions 
(AJ) also contribute to the endothelial barrier, where vascular endothelial (VE) cadherins on 
adjacent endothelial cells form a homophilic complex (Garrido-Urbani et al., 2008; 

Vandenbroucke et al., 2008). The C-terminal domain of VE-cadherin binds -catenins and -
catenins, linking the AJs to the actin cytoskeleton. Several lines of evidence show that the 
regulation of actin cytoskeletal dynamics is central to the proper functioning of the 
endothelial barrier (Houle and Huot, 2006; Houle et al., 2003; Huot et al., 1998; Lum and 
Roebuck, 2001). It has also been reported that retinal endothelial cells are more susceptible 
to oxidative damage, leading to increased permeability, than endothelial cells at other sites. 
Indeed, ROS are also known to induce the expression of vascular endothelial growth factor 
(VEGF), a well-known endothelial mitogen and permeability factor, which contributes to the 
breakdown of BRB in experimental diabetes models (Chua et al., 1998; El-Remessy et al., 
2003). 

Pericytes line the outer surface of endothelial cells (Fig. 1A) and are contractile in nature, 

expressing actin, myosin, and tropomyosin (Kaur et al., 2008). They contract in response to 

signals such as hypoxia, endothelin-1, and angiontensin II, and relax on exposure to carbon 

dioxide, nitric oxide and adenosine. Therefore, pericytes regulate the vascular tone and 

blood flow. Under normoxia, they maintain the integrity of the inner BRB by inducing 

mRNA and protein expression of occludin and ZO-1, and by partially reversing the occludin 

decrease under hypoxia. Loss of pericytes and disruption of inner BRB are early events in 

diabetes. 

Müller cells are the principal glial cells of the retina, and a functional link between 

neurons and vessels (Reichenbach et al., 2007). They span the inner and outer limiting 

membranes of the retina, with their foot processes in close contact with the retinal 

endothelial cells (Fig. 1A). Under physiological conditions, Müller cells contribute to the 

integrity of the BRB; however, when exposed to cellular stress they impair the barrier 

function. Under normoxia, Müller cells secrete pigment epithelium-derived factor (PEDF),  
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Fig. 1. The blood-retinal barrier (A) The retina is a multi-layered tissue in the posterior 
segment of the eye, and is shown by the H&E stained micrograph on the left. The cell types 
comprising the inner BRB (endothelial cells, pericytes, astrocytes, and Müller cells) and 
outer BRB (retinal pigment epithelial cells) are overlaid on the retinal micrograph, and are 
magnified on the right. Tight junctions between retinal capillary endothelial cells and retinal 
pigment epithelial cells form the basis of the inner and outer BRB, respectively. The 
endothelial cells of inner retinal capillaries are not fenestrated, whereas those of the 
choroidal capillaries are (depicted below the retinal micrograph). (B) Protein components of 
the intercellular junctions. Sources: Kaur et al., 2008; Niessen, 2007; 
http://www.landesbioscience.com/curie/images/chapters/Hosoya1.jpg 

www.intechopen.com



 
Oxidative Stress and Diseases 

 

472 

which downregulates VEGF expression and decreases vascular permeability (Yafai et al., 

2007). Under hypoxia (Kaur et al., 2008) and oxidative stress (Yoshida et al., 2009), PEDF 

expression is decreased in Müller cells, thus favoring the secretion of VEGF and 

breakdown of the inner BRB. In addition, Müller cells are a source of matrix 

metalloproteinases, which proteolytically degrade the tight junction protein occludin, 

impairing the barrier function of retinal endothelial cells under cellular stress conditions. 

Müller cells also play a vital role in maintaining the retinal fluid balance (Reichenbach et 

al., 2007). Under physiological conditions, Müller cells carry out transcellular water 

transport from the retinal interstitial space into the blood, thus preventing excess fluid 

buildup within the retina. The transcellular water transport is osmotically coupled to the 

transport of potassium ions. When exposed to oxidative stress and inflammation, Müller 

cells have been shown to contribute to retinal edema through a disturbed intracellular 

fluid transport. Finally, Müller cells also respond to oxidative stress by increasing their 

production of the antioxidant glutathione (Siu et al., 2008). 

Similar to pericytes and Müller cells, astrocytes are closely associated with the retinal vessels 

(Fig. 1A). They help maintain the BRB integrity by increasing the expression of the tight 

junction protein ZO-1 and modifying endothelial morphology (Kaur et al., 2008). 

Dysfunction of astrocytes has been linked to inner BRB breakdown and vasogenic edema.  

2.2 Outer blood-retinal barrier 

The outer BRB consists of tight junctions between RPE cells (Fig. 1A). The RPE is a 

monolayer of cells between the neuroretina and the choroid, and regulates access of blood 

components to the retina. Similar to the endothelium, movement across RPE is both 

transcellular and paracellular. The RPE cells exhibit a polarized morphology, with apical 

microvilli in contact with photoreceptor outer segments, and basal infoldings adjacent to the 

Bruch's membrane that separates the retina from choroidal capillaries called choriocapillaris 

(Kaur et al., 2008). Unlike the capillaries of the inner retina, the choroidal capillaries are 

fenestrated (Fig. 1A) and therefore do not contribute to the outer BRB (Kaur et al., 2008; Siu 

et al., 2008). Na+,K+-ATPase and aquaporin 1 (AQP1) expressed on the apical surface 

regulate movement of sodium, potassium, and water molecules across the RPE. Tight 

junctions, located at the apical side of the lateral membrane of the RPE cells, restrict 

paracellular movement between neighboring RPE cells. In addition to its function to 

regulate molecular transport integral to the outer BRB, RPE is responsible for phagocytizing 

photoreceptor outer segment membranes, which are digested by an extensive lysosome 

system, whose waste products are removed by the adjacent choriocapillaris (Burke, 2008; 

Siu et al., 2008). In pigmented animals, RPE cells also express melanin, a free radical 

scavenger that is also capable of absorbing stray light, and is thought to contribute to the 

retinal antioxidant mechanisms (Siu et al., 2008).  

3. Oxidative stress, BRB dysfunction and ocular diseases 

3.1 Sources of ROS in the Retina 

In addition to the mitochondria, cellular sources of ROS in retina include endothelial cell 

xanthine oxidase, NAD(P)H oxidase, cyclooxygenase (COX), nitric oxide synthase (NOS), 
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and lipoxygenase pathways (Frey and Antonetti, 2011; Hardy et al., 2005; Kunsch and 

Medford, 1999). ROS can also act as intracellular second messengers and activate various 

signaling transduction pathways. 

3.2 Ocular pathologies associated with oxidative stress and BRB dysfunction  

3.2.1 Diabetic retinopathy 

Diabetic retinopathy is a significant cause of blindness. Tissue hypoxia and hyperglycemia 

are generally regarded as contributors to diabetic retinopathy, but how these lead to the 

disease state is unclear. Current hypotheses, which are not mutually exclusive, for 

pathogenic mechanisms leading to diabetic retinopathy include oxidative stress, 

hemodynamic changes, inflammation and the activation of microglia, and increased 

leukocyte adhesion to the endothelial cells and entrapment (leukostasis) (Chibber et al., 

2007). Many of these processes in fact have an association with excessive production of ROS 

(Yang et al., 2010b). For instance, growing evidence supports an important role for 

leukostasis in the development of diabetic retinopathy, with downstream consequences 

including capillary occlusion and localized production of ROS, resulting in endothelial cell 

damage, BRB breakdown, and increased vascular permeability (Chibber et al., 2007). 

Inflammatory cytokines interact with cell surface receptors in various cell types to activate 

signaling pathways that mediate responses of cell adhesion, permeability and apoptosis; 

they also increase the production of ROS by mitochondria (Busik et al., 2008; Sprague and 

Khalil, 2009). There are several models that recapitulate various aspects of diabetic 

retinopathy, including streptozotocin-induced diabetes and ischemia-reperfusion injury. 

3.2.2 Retinopathy of prematurity 

Retinopathy of prematurity (ROP) is a vasoproliferative disease that often develops when 

premature infants are given supplemental oxygen, and is a leading cause of blindness in 

children (Hardy et al., 2005; Uno et al., 2010). The developing eye is at an increased risk for 

oxidative injury from hyperoxia, as the retinal vasculature in premature infants lacks fully-

developed mechanisms to auto-regulate oxygen tension (Hardy et al., 2005). ROP develops 

in two phases (Hardy et al., 2005). Hyperoxia in the retina leads to cessation of vascular 

development, resulting in endothelial cell death, vaso-obliteration and consequently, 

ischemia. To re-establish retinal perfusion, the retina mounts an exaggerated intravitreal 

preretinal neovascularization, which may ultimately result in retinal detachment and vision 

loss. Many features of ROP are recapitulated in oxygen induced retinopathy (OIR) (Brafman 

et al., 2004; Gu et al., 2002; Uno et al., 2010), in which neonatal animals are exposed to 

hyperoxia, leading to the generation of ROS, which have been postulated to be causal for 

vaso-obliteration, death of endothelial cells, and consequently, impairment of the BRB. 

3.2.3 Age-related macular degeneration 

One of the major causes of blindness in the elderly population, age-related macular 
degeneration (AMD) is characterized by regional degeneration of photoreceptors and the 
RPE, lipofuscin accumulation in RPE cells, chronic inflammation, and drusen formation. 
Chronic oxidative stress has also been suggested to be an important factor to the 
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pathogenesis of AMD. As alluded to earlier, RPE may be at a high risk for oxidative stress 
due to its location and function. The RPE is in an oxygen-rich environment adjacent to the 
choriocapillaris, is continuously exposed to light, sometimes at phototoxic wavelengths, and 
is responsible for the renewal of photoreceptor outer segments via phagocytosis (Burke, 
2008). The high content of polyunsaturated fatty acids of these membrane segments make 
them susceptible to lipid peroxidation and subsequent free radical formation. Experimental 
evidence supporting a role of oxidative stress in AMD showed that supplementation of 
antioxidants in AMD patients has a protective effect, and that cigarette smoking, known to 
be a source of exogenous free radicals, is a risk factor for AMD (Burke, 2008). Given the 
central role RPE plays in AMD pathogenesis, a commonly used experimental model to 
study the link between oxidative stress and AMD involves the use of cultured human RPE 
(ARPE-19) cells. Common endpoints include cell survival, morphology, activation of 
signaling cascades, and cytokine production (Chan et al., 2008; Dong et al., 2011; Glotin et 
al., 2006; Jiang et al., 2009; Klettner and Roider, 2009; Qin et al., 2006; Tsao et al., 2006; Wang 
et al., 1998; Wu et al., 2010).  

4. Retinal vein occlusion 

Retinal vein occlusion is a vascular disorder of the retina that occurs when one or more of 
the retinal veins are blocked and the circulation of retinal blood becomes obstructed. This 
ocular pathology can be a primary lesion or secondary to other retinal diseases. With the 
blockage, poor venous drainage and increased retinal capillary pressure and permeability 
ultimately lead to retinal ischemia and edema. Retinal ischemia could lead to the generation 
of ROS, impacting the integrity of the BRB. Diabetic retinopathy and RVO are the two most 
common causes of inner BRB breakdown. Among complications found in the clinical 
examination are hemorrhages, edema, ischemia, neovascularization of the retina as well as 
increased intraocular pressure. Depending on the location and severity, loss of visual acuity 
can range from very mild to severe. While some patients with RVO may not have any 
symptoms, some patients may complain of blurred vision or visual field defects.  In severe 
cases, RVO can lead to vision loss in the affected eye. The most common cause of decreased 
vision is macular degeneration secondary to RVO, which occurs when leakage within 
macula leads to macular edema and ischemia. Neovascularization and neovascular 
glaucoma are the other vision-threatening complications that are devastating for patients 
with RVO and that should be promptly diagnosed and treated. Vein occlusion is commonly 
diagnosed by examining the fundus with ophthalmoscope for characteristic morphological 
changes such as venous tortuosity, cotton-wool spots, dot and flame hemorrhage, and 
edematous optic nerves, and by fluorescein angiography for vasculature blood flow 
obstruction, leakage in the retina, retinal ischemia, aneurysm, neovascularization, and 
macular edema. Sometimes optical coherence tomography (OCT) is used to measure retinal 
thickness for the determination of the presence of macular edema.  Central and peripheral 
visual disturbance should be evaluated by functional tests in the physical examination.  

4.1 Classification of RVO 

Retinal vein occlusion is primarily classified into central retinal vein occlusion (CRVO) and 
branch retinal vein occlusion (BRVO) based on the location of obstruction. In CRVO, the 
occlusion of the central retinal vein can slow or stop blood from leaving the retina and 
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therefore most of the retina is affected. In BRVO, when macular venules are occluded, a 
vision decrease can occur depending on the amount of ischemia and edema. When one of 
the vein's two trunks is blocked and half of the retina is affected, it is called hemi-central 
retinal vein occlusion (HRVO). According to several RVO epidemiology studies, the 
prevalence of both CRVO and BRVO increases significantly with age, more in middle-aged 
and elderly populations and uncommon in young adults under the age of 40. Most patients 
with CRVO are male and over 65 years of age, but there seems to be no gender difference for 
BRVO. Most CRVO cases are unilateral and painless and only 6-14% of cases are found to be 
bilateral (Cheung et al., 2008; Klein et al., 2008; Lim et al., 2008; Marcucci et al., 2011; Xu et 
al., 2007). A recent combined world-wide data pool, containing 68,751 individuals with  ages 
ranging from 30 to 101 years, suggested that approximately 16 million people are affected by 
RVO with 5.2 per 1000 for any RVO, 4.42 per 1000 for BRVO and 0.8 per 1000 for CRVO. The 
incidence of CRVO was lower than that of BRVO in all ethnic populations (Rogers et al., 
2010). However, CRVO is the most clinically relevant RVO as it is associated with severe 
vision loss, especially for the ischemic (non-perfused or hemorrhagic retinopathy) RVO. 
Among the complications of RVO, the devastating neovascular glaucoma resulting from 
anterior segment neovascularization is seen only in ischemic CRVO. Fortunately, most cases 
(81%) (Hayreh et al., 1994) are of the non-ischemic type that rarely develops blindness-
causing complications. 

4.2 Risk factors of RVO 

CRVO and BRVO have different symptoms, risk factors, pathogenesis, and therefore 

treatment. The pathogenesis for RVO is multifactorial and still under investigation. 

Anatomical positions of retinal veins play an important role in the pathogenesis of RVO 

(Fraenkl et al., 2010). The central retinal artery and vein share a common adventitial sheath 

in the optic nerve head. In CRVO, the tract of central retinal vein passing through the 

narrowing lamina cribrosa is the most frequent site of occlusion. In BRVO, vein occlusions 

occur at the junction of retinal vein and artery crossings in the retina. The mechanical 

compression of the veins at the narrowing passage or arteriovenous crossings predispose 

retinal veins to thrombus formation by various factors, including slowed or disturbed blood 

flow, endothelial damage in the vessel wall, changes in the blood viscosity, perivascular 

changes such as in lamina cribrosa (Albon et al., 1995), and sclerotic changes in the retinal 

arteries. Ocular risk factors associated with RVO include glaucoma or ocular hypertension. 

In glaucoma, increased intraocular pressure causes mechanical compression of retinal veins, 

which may induce RVO. 

RVO has often been associated with a variety of systemic vascular disorders including 

arterial hypertension, arteriosclerosis, diabetes mellitus, dyslipidemia, and systemic 

vasculitis (The Eye Disease Case-Control Study Group, 1993, 1996; Koizumi et al., 2007; 

Mitchell et al., 1996; Sperduto et al., 1998). The increased rigidity of arterial wall affiliated 

with these diseases may result in compression of retinal veins. 

Abnormal blood viscosity, platelets, and coagulation have also been suggested to be 

involved in RVO pathogenesis (Trope et al., 1983). Hematological dysfunction, such as 

increased plasma fibrinogen and disruption of the thrombosis-fibrinolysis balance, have 

been implicated in the development of RVO (Rehak and Rehak, 2008). Increased fibrinogen 
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has been associated with RVO in several clinical reports (Lip et al., 1998; Patrassi et al., 1987; 

Peduzzi et al., 1986). An increasing number of studies have sought to establish an 

association between RVO and thrombophilic abnormalities. Thrombophilic risk factors 

related to RVO include hyperhomocysteinemia, methylenetetrahydrofolate reductase 

(MTHFR) gene mutation, factor V Leiden mutation, protein C and S deficiency, 

antithrombin deficiency, prothrombin gene mutation, anticardiolipin antibodies and lupus 

anticoagulant. High levels of circulating homocysteine may damage the vascular 

endothelium by releasing free radicals, creating a hypercoagulable environment 

(Angayarkanni et al., 2008). It appears that there is an association between RVO and 

hyperhomocysteinaemia and anti-phospholipid antibodies. However, for the other 

thrombophilic risk factors, there is a lack of consistency among the studies and the 

association with RVO is inconclusive (Fegan, 2002; Janssen et al., 2005; Rehak and Rehak, 

2008). More recently, elevated levels of soluble endothelial protein C receptor (sEPCR) 

emerged an important candidate risk factor especially for CRVO (Gumus et al., 2006). 

Significantly increased concentrations of growth factors, cytokines, and chemokines such as 

VEGF, interleukin (IL)-6, IL-8, interferon-inducible 10-kDa protein (IP-10), 

monocytochemotactic protein-1 (MCP-1), and platelet-derived growth factor (PDGF)-AA 

were observed in vitreous or aqueous humor samples of patients with RVO (Funk et al., 

2009; Noma et al., 2009; Yoshimura et al., 2009). Excessive production of VEGF and 

inflammatory cytokines can be induced by ischemic conditions. The levels of VEGF and 

inflammatory cytokines are correlated with severity of retinal ischemia and macular edema 

(Noma et al., 2006), as well as neovascularization. A close correlation between aqueous 

VEGF levels and iris neovascularization and vascular permeability in CRVO patients has 

been found (Boyd et al., 2002). 

4.3 Oxidative stress and RVO 

Retinal ischemia that occurs in some cases of RVO could lead to the generation of ROS, and 
compromise the integrity of the BRB. In fact, RVO is a common complication of diabetic 
retinopathy, in which hypoxia-ischemia is thought to play a role in its pathogenesis. Many 
of the risk factors for RVO described above, such as alterations in blood flow, systemic 
vascular disorders, hypercoagulability, and elevated levels of pro-inflammatory cytokines, 
may also be associated with a state of oxidative stress (Simoncini et al., 2005). Indeed, in a 
case-control prospective study in young adult CRVO patients, serum levels of paraoxonase-
1 arylesterase (PON1-ARE) activity, reported to have antioxidant potential, were found to be 
negatively correlated with hyperhomocysteinemia and lipid peroxidation, an indicator of 
oxidative stress (Angayarkanni et al., 2008). Decreased levels of PON1-ARE activity as well 
as increased levels of the lipid peroxidation marker were shown to be risk factors for CRVO. 
In another case study, an individual with glucose-6-phosphate dehydrogenase(G6PD) 
deficiency was exposed to an oxidative stressor, and later developed CRVO (Kotwal et al., 
2009). G6PD deficiency is known to increase erythrocyte vulnerability to oxidative stress, 
which may precipitate hemolysis, increased erythrocyte aggregation and erythrocyte-
endothelium interaction, leading to thrombosis (Kotwal et al., 2009). Anti-phospholipid 
antibodies have been associated with the development of RVO, and shown to induce 
oxidative stress in endothelial cells (Simoncini et al., 2005). Taken together, these lines of 
evidence suggest that a state of oxidative stress may predispose individuals to RVO. 
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4.4 Therapeutics associated with the clinical presentation of RVO  

In addition to RVO that arises due to pathophysiological causes described above, this ocular 

disorder can also develop as an adverse event from treatment with certain therapeutics. 

4.4.1 Interferon-α  

Interferon-ǂ (IFN-ǂ) is used for the treatment of many cancers and chronic hepatitis C. 

Interferon-associated retinopathy has been documented since the 1990s, most commonly 

characterized by hemorrhage and cotton-wool spots, and sometimes by macular edema, 

retinal vascular occlusion, and retinal ischemia. The RVO could involve either the vein or 

artery, or both, and in most cases is reversible. The exact pathophysiological mechanism 

of interferon-induced retinopathy is unknown, although there are similarities with early 

stages of diabetic retinopathy (Bajaire et al., 2011; Esmaeli et al., 2001). Several risk factors 

have been suggested, including hypertension, hyperlipidemia, a hypercoagulable state, 

and diabetes (Nadir et al., 2000). In addition, IFN-ǂ is known to cause the development of 

autoantibodies in 10% of the patients receiving treatment, and to exacerbate certain 

systemic autoimmune diseases. It is speculated that IFN-ǂ therapy might cause deposition 

of immune complexes in retinal vasculature, with sequelae of retinal ischemia, 

hemorrhages and cotton wool spots. 

4.4.2 Tumor necrosis factor  

Tumor necrosis factor (TNF) is a proinflammatory cytokine that has been implicated in 

various diseases, including autoimmune diseases, diabetes, and cancer. In a phase II trial of 

recombinant TNF in patients with advanced colon cancer, TNF was administered by i.v. 

infusions twice daily for 5 consecutive days every other week for 8 weeks (Kemeny et al., 

1990). Two out of 16 patients developed retinal vein thrombosis several weeks following 

completion of therapy.  This finding is consistent with the known role of TNF in vascular 

leakage and blood-retinal barrier breakdown in diabetic retinopathy (Frey and Antonetti, 

2011). In support of this, a patient with macular edema secondary to BRVO saw an 

improvement in visual acuity and cessation of macular edema during treatment with 

infliximab, a TNF- antibody, administered for rheumatoid arthritis (Kachi et al., 2010). 

Paradoxically, infliximab therapy has also been linked in several case studies to  the 

development of retinal vein thrombosis/occlusion in a patient being treated for ulcerative 

colitis (Veerappan et al., 2008), psoriasis (Vergou et al., 2010), or Crohn's disease (Puli and 

Benage, 2003). The temporal relationship between infliximab infusion and retinopathy 

suggested the two may be causally related.  In two of the three cases, a medical history of 

myocardial infarction or hyperlipidemia was noted, both of which considered risk factors 

for RVO. Moreover, all three of these diseases are inflammatory in nature, and may 

predispose patients to weakened BRB. 

4.4.3 MEK inhibitor PD0325901 

PD0325901 is a potent and selective MEK inhibitor, developed for the treatment of advanced 

cancer. MEK is a key molecule in the Ras-mitogen-activated protein kinase (MAPK) 

pathway, which has roles including cellular proliferation and survival, and its only known 
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substrate is the extracellular signal-regulated kinase (ERK), which in turn phosphorylates 

and activates downstream molecules in the pathway (Fig. 2). In the phase I dose escalation 

clinical trial of PD0325901, dose-limiting RVO was observed, characterized by the presence 

of cotton wool spots, hemorrhages, and vein occlusion. RVO developed in 2 patients after 

3.5-4 months of 10 or 15 mg BID continuous treatment schedule, and in 1 patient after 9 

months of 10 mg BID on a 5 days on/2 days off schedule, and was reversible upon 

treatment discontinuation (LoRusso et al., 2010). It was noted that at doses >= 4 mg BID, the 

systemic exposure of PD0325901 was equivalent to that in animal models that resulted in 

90% phosphorylated ERK (pERK) suppression (LoRusso et al., 2010). Therefore, the ocular 

lesions could be related to the prolonged and/or significant levels of pERK suppression.  

Two other MEK inhibitors, CI-1040 and selumetinib (AZD6244), also progressed to the 

clinic, but did not cause RVO. CI-1040 is a structural analogue of PD0325901. Insufficient 

clinical efficacy was reported due to poor bioavailability and metabolic instability (Rinehart 

et al., 2004). Selumetinib caused blurred vision in 12% of patients at >=100 mg BID in a 

Phase I trial (Adjei et al., 2008); this finding was not reported in subsequent Phase II trials at 

the 100 mg BID dose (Bekaii-Saab et al., 2011; Bodoky et al., 2011). Compared to PD0325901, 

selumetinib is approximately 10-fold less potent, and has a relatively poor bioavailability. 

Taken together, even though it is at present unclear whether PD0325901 caused RVO due to 

its deep inhibition of pERK, or to its chemotype, the above evidence suggests that the 

incidence of ocular lesions correlates with the efficacy of MEK inhibition.   

5. Molecular mechanisms of MEK inhibitor PD0325901-Induced RVO 

To develop an animal model of RVO to investigate mechanisms of toxicity, an in-life study 

was performed in rabbits, in which PD0325901 was administered by intravitreal injection at 

doses of 0.5 and 1 mg/eye, with an observation period of 2 weeks (Huang et al., 2009). The 

high dose was extrapolated to be a potentially toxic dose, while the low dose was chosen as a 

subtoxic dose, based on in vitro cytotoxicity data (Huang et al., 2009). As early as 1 day after 

treatment, the high dose produced hemorrhages and vascular leakage with branch occlusion. 

These lesions progressed to retinal detachment, edema, abnormal kinetic blood flow, and 

retinal vessel occlusion after 7 days. At the low dose, retinal vascular leakage was observed 

without vascular occlusion. Therefore, the rabbit model provided evidence that PD0325901 at 

sufficient ocular concentrations could lead to similar retinal lesions seen in the clinic. 

The retinal vascular toxicity was not observed in preclinical safety studies where PD0325901 

was administered orally in rats and dogs for up to 13 weeks (Huang et al., 2009). The 

difference in the level of ocular toxicity between rabbits and rats/dogs could be attributed to 

ocular drug concentration differences arising from local vs. systemic routes of 

administration. Since molecular events could precede overt signs of tissue injury, an 

investigative study was conducted in which rats were dosed orally for 3 or 5 days at 45 

mg/kg/day, estimated to be at 70% maximal tolerated dose (Huang et al., 2009). No retinal 

toxicity was observed by ophthalmic examinations or fundus fluorescein angiography. 

Despite the absence of overt injury, global gene expression profiling on vehicle and 

PD0325901-treated retinas revealed several mechanisms relevant to the development of 

RVO, including oxidative stress response, acute phase and inflammatory response, BRB  
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Fig. 2. MAPK signaling pathway The MAPK cascade is a highly conserved module that is 
involved in various cellular functions, including cell proliferation, differentiation and 
migration. Mammals express at least four distinctly regulated groups of MAPKs, ERK1/2, 
JNK1/2/3, p38alpha/beta/gamma/delta and ERK5, that are activated by specific MAPKKs: 
MEK1/2 for ERK1/2, MKK3/6 for the p38, MKK4/7 (JNKK1/2) for the JNKs, and MEK5 for 
ERK5. Each MAPKK, however, can be activated by more than one MAPKKK, increasing the 
complexity and diversity of MAPK signalling. Presumably each MAPKKK confers 
responsiveness to distinct stimuli. For example, activation of ERK1/2 by growth factors 
depends on the MAPKKK c-Raf, but other MAPKKKs may activate ERK1/2 in response to 
pro-inflammatory stimuli. Source: KEGG (http://www.genome.jp/dbget-
bin/www_bget?map04010) (Kanehisa, 2000, 2012) 
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breakdown, leukostasis, and activation of coagulation cascade (Huang et al., 2009). 
Progressive induction of oxidative stress response genes was observed over time, suggesting 
the tissue was mounting a response against ongoing oxidative stress. The induced genes 
encoding for antioxidant proteins include heat shock protein 27 (HSP27), ǂǃ-crystalline, and 
those involved in glutathione synthesis/metabolism (GCLM, GSS, GSTs), and adhesion 
molecules; the only repressed genes were glutaredoxin 2 and peroxiredoxins. Of the 
oxidative stress response genes induced in this study, HSP27 and ǂǃ-crystalline show some 
of the greatest magnitude of induction. These are small heat shock proteins that have 
diverse cytoprotective functions, including modulation of ubiquitin-proteosome pathway, 
inhibition of apoptosis, and increased resistance to oxidative stress and inflammation 
(Arrigo et al., 2007). Notably, the ubiquitin-proteosome pathway was significantly perturbed 
on both day 3 and day 5, which could be a response to misfolded proteins arising from 
oxidative stress. Antigen presentation by retinal cells is also a cited response to oxidative 

stress (Tezel et al., 2007; Zhang et al., 2005), consistent with the induction of -2-
microglobulin gene of the major histocompatibility complex (MHC) class I on both day 3 
and day 5. MHC class I molecules are normally expressed in the vascular endothelium and 
RPE (Zhang et al., 1997). 

Multiple lines of evidence demonstrate that ROS mediate activation of the MAPK signaling 
pathway, which in turn modulates inflammation, intercellular junction assembly, actin 
cytoskeleton reorganization, and water transport, all of which are of critical importance to 
the maintenance of the BRB integrity. Disruption of one of the key MAPK pathways by 
PD0325901 could contribute to impaired BRB integrity, ultimately leading to retinal edema 
and RVO. 

5.1 MAPK activation and oxidative stress response in the retina 

Three main MAPK groups have been identified – ERKs, p38 MAPKs, and c-Jun N-terminal 
kinases (JNK). Typically, activation of ERKs are associated with growth-related signals, 
whereas p38 MAPKs and JNKs become activated in response to stress stimuli, including 
inflammation and oxidative stress (Fig. 2).  However, the exact responses of these kinases in 
different cell types and tissue microenvironment under various experimental stimuli have 
proven to be more dynamic and less dichotomous than characterized above. Some degree of 
cross-talk also exist between these pathways (Houle and Huot, 2006). In the retina, the 
dynamic balance and cross-talk of these MAPK signaling pathways in cell types comprising 
the BRB, chiefly RPE, endothelial, and Müller cells, has been shown in experimental systems 
to be critical for modulating the integrity of the BRB. 

The role of the MAPK pathway has been extensively investigated in cultured RPE cells 
(ARPE-19) following experimentally induced oxidative stress. In response to oxidants such 
as hydrogen peroxide or tert-butyl hydroperoxide, MAPK (most notably ERKs and p38 
MAPK) activation has been shown to either protect against or exacerbate oxidative injury, 
differentiated by the amount of RPE cell death (Chan et al., 2008; Dong et al., 2011; Glotin et 
al., 2006; Jiang et al., 2009; Klettner and Roider, 2009; Qin et al., 2006; Tsao et al., 2006; Wang 
et al., 1998; Wu et al., 2010). These findings also raise questions as to the impact of oxidative 
stress on the outer BRB when the MAPK pathway is modulated pharmacologically by a 
MEK inhibitor. In  endothelial cells, ROS are known to modulate the expression of redox-
sensitive signaling pathways, including the MAPK cascades  (Kunsch and Medford, 1999; 
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Ushio-Fukai and Alexander, 2004), and inhibition of the ERK1/2 has been shown to lead to 
endothelial apoptosis (Huot et al., 1998). In a porcine model of retinal ischemia-reperfusion, 
Müller cells exhibited increased levels of glial fibrillary acidic protein (GFAP) and 
phosphorylated ERK proteins, implicating ERK in the process of glial activation in response 
to oxidative/ischemic stress (Wurm et al., 2011). 

The following sections highlight specific MAPK-mediated molecular and cellular events in 

response to oxidative stress that are important for the maintenance of BRB function. The 

published data at times reveal contradictory findings with regards to whether the MAPKs 

are protective or disruptive in modulating these cellular processes following oxidative 

stress, underscoring the complexicity of these signaling pathways.  In each section, literature 

review is  followed by a discussion of relevant gene expression profiling data from the rat 

investigative study in which PD0325901 was administered orally for 3 or 5 days at 45 

mg/kg/day. 

5.1.1 MAPK activation and Inflammation in the retina 

Inflammation is a non-specific response to injury, and involves a plethora of cellular and 

molecular mediators. Chronic inflammatory processes are also an important source of ROS 

in the retina, and have been implicated in ocular diseases such as diabetic retinopathy and 

AMD. Both oxidative stress and inflammation negatively impact the integrity of the BRB. 

MAPKs mediate some of the downstream effects of proinflammatory cytokines such as IL-1, 

IL-6 and TNF- (Du et al., 2010; Larrayoz et al., 2010; Wang et al., 2010).  

In the 5-day rat investigative study involving PD0325901, hematology analysis revealed an 

increased number of phagocytes (neutrophils and monocytes) and increased plasma 

fibrinogen levels, indicating a mild inflammation in the compound treated animals. 

Consistently, the gene expression of many acute phase response proteins, such as lipocalin 

2, fibronectin, fibrinogen, ferritin light chain, complement proteins, and coagulation factors, 

are significantly induced on day 5. In addition to being an acute phase response protein, 

fibrinogen is also a key player in the coagulation cascade; as alluded in Section 4.2, it has 

been associated with the development of RVO in several clinical reports. Notably, some 

studies show that fibrinogen may increase endothelial permeability and mediate 

vasoconstriction through activation of ERK1/2 (Sen et al., 2009; Tyagi et al., 2008). Though 

the expression levels of IL-1, IL-6, IL-8, and TNF- genes were not affected, induction of 

downstream genes within these signaling pathways, including TRAF6 (TNF receptor 

associated factor 6), TNF receptor, IκB kinase, signal transducer and activator of 

transcription (STAT) 3, c-Jun, collagen type I, intracellular adhesion molecule (ICAM-1), 

vascular cell adhesion molecule (VCAM)-1, and cyclooxygenase (Cox)-2, suggests pathway 

activation downstream of these cytokines. TNF- has been shown to increase vascular 

permeability via modulation of tight junction proteins  in diabetic retinopathy (Aveleira et 

al., 2010). IL-1 may have a role in mediating retinal capillary degradation in diabetic 

retinopathy (Frey and Antonetti, 2011). Intravitreal levels of IL-6 are correlated with macular 

edema in branch retinal vein occlusion (Noma et al., 2006). ICAM-1, VCAM-1 and Cox-2 are 

downstream effectors of NF-κB in the IL-8 signaling pathway. ICAM-1 and VCAM-1 are 

adhesions molecules expressed on vascular endothelial cells and their induction play a 

critical role in leukostasis and inflammation. Cox-2 mediates the production of 
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proinflammatory prostaglandins. NF-κB, c-Jun and STAT3 are important regulators of many 

genes mediating mammalian inflammatory and immune responses. In addition, the 

expression of GFAP was induced on day 5, suggesting activation of Müller cells in response 

to retinal stress such as inflammation.  

Conversely, glucocorticoids, which have anti-inflammatory properties, have been shown to 

have a positive impact on promoting barrier integrity. In a porcine model of RVO, 

triamcinolone treatment, a widely used glucocorticoid in ocular applications, reduced VEGF 

and increased tight junction occludin levels in the retina, suggesting increased BRB integrity 

(McAllister et al., 2009). A study conducted to examine the impact of Streptococcus suis 

infection on blood-CSF (cerebral spinal fluid) barrier showed that the glucocorticoid 

dexamethasone improved the barrier function by preventing tight junction protein 

reorganization and degradation, and attenuated ERK activation and matrix 

metalloproteinase 3 (MMP3) expression (Tenenbaum et al., 2008). Paradoxically, 

dexamethasone has also been shown to activate ERK and JNK, which in turn induce the 

expression of the anti-inflammatory mediator MAPK phosphatase 1 (MKP-1) in human 

umbilical vein endothelial cells (Furst et al., 2008). Activated MKP-1 is then able to terminate 

the activity of activated MAPKs in a negative feedback loop (Furst et al., 2008). These data 

further demonstrate the complex spatiotemporal signaling network in which the MAPKs 

participate. 

In our gene expression analysis, the glucocorticoid receptor signaling pathway was one of 

the few pathways significantly perturbed on day 3 following PD0325901 administration at 

45 mg/kg/day, and many genes within the pathway were induced. On day 5, many of the 

same pathway genes became repressed. This could indicate an adaptive response to ongoing 

inflammation in the retina. As alluded to earlier, HSP27 and -crystallin levels were also 

induced following PD0325901 administration. Their gene products have the ability to 

interfere with inflammatory signaling, such as attenuation of TNF-, NF-κB signaling 

pathways, and may represent another cellular response to inflammation. 

5.1.2 MAPK-mediated modulation of intercellular junctions in response to oxidative 
stress 

Intercellular junctions are of critical importance to the integrity of the BRB function (Fig. 1). 

Oxidative stress is known to disrupt the structure and function of tight junctions and 

adherens junctions through MAPK activation, in both endothelial cells (Niwa et al., 2001; 

Simoncini et al., 2005; Usatyuk and Natarajan, 2004; Usatyuk et al., 2006; Yuan, 2002) and 

epithelial cells (Basuroy et al., 2006; Gonzalez et al., 2009), and these adverse effects on the 

junctional complexes could be ameliorated with the application of specific MAPK inhibitors. 

The presence of ROS could also induce the expression of the vascular permeability factor 

VEGF in endothelial cells (Chua et al., 1998; El-Remessy et al., 2003), often associated with 

downstream MAPK activation (Yang et al., 2010a; Zheng et al., 2010). In Müller cells, 

oxidative stress leads to decreased PEDF expression (Yoshida et al., 2009), thus relieving its 

antagonistic effect on VEGF action and subsequent MAPK activation in endothelial cells  

(Yafai et al., 2007), contributing to increased vascular permeability and breakdown of the 

inner BRB.  
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In our 5-day rat investigative study, the expression of myosin light chain kinase (MLCK) was 

significantly increased as a result of NF-κB signaling. Phosphorylation of myosin light chain 

by MLCK leads to actin-mediated endothelial cell contraction and increases permeability of 

endothelial junctional barrier. Activation of phosphatidylinositol 3-kinase (PI3K), whose 

expression was induced on both day 3 and day 5, has also been shown to increase vascular 

permeability (Abid et al., 2004; Lee et al., 2006; Serban et al., 2008). In addition, induction of 

MMP14 was observed on day 5.  Under inflammatory conditions, Müller cells are a source of 

matrix metalloproteinases which impair the barrier function of retinal endothelial cells by 

degradation of the tight junction protein occludin (Reichenbach et al., 2007). Taken together, 

these data suggest increased retinal endothelial cell permeability and impaired BRB function 

as a result of PD0325901 administration. On the other hand, our data set also uncovered 

induction of genes important for maintaining the vascular endothelial barrier function, 

presumably as feedback mechanism to counteract permeability increases, such as repression of 

RhoA and induction of Rac1 to facilitate reannealing of adherens junctions (Vandenbroucke et 

al., 2008); induction of tight junction components claudin 11 and JAM-2; and induction of 

PEDF, likely in Müller cells, which represses expression of VEGF and decreases vascular 

permeability (Reichenbach et al., 2007).  

5.1.3 Regulation of actin dynamics by MAPK in response to oxidative stress 

The remodeling of actin cytoskeleton is an important response in endothelial cells exposed 

to oxidative stress, and contributes to increased permeability of the endothelial barrier 

(Houle and Huot, 2006; Lum and Roebuck, 2001). Under physiological and pathological 

stress conditions, endothelial cells undergo cell shape change, intercellular gap formation, 

and remodeling of the actin cytoskeleton, characterized by stress fiber formation and 

reduced cortical actin band. The formation of stress fibers is dependent on actin 

polymerization, and increases the endothelial cells’ capacity to resist stress. On the other 

hand, stress fibers also pull apart intercellular junctions, likely contributing to their 

disruption and impaired endothelial barrier integrity. 

ROS-induced MAPK activation plays an important role in actin remodeling. ERKs, p38 and 

JNK have all been shown to regulate actin dynamics induced by oxidative stress in 

endothelial cells (El-Remessy et al., 2011; Houle and Huot, 2006; Houle et al., 2003; Huot et 

al., 1998; Schweitzer et al., 2011; Usatyuk and Natarajan, 2004). p38 MAPK activation leads 

to phosphorylation of HSP27, which promotes actin polymerization. ERK activation results 

in phosphorylation of tropomyosin-1, which contributes to focal adhesion assembly and 

stress fiber formation, and modulates cell contractility. Inhibition of ERK activity by the 

MEK inhibitor PD098059 led to misassembly of focal adhesions and membrane blebbing, 

ultimately resulting in apoptosis (Huot et al. 1998). Physio-pathological consequence of 

surface blebbing of endothelial cells includes narrowing of vascular lumen associated with 

increased vascular resistance. Bleb shedding may also contribute to obstruction of blood 

vessels. Consistent with this interplay of MAPKs and actin dynamics, treatment with 

PD0325901 in the 5-day rat investigative study led to induction of genes in actin 

cytoskeleton and focal adhesion signaling pathways on study day 5, supporting 

perturbation of actin dynamics, likely downstream of oxidative stress. These data also raise 
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the possibility of membrane blebbing in retinal vasculature following PD0325901 treatment, 

contributing to the development of RVO. 

5.1.4 MAPK pathway and water permeability in response to oxidative stress 

Macular edema was observed in our animal model administered with PD0325901. Two 

factors contribute to the development of chronic edema in the retina: increased vascular 

permeability leading to excessive fluid buildup, and reduced fluid absorption from the 

retina back into the blood. Müller and RPE cells play an integral role in transcellular fluid 

equilibrium (Reichenbach et al., 2007). Aquaporin 4 (AQP4) expressed on Müller cells and 

AQP1 expressed on RPE cells facilitate bidirectional water movements to maintain the 

osmotic and hydrostatic equilibrium in the retina. The Müller cell-specific AQP4 is co-

localized with the inwardly rectifying potassium channel Kir4.1. Together they mediate 

the co-transport of water and potassium ions from the retinal tissue into the blood under 

normal conditions. In various animal models of retinopathy, characterized by 

inflammatory or oxidative stress conditions, Kir4.1 channel becomes mislocalized, and its 

expression is decreased in some cases (Reichenbach et al., 2007). This may lead to an 

intracellular potassium overload, increased osmotic pressure, and consequently, Müller 

cell swelling. In a study employing a rat model of RVO, downregulation of AQP1, AQP4, 

and Kir4.1 were observed, in addition to an altered distribution of Kir4.1 protein. 

Consequently, Müller cells displayed a decrease in potassium currents and increased in 

size (Rehak et al., 2008).  

Application triamcinolone, a glucocorticoid frequently used for diabetic macular edema due 

to its anti-inflammatory properties (Felinski and Antonetti, 2005), reduced  Müller cell 

swelling in animal models of ischemia-reperfusion and diabetic retinopathy (Reichenbach et 

al., 2007). In a porcine model of RVO, triamcinolone treatment reduced the glial activation 

marker GFAP expression in Müller cells, and also increased BRB integrity, as evidenced by 

reduced VEGF and increased tight junction occludin levels, potentially contributing to the 

resolution of edema in the retina (McAllister et al., 2009). 

MAPKs are known to play an important role in cellular osmotic stress regulation (Cowan 

and Storey, 2003; de Nadal et al., 2002). In RPE cells, ultraviolet radiation (UVB) and 

hydrogen peroxide treatment, both of which are oxidative stress inducers, resulted in AQP1 

downregulation which was mediated by MEK/ERK activation (Jiang et al., 2009). In the 

brain, astrocyte swelling often accompanies vascular edema (Reichenbach et al., 2007). In 

astrocytes exposed to the oxidative stressor manganese or glial reactive injury, there was an 

altered expression of AQPs, mediated by the MEK/ERK and p38 MAPKs (McCoy and 

Sontheimer, 2010; Rao et al., 2010). 

In our 5-day rat investigative study, the repression of the Müller cell-specific water channel 

AQP4 on both day 3 and day 5, coupled with the repression of the inwardly rectifying 

potassium channels (Kcnj5, Kcnj6), and sodium channels on day 5, signals impaired 

transcellular fluid transport. Given the evidence for inflammation, intercellular junction 

disruption and actin cytoskeleton changes in the retina following PD0325901 treatment, this 

fluid imbalance would contribute to the observed retinal edema in the study and further 

weaken BRB integrity. The documented involvement of MAPKs in regulating transcellular 
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fluid balance in the retina and the brain raises the possibility that MEK inhibition may play a 

role in perturbing this equilibrium. 

5.2 MAPK, IFN- and RVO 

Given the complex signaling cascades and cross-talk between various MAPK pathways in 
multiple cell types comprising the BRB, it is conceivable that inhibition of ERK activation by a 
MEK inhibitor could lead to dysregulated BRB integrity and subsequent development of RVO. 
Intriguingly, IFN-ǂ treatment, which  is also associated with the development of RVO in the 
clinic (see Section 4.4.1), has been shown to inhibit the activation of ERK and the associated 
survival effects, and that MEK and ERK inhibitors enhance the anti-proliferative effect of IFN-
ǂ in tumor cells or transformed epithelial cells (Battcock et al., 2006; Caraglia et al., 2005; 
Caraglia et al., 2003; Christian et al., 2009; Li et al., 2004; Romerio et al., 2000; Romerio and 
Zella, 2002). Cross-talk between the IFN-ǂ and Ras-MAPK pathways converge on the STAT 
family of transcription factors. STAT proteins are involved in cytokine, hormone, and growth 
factor signal transduction, mediating biological processes as diverse as cell proliferation, 
differentiation, apoptosis, transformation, inflammation and immune response (Caraglia et al., 
2005). Activated Ras/MEK has been shown to inhibit the antiviral response of IFN-ǂ by 
reducing STAT2 levels (Christian et al., 2009). It is conceivable that clinical IFN-ǂ usage may 
perturb the balance of MAPK signaling pathways in the retina, disrupt BRB function, and 
ultimately contribute to the development of RVO.  That both IFN-ǂ therapy and PD0325901 
inhibit ERK activation and are linked to clinical development of RVO lends further support to 
the hypothesis that modulation of the Ras-MAPK pathway and subsequently BRB 
permeability changes play a role in the pathogenesis of this ocular adverse event.  

6. Conclusion 

The BRB, consisting of an endothelial and an epithelial barrier, serves to regulate the 
bidirectional passage of macromolecules through the retina. Oxidative stress can negatively 
impact the equilibrium across the BRB, leading to cellular disruption and ocular disorders. 
MAPK pathways involving ERK, p38 and JNK play a central role in the oxidative stress 
response of the BRB, modulating inflammatory response, actin cytoskeletal dynamics, water 
transport, as well as inter-epithelial and inter-endothelial adhesion molecule expression and 
redistribution. Disruption of the ERK signaling pathway by the MEK inhibitor PD0325901 
may disrupt the balance and cross-talk between interconnected signaling networks and 
produce unexpected cellular sequalae. PD0325901-induced RVO could arise as a 
consequence of disruption of these tightly regulated molecular processes vital for proper 
functioning of the BRB. The animal models employed in our study serves as an investigative 
or screening paradigm for pre-clinical compounds suspected of RVO-inducing potential. 
Finally, while a firm connection between MEK inhibition and the development of RVO has 
not been established, it would be prudent for clinicians to monitor patients on MEK 
inhibitor therapy for signs of ocular adverse events.  
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