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1. Introduction 

The role of oxidized lipids in cardiovascular diseases (CVD) has been investigated over 

the last three decades extensively. A number of studies have been carried out on the 

mechanisms, and pathways leading to the arterial atherosclerosis. These studies 

originated from the oxidation hypothesis of the atherosclerosis which was originally 

proposed more than 25 years ago (Steinberg et al., 1989), and since then experiments were 

performed by many investigators to further examine and explore the contribution of 

oxidation and oxidized lipids to cardiovascular diseases. Oxidized fatty acids in the ester 

and free forms, their decomposition products, cholesterol and its oxidized products, 

proteins with oxidized amino acid residues and cross-links, and polypeptides with 

varying extents of covalent modification with lipid oxidation products, and many others 

substances derived from oxidation have been the subject of detailed studies by many 

investigators. These products originated in vivo from oxidized lipoproteins and lipid 

membranes were linked to initiation and propagation of atherosclerosis (Zhang & 

Salomon, 2005; Mitra et al., 2011; Hulsmans et al., 2010). The effect of dietary oxidized fat 

as a contributor to the oxidative stress was also investigated by several groups including 

our group (Catapano et al., 2000; Drüeke et al., 2001; Garelnabi et al., 2008; Mitra et al., 

2011). While there is a consensus in understanding of initial oxidative steps in the 

generation of early fatty streak lesions as well as the role of products of peroxidized lipid 

decomposition such as aldehydes in atherosclerosis, the role of further oxidation into 

neutral carboxylic acids is still obscure. In this chapter we will review the background of 

the oxidation theory of lipoproteins and the current state of the knowledge. We will 

review and summarizes data leading to the current understanding of the role of oxidized 

lipids in atherosclerosis and some pathways involved in this process. We will also discuss 

recent studies that elucidate factors leading to oxidative stress including chemical, 

physical and biological factors. In addition, we will explain the current knowledge of the 

use of antioxidants; and explain their benefits if any to inhibit oxidation of LDL. This part 

will discuss in brief some selected clinical data. 
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1.1 Atherosclerosis 

Atherosclerosis is the principal contributor to the pathogenesis of myocardial and cerebral 
infarction, gangrene, and loss of function in the extremities. The process, which under 
normal circumstances is a protective response to insults against the endothelium and 
smooth muscle cells of arterial walls, consists of the formation of fibrofatty and fibrous 
lesions, and is preceded and accompanied by inflammation. The advanced lesions of 
atherosclerosis become pathologic, and may cause occlusion of the affected artery, result 
from an excessive inflammatory-fibroproliferative response to numerous different forms of 
insult (Ross, 1986). 

The earliest recognizable lesion of atherosclerosis is the so-called ‘fatty streak’, an 

aggregation of lipid-rich macrophages and T lymphocytes within the innermost layer of the 

arterial wall, the intima. The ubiquity of the atherosclerotic process is attested by the finding 

of fatty streaks in the coronary arteries of half of the autopsy specimens from children aged 

10 to 14 years (WHO, 1985). Animal observations have shown that fatty streaks precede the 

development of intermediate lesions, which are composed of layers of macrophages and 

smooth muscle cells and, in turn, develop into the more advanced, complex, occlusive 

lesions called fibrous plaques (Fig 1). The fibrous plaques increase in size and, by projecting 

into the arterial lumen, may impede the flow of blood. They are covered by a dense cap of 

connective tissue with embedded smooth muscle cells that usually overly a core of lipid and 

necrotic debris (Garelnabi, 2010). 

Most of the sudden deaths from myocardial infarcts are due to ruptures or fissures, 

particularly in the margins of the fibrous cap where there are more macrophages, resulting 

in hemorrhage into the plaque, thrombosis, and occlusion of the artery (Ross, 1993). As the 

process continues, migrating cells reach further beneath the arterial surface, where the 

monocytes become macrophages, accumulate lipid, become foam cells, and together with 

the accompanying lymphocytes, become the fatty streak. These often form at sites of pre-

existing collections of intimal smooth muscle. Thereafter, continued cell influx and 

proliferation lead to the more advanced lesions, distinguished by their fibrous character, 

and ultimately to the fibrous plaque (Ross, 1993). 

Studies on animals with artificially induced hypercholesterolemia have confirmed that three 
processes are involved in the formation of atherosclerotic lesions : (1) The proliferation of 
smooth muscle cells, macrophages, and possibly lymphocytes; (2) the formation of a 
connective tissue matrix by smooth muscle cells comprised of elastic fiber proteins, collagen, 
and proteoglycans; and (3) the accumulation of lipid and mostly free esterified cholesterol in 
the surrounding matrix and the associate cells (Daley et al., 1994). 

There are numerous signals, biochemical in nature, which underlie smooth muscle 
proliferation. Platelet derived growth factor (PDGF), the first postulated growth factor in 
atherogenesis is produced by many of the cells involved in the process (i.e., platelets, 
macrophages, endothelial cells and smooth muscle cells). Activated macrophages can also 
synthesize fibroblast growth factor (FGF), endothelial derived growth factor (EDGF), and 

transforming growth factor beta (-TGF). The combination of these growth factors has been 
shown to be extremely potent in stimulating the migration and proliferation of fibroblasts 
and smooth muscle cells, as well as the formation of connective tissue element. 
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When platelets interact with or adhere to sub-endothelial connective tissue, they are 
stimulated to release their granule contents. Endothelial cells normally prevent platelet 
adherence because of the non-thrombogenic character of their surface and their capacity to 
form antithrombotic substances (e.g., prostacyclin and heparin). When endothelium is 
injured, platelets are promoted to adhere to its surface and thus, the release of platelet 
constituents, although it is not clear that platelet adherence to modified endothelium is a 
common event (Ross, 1986). Several investigators have demonstrated that if platelets are 
absent from the site of endothelial injury, or if are prevented from the injury sites 
pharmacologically as in experimental models, then the intimal proliferative lesions that 
usually accompany such injury will not occur (Friedman et al., 1977; Haker et al., 1983). 
Oxidized low density lipoproteins (OxLDLs) have been shown to play a key role in the 
pathogenesis of atherosclerosis, since they are present in atherosclerotic lesions. Indeed, 
oxidized LDLs inhibit endothelium-dependent relaxation of the rabbit aorta in response to 
acetylcholine, as well as of porcine coronary artery in response to serotonin and platelets 
(Tanner et al., 1990). 

2. Oxidation of LDL 

The major constituents of plaques are lipid-laden foam cells are formed and their remains. 
Foam cells form when macrophages or other cells uptake an excessive amount of LDL, and 
die. An oxidative hypothesis of atherosclerosis was proposed in 1989 and suggested 
modification of LDL as a primary reason of foam cell formation and development of 
atherosclerosis (Steinberget al, 1989; Parthasarathy et al., 2010). A massive amount of 
confirming data was collected since then.  It is well accepted now that oxidative processes 
and oxidized lipids play pivotal role in initiation and progression of the disease.   

LDL is a microparticle consisting of one ApoB protein molecule and a mixture of 

triacylglycerol, cholesterol and its esters, phospholidpids, and vitamin E. Oxidation of LDL 

is a gradual process starting with oxidation of vitamin E and polyunsaturated fatty acids. 

Peroxides, the primary oxidation products, undergo further transformations with 

generation of aldehydes among other products. Aldehydes modify amino acid residues of 

ApoB, primarily lysine, resulting in malondialdehyde modified ApoB (MDA-ApoB) and 4-

hydroxy-2-nonenal modified ApoB (4-HNE-ApoB). Biological effect of oxidized LDL varies 

greatly depending on the grade of oxidation. There are several terms for oxidized LDL that 

indicate the level of oxidation, such as MM-LDL (minimally modified LDL), fully oxidized 

LDL, and MDA-LDL (malondialdehyde-modified LDL). It is difficult to determine the level 

of oxidation in many cases. The term OxLDL (oxidized LDL) is used for any oxidized LDL 

regardless of the extent of oxidation.  

Development of atherosclerotic lesion starts with accumulation of OxLDL in intima, the 

innermost part of vessel, consisting of single layer of endothelial cells that rest on basement 

membrane. Intimal basement membrane separates endothelial cells and smooth muscle cells 

in arterial blood vessels. It consists of extracellular matrix, mostly collagen and 

proteoglycans, with sparse immune cells and smooth muscle cells (SMC) in it.  

There is detectable level of OxLDL in circulating blood, and OxLDL is observed in vascular 
wall. Immunoglobulin M (IgM) is essential for noninflamatory clearance of OxLDL by 
macrophages. IgM co-localizes with CD68-positive macrophages in lesions. Double 
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knockout Ldlr-/- and soluble IgM-/- mice develop lesions seven time bigger than Ldlr-/- 
control. C1qa is a complement participating in IgM-mediated clearance. There is a 
pronounced increase in the size of aortic root lesion in double knockout Ldlr-/-, C1qa-/- 
mouse as compared to Ldlr-/- mouse/- (Lewis et al., 2009).  

Immunization of atherosclerosis-prone Ldlr-/- mice with MDA-LDL or native LDL before 

feeding with cholesterol-rich atherogenic diet resulted in smaller lesion areas without 

significant reduction of plasma cholesterol (Freigang et al., 1998). Both type of immunization 

generated antibodies that recognize a wide pattern of modified and oxidized LDL likely 

because of some oxidation of LDL during immunization. Binding of OxLDL with antibodies 

demonstrated antiatherogenic effect, whether it limits the influx of OxLDL into artery wall 

or helps to clear retained OxLDL. Similar results were obtained in rabbit (Ameli et al., 1996).   

While immunization with MDA-LDL prior or at initial stages of atherosclerosis suppresses 

growth of lesions in mouse and rabbit, there is a controversy in whether higher titer of 

antibodies to OxLDL in blood correlates with higher or lower grade of atherosclerosis 

(Palinski et al., 1995; Tsimikas et al., 2007, reviewed in Shoenfeld et al., 2004). 

 

Fig. 1. OxLDL effects and fate in healthy and atherosclerotic artery wall. LDL (green 
circles) enter vessel wall and become gradually oxidized (depicted by changing circle color 

from green to red). In healthy artery tissue lymphocytes, primarily macrophages (Mɸ), 
uptake OxLDL, and egress the vessel to lymphatic system. The removal of OxLDL is 
impaired in atherosclerotic artery. Macrophages get overloaded with OxLDL and die 
generating foam cells. Overloaded macrophages release inflammatory signals that affect 
endothelial cells and patrolling leukocytes on the vessel surface (depicted with red arrows). 
Endothelial cells respond to accumulating OxLDL by inflammation as well. 

Currently, the general consensus is that oxidation of LDL occurs mostly within vascular 
wall. Both native LDL and OxLDL are able to pass through endothelial layer passively 
through interendothelial junctions, or by endothelial transcytosis, an active transport 
process ( von Eckardstein & Rohrer, 2009). LDL and OxLDL are retained in intima through 
interaction of the LDL protein ApoB-100 and proteoglycans. LDL undergoes oxidation in 
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intima and becomes absorbed by macrophages through scavenger receptors. There are 
many scavenger receptors that vary in the substrate specificity, expression in different 
tissues, and biological roles. Some of them play essential role in atherosclerosis (Table 1). 
Excessive loading of macrophages by OxLDL convert them to dysfunctional "foam" cells. 
OxLDL itself or products of spontaneous or enzyme-assisted decomposition act as pro-
inflammatory, chemotactic, growth-promoting factors (Fig 1).   

2.1 Induction of oxidative stress by OxLDL 

OxLDL are cytotoxic for all spectra of atherosclerosis-related cells: T-cells (Alcouffe et al., 
1999), macrophages, endothelial cells, smooth muscle cells. OxLDL cytotoxicity in human 
fibroblasts is mediated through OxLDL-derived lipid peroxides and hydroperoxides, but 
not superoxide (Coffey et al., 1995).  

High load of OxLDL induces two separate lethal processes in macrophages. The first process is 
activation of caspases-3 in Fas-independent manner. Other caspases, caspase-6, caspase-8, 
caspase-9, are likely involved as well. It ultimately leads to apoptosis with characteristic DNA 
fragmentation. The second process is OxLDL-induced plasma membrane lysis (necrosis) 
mediated by reactive oxygen species (ROS). Both processes occur concurrently, however lysis 
of plasma membrane is likely the actual reason for macrophages death.  

Caspase activation might contribute to macrophage death, however some experiments 
demonstrate that the extent of the activation is not enough for OxLDL cytotoxicity, since a 
higher level of caspase-3 activity through activation of Fas is not lethal for macrophages. At the 
same time inhibitors of caspase-3 do not suppress macrophage lysis by OxLDL, while peroxyl 
radical scavengers Trolox, and N,N'-diphenyl-1,4-phenylene diamine (DPPD) inhibit 
cytotoxicity of OxLDL. Generation of peroxyl radical as primary reactive oxygen species (ROS) 
in OxLDL-activated macrophages was confirmed with several specific ROS-sensitive 
fluorescent dyes. So, OxLDL cytotoxicity is mediated by peroxyl radicals, but not superoxide. 
ROS-mediated lysis and caspase activation are independent processes since inhibitors of 
caspase-3 do not suppress macrophage lysis by OxLDL, and Trolox does not inhibit caspase 
activation when it inhibits OxLDL-induced macrophage lysis (Asmis & Begley, 2003). 

In response to OxLDL, macrophages start to generate intracellularly an increased amount of 

ROS. Excessive load with OxLDL and ROS generation leads to necrosis of foam cells. There 

are several NADPH oxidases expressed in macrophages. Nox2 (Gp91phox), a heme-

containing subunit of NADPH oxidase, is the major source of ROS during phagocytosis. 

Nox2 likely does not contribute to atherosclerosis, since Nox2 knockout mouse does not 

slow development of lesions (Kirk et al., 2000).  

Nox4 is another NADPH oxidase. Protein expression of Nox4 and its binding partner 
p22phox in macrophages is increased by OxLDL but not by native LDL through MEK1/2 
pathway. Inhibition of MEK1/2 or siRNA knockdown of Nox4 suppresses ROS production 
and macrophage death assessed by membrane integrity (Lee et al., 2010).  

2.2 NF-κB response to OxLDL and atherosclerosis 

NF-κB is a family of transcription factors and their precursors sharing Rel homology 

domain. They function as homo or heterodimers, such as RelA/p50. In resting cells, NF-κB 
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dimer is associated with IκB, an inhibitory subunit of NF-κB. There are several members in 

IκB family. The canonical pathway of NF-κB activation is IκB phosphorylation by activated 

IκB kinase complex consisting of IKKǂ and IKKǃ subunits and regulatory protein NEMO. 

Phosphorylated IκB becomes ubiquitinated and undergoes degradation. Degradation of 

inhibitory subunit releases NF-κB dimer, which translocates from cytoplasm to nucleus and 

initiates transcription of target genes. Various signals activate IKK complex including tumor 

necrosis factor (TNF) and interleukin-1 (IL-1). In an alternative pathway, activated NF-κB 

inducing kinase (NIK) phosphorylates precursor protein p100 that results in ubiquitination 

and proteasomal processing of a precursor protein p100 into mature p52 subunit. The 

subunit binds with RelB, and RelB/p52 dimer is an active transcription factor. B-cell–

activating factor and other stimuli can activate NIK and thus initiate the alternative 

pathway. Factors such as lipopolysaccharide (LPS), CD40 ligand can activate both 

pathways, canonical and alternative. However, there is no data yet on regulation of NF-κB 

via alternative pathway in smooth muscle cells, macrophages, and endothelial cells (de 

Winther et al., 2005). OxLDL initiates inflammatory response in endothelial cells and 

leukocytes. Inflamed cells induce factors that attract leukocytes. Activation of NF-κB is one 

of the pathways that are involved in atherosclerosis. Activation of this pathway is observed 

in lesions in endothelial cells, macrophages and SMC (Brand et al., 1996). 

OxLDL exerts dual effect on NF-κB activation in monocytes and macrophages. It activates 

NF-κB in short term, and suppresses it in long term (Brand et al., 1997; Eligini et al., 2002). 

Activation of NF-κB by OxLDL in atherosclerotic endothelial cells is more stable. An 

essential mechanism of NF-κB activation is mediated through scavenger receptor LOX-1 

(lectin-like oxidized low-density lipoprotein receptor 1). Binding of OxLDL to LOX-1 

induces superoxide and hydrogen peroxide generation, and NF-κB activation trough 

activation of p38 MAP kinase, PI3K, ERK1/2 pathway (Cominacini et al., 2000; Tanigawa et 

al., 2006). Knockdown of LOX-1 gene suppresses endothelial cell injury measured as LDH 

release, abates expression of MCP-1 and decreases monocyte adhesion to endothelial cells 

(Li & Mehta, 2000). Knockout of LOX-1 in Ldlr-/- mouse suppresses activation of p38 

MAPK, decreases NF-κB p65 protein level, and inhibits development of atherosclerosis 

(Mehta et al., 2007). 

The importance of NF-κB in endothelial cells in progression of atherosclerosis is 

demonstrated in ApoE-/- mouse. NF-κB pathway was disrupted by ablation of 

NEMO/IKKǄ or expression of dominant-negative IκBǂ in endothelial cells. In both cases the 

lesions developed slower than in control ApoE-/- mouse (Gareus et al., 2008). 

Inflammation is central process in development of atherosclerosis. Presentation of P-, E-, L- 

selectins by endothelial cells initiates vascular recruitment of circulating monocytes through 

selectin ligands that are expressed on surface of leukocytes, such as PSGL-1 (Yang et al., 

1999; Sperandio et al., 2003). Inhibition of leukocyte recruitment slows development of 

atherosclerosis. Indeed, P-selectin knockout mice have smaller lesions than control animals 

(Dong et al., 2000). NF-κB regulates expression of P-selectin and other inflammation-related 

genes including E-selectin, ICAM-1, VCAM-1, and MCP-1 (Cominacini et al., 1997).  

MCP-1 is another cytokine essential for development of atherosclerosis: Ldlr-/- Mcp1-/- 

mouse has smaller lesions compare to Ldlr-/- (Gu et al., 1998). VCAM-1 on endothelial cells 
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participates in tight adhesion of monocytes. VCAM-1 knockout is lethal for mouse; however 

a study of a transgenic mouse with suppressed expression of VCAM-1(D4D) demonstrated 

reduced lesion development (Cybulsky et al., 2001).  

While NF-κB pathway responds to OxLDL, activation of NF-κB stimulates expression of 

Lox-1 and OxLDL uptake. A study of transgenic ApoE-/-, SIRT1+/- mouse with decreased 

SIRT1 function revealed that NF-κB inhibition decreases expression of Lox-1 and Ox-LDL 

uptake. SIRT1, a NAD-dependent class III deacetylases, is known to inhibit NF-κB activity 

by deacetylating RelA/p65. Indeed transgenic ApoE-/-, SIRT1+/- mouse has decreased 

SIRT1 activity an increased level of Lox-1 in aorta, and develops atherosclerosis faster 

compared to ApoE-/-, SIRT1+/+ mouse. Experiments with bone marrow transplantation 

revealed that pro-atherogenic effect of decreased SIRT1 function is mostly associated with 

leukocytes. ApoE-/-, SIRT1+/- peritoneal thioglycolate-elicited macrophages uptake 

showed increased uptake of OxLDL (Stein et al., 2010). 

3. Lipid peroxidation: NO Implication 

It is believed that lipid peroxidation is involved in the oxidative modification of low density 

lipoprotein (LDL) and the formation of the potent oxidant peroxynitrite (ONOO) (Roger et 

al., 1994). Despite intensive research into this key step, the identity of the radical is still a 

mystery, especially for the in vivo situation. It may result from preformed or lipoxygenase-

derived lipid hydroperoxides or hydrogen peroxide, which decompose in the presence of 

metal ions to lipid alkoxyl radicals and lipid peroxyl radicals and to hydroxyl radical, 

respectively. Once formed, the carbon-centred PUFA radical reacts very quickly with 

molecular oxygen yielding a lipid peroxyl radical which in turn abstracts a hydrogen atom 

from an adjacent PUFA, yielding a lipid hydroperoxide and a new PUFA radical. It is the 

latter reaction that carries the lipid peroxidation chain. If no chain termination took place, a 

single initiating event could convert all LDL. The precise length of the chain, i.e., the number 

of PUFAs oxidized per one initiating radical depends on many factors especially on the 

antioxidants. The antioxidants of LDL compete with chain propagation by very efficiently 

scavenging lipid peroxyl radicals.  

Lipid peroxidation can be measured in a laboratory setting by a variety of methods. 
Oxidized lipid extracts is measurable in spectrophotometer technique. Recent methods of 
analysis includes the free oxygen radicals monitor (FORM) system (Garelnabi et al, 2008), 
Electron Spin Resonance Spin Trapping Techniques (ESRT), and several other traditional 
techniques. Peroxidation of fatty acids containing three or more double bonds will produce 
malondialdehyde (MDA). Malondialdehyde produced by peroxidation can cause cross-
linking and polymerization of membrane components (Nielsen, 1981). This can alter 
intrinsic membrane properties such as deformability, ion transport, enzyme activity, and the 
aggregation state of cell surface determinants. Because MDA is diffusible, it will also react 
with nitrogenous bases of DNA (Bruce & James 1982). Increased formation of MDA has 
been associated with arachidonic acid metabolism and platelet aggregation (Marie, 1979; 
Macfarlane et al., 1977; Garelnabi et al. 2008; Garelnabi et al. 2010). Experimental studies 
have shown that free radicals promote platelet aggregation and thrombosis and chain 
breaking antioxidants, such as vitamin E, inhibit or delay arterial thrombogenesis (Ikeda et 
al., 1994; Jourdan et al., 1995). 
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Scavenger 
receptor 

Expression LDL-related 
substrates 

Other substrates Effect of 
knockout in 
mouse  

Class A: SR-
AI, SR-AII 

Tissue 
macrophages, 
arterial 
endothelial 
cells, smooth 
muscle cells 

Acetylated LDL, 
lower affinity for 
OxLDL; recognize 
modified ApoB 

Apoptotic cells, 
beta-amyloid 
peptide, anionic 
phospholipids, 
advanced glycation 
end-products, 
Gram-negative and 
Gram-positive 
pathogen-related 
molecules 

Controversial 
results on 
atherosclerosis 
development in 
knockout of both 
SR-AI and SR-
AII genes (Msr-
/-) in Apo-/- or 
Ldlr-/- mice 

Class B:  
SR-B1 (and 
another 
minor splice 
variant of the 
same gene 
SR-B2) 

Liver, 
macrophages; 
adrenal glands, 
ovaries, and 
testes - reverse 
cholesterol 
transport 

OxLDL Native LDL, HDL, 
apoptotic cells, 
beta-amyloid, 
anionic 
phospholipids, 
advanced glycation 
end-products, 
amyloid 

Srb1 knockout in 
Apoe-/- or Ldlr-
/- mouse 
promotes 
atherosclerosis 

Class B: 
CD36 

Macrophages, 
dendritic cells, 
endothelial 
cells 

Moderately 
oxidized LDL, 
POV-PC (1-
palmytoyl-2-(5-
oxovaleryl)-
snglycero-3-
phosphocholine) ; 
does not bind 
acetylated LDL or 
extensively 
oxidized LDL 

Native LDL, HDL, 
apoptotic cells,  
beta-amyloid, 
anionic 
phospholipids, 
advanced glycation 
end-products, 
thrombospondin-1, 
collagen, fatty 
acids, protozoan 
and bacterial 
peptides and 
lipopeptides 

Knockout of 
Cd36 in Apoe-/- 
mouse partly 
protects from 
atherosclerosis 

Class E:  
LOX-1 

Endothelial 
cells, 
macrophages, 
SMC 

OxLDL  Lox1 knockout 
inhibits 
atherosclerosis in 
Ldlr-/- mouse 
(Mehta et al,. 
2007) 

Less studied scavenger receptors such as MARCO, SRCL (Class A), CD68 (Class D), SREC-1 (Class F), 
SR-PSOX/CXCL16 (Class G) are not included in the table. The table is based on review (Moore & 
Freeman, 2006) 

Table 1. Scavenger receptors involved in atherosclerosis  
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The autoxidation of polyunsaturated lipids is an irreversible destructive process; and in 

tissues it may be associated with accelerated cell aging and premature cell death. Because 

such biological autoxidation is essentially slow process, the quantitative measurement of 

susceptibility to oxidation requires standard experimental stress conduction (Dildar et al., 

1998). 

4. Cellular defenses against ROS 

The biochemical defenses that protect organism from the ROS include both small molecules 

(low molecular weight compounds such as antioxidants and free radical scavengers) and 

complex enzyme systems. These defenses serve to lower concentrations of free radical 

species such as superoxide (O2
), nitric oxide (NO) hydroxyl radical (OH), lipid peroxyl 

radicals (L-OO), and strong oxidants and precursors of free radicals such as hydrogen 

peroxide (H2O2) and peroxynitrite (ONOO). If ROS generation exceeds defense capacity of 

the cell, ROS will cause excessive damage to cell components. ROS scavengers have also 

been used to characterize the production, nature, and toxicity of free radical species in in 

vitro and in vivo systems.  

4.1 Lipid soluble scavengers  

A variety of molecules that preferentially partition into membranes function by reducing 

lipophilic free radical species to less toxic forms. Vitamin E (a series of isomers of 

tocopherol) will reduce superoxide (O2
), hydroxyl radical (OH), singlet oxygen (1O2), lipid 

peroxy radicals, and other radical species. Ascorbate is proposed to have similar properties 

and may serve to maintain tocopherols in the reduced active form. Ascorbate serves as a 

water-soluble reductant and radical scavenger (Bruce & James 1982). The ascorbate-

glutathione pathway represent an avenue through which ascorbate consumed in H2O2 

reduction get recycled at the expense of NADPH. In the first step of this pathway, H2O2 is 

reduced to water by ascorbate peroxidase (APX) using ascorbate as the electron donor. The 

oxidized ascorbate (monodehydroascorbate) is regenerated by monodehydroascorbate; a 

radical and if not rapidly reduced it disproportionates into ascorbate and dehydroascorbate. 

Dehydroascorbate is reduced to ascorbate by dehydroascorbate reductase at the expense of 

GSH, yielding oxidized glutathione GSSG which is reduced by glutathione reductase (GR) 

using NADPH as electron donor (Fig 2), (Blokhina and Fagerstedt KV, 2010; Palma et. al, 

2009; Halliwell, 2009). Enzymatic ROS scavengers: Catalase and peroxidases lower the 

steady state concentration of H2O2 which is a precursor of potent radical species. Thus, the 

cytotoxic potential of H2O2 is in large part a function of intracellular catalase and peroxidase 

activities that scavenge H2O2, and concentration of free ions of transition metals that 

promote generation of OH from H2O2. Three glutathione peroxidase (GPx; EC1.11.1.9) 

isozymes are known, cellular GPx, extracellular GPx, and phospholipid hydroperoxide GPx, 

and each contains a selenocysteine in its catalytic center. Cellular GPx; the most 

characterized form, can react with hydrogen peroxide and organic peroxides but not lipid 

hydroperoxide (Michio et al., 1995). Platelet GPx has been shown to influence the platelet 

arachidonic acid metabolism by stimulating lipoxygenase and inhibiting cyclooxygenase, 

since oxidative stress enhances the arachidonic acid metabolism and thereby creates greater 

demands on the regulatory systems (Malmgren et al., 1990). Phospholipid hydroperoxide 
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glutathione peroxidase (PHGPx) is an intracellular antioxidant selenoenzyme which 

interacts directly with peroxidized phospholipids and cholesterol and cholesteryl esters 

(Imai and Nakagawa 2003) . Selenium (Se) is an essential micronutrient for animals and 

humans that exerts its biological functions through selenoproteins. These proteins contain Se 

in the form of selenocysteine (Sec), Phospholipid hydroperoxide glutathione peroxidase 

(PHGPx or GPx4, E.C. 1.11.1.12) is characterized by the presence of selenocysteine at the 

active site, and belongs to the important family of glutathione peroxidases (GPx). Since the 

discovery of PHGPx, a number of studies have demonstrated that this seleno-enzyme is 

essential to organisms. However on the other hand glutaghione-S-transferase possessing 

glutathione peroxidase activity toward lipid peroxides, but not having selenocysteine in its 

active site (Ursini et al. 1982; Yagi et. al 1996) 

 
Fig. 2. The glutathione-ascorbate cycle.  

Superoxide dismutases (SOD; EC 1.15.1.1) are metalloproteins that catalyze dismutation of 
superoxide anion radical to H2O2. Several types of SOD have been discovered. Mn-SOD 
(MW 85,000) has been found in mitochondria matrices and CuZn-SOD (MW 33,000) is 
contained in cellular cytosol. However, Mn-SOD and CuZn-SOD have been found also in 
extracellular fluids (Wesiger & Fridovich, 1973; Marklund et al., 1982). The superoxide 
radical has been reported as being produced from stimulated platelets (Levine et al., 1981) 
but its biological value in platelet function is not clearly understood (Violi et al., 1985). A 
decrease in cytosolic SOD the main defense against superoxide, could lead to increased 
cellular peroxides. Role of diet in the activity of Cu,Zn-SOD in platelets was studied and 
found to be influenced by the availability of Cu in diet (Catherine et al., 1993). Furthermore 
insufficiency in dietary copper was found to increase platelet thromboxane production, 
which in turn significantly correlated with endogenous lipid hydroperoxides. Evidence 
obtained from in vitro experiments indicates that superoxide dismutase may also inhibit 
platelet aggregation. That is, SOD given as adjuvant therapy with thrombolysis may both 
blunt free radicals mediated reperfusion injury and limit the incidence of spontaneous 
reocclusion after restoration of blood flow (Karin & Robert, 1993). Superoxide dismutase 

may protect endogenous NO from inactivation by scavenging superoxide anion. In vitro the 

inhibitory action of NO on platelet aggregation as well as their adhesion to endothelium 
induced by thrombin is potentiated by SOD consistent with its preventing inactivation of 

endothelium-derived NO (Meng et al., 1995). 

Nitric oxide derived reactive nitrogen species (RNS) such as nitrogen dioxide (NO2) and 

peroxynitrite (ONOO) are indicated in the mediation of oxidative damage.Nitric oxide 

reacts very rapidly with oxygen radicals. Thus NO reacting with O2
 generates 

peroxynitrite (IUPAC–recommended name is oxoperoxonitrate O=NOO). The 

peroxynitrite anion (ONOO) is relatively stable but its acid form (ONOOH) decays to 
nitrite with a half life of at most 1 sec at physiological pH and temperature (Ducrocq et al., 

1999). Peroxynitrite mediates several of the cytotoxic effects of NO such as the destruction 
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of FeS centres in enzymes. Persistent blockade of cytochrome c oxidase by NO may lead to 
the release of free calcium ions (Ca2+) from the mitochondrial matrix into the cell cytosol. 
Nitric oxide also reacts with lipophilic peroxyl radicals, important propagating species in 
biological chain reaction of lipid peroxidation, to generate alkyl peroxynitrites (LOONO). 

These appear far more stable than ONOO. If LOONO derivatives can be metabolised 

without the release of toxic free radicals then the reaction of NO with peroxyl radicals is 

potentially beneficial because it allows NO to stop lipid peroxidation. NO inhibits platelet 
and phagocyte adhesion to the endothelium. However, in atherosclerotic lesions excess 

production of O2
 may cause loss of the modulatory action of NO and at the same time 

yield ONOO which is pro-aggregatory and so could commit platelets in this environment 
to thrombus formation (Roger et al., 1994). 

Protective mechanism: Several antioxidants can scavenge ONOO, a molecule responsible 
for irreversibly oxidation of thiols to higher oxidation states, but nitrosothiols can also form, 

and later may act as NO donors. Indeed, when isolated vascular tissues are exposed to 

ONOO vasorelaxation occurs by a mechanism characteristic of release of NO from a carrier 

molecule such as nitrosothiol (Liu et al., 1994). Repeated exposure to ONOO results in a 
progressive decrease in the efficiency of the vasorelaxing effect.  

4.2 Benefits of antioxidants against lipid peroxidation  

There are a vast number of studies on the role of anti-oxidants particularly in the area of 

atherosclerosis and CVD. These studies are controversial, and do not provide clear 

evidences on the benefits of antioxidants for prevention or treatment of the diseases. 

Supplementation of antioxidant vitamins such as ǂ-tocopherol, ascorbic acid and ǃ-carotene 

used alone or in combination had long been considered to be cardio protective. However, 

controlled clinical trials using antioxidant vitamin supplements to prevent CVD have 

yielded conflicting results (Raghavamenon et al., 2009). While some secondary prevention 

interventions have been shown with ǂ-tocopherol supplementation alone or in combination 

with ascorbic acid is reported to reduce CVD risk, other studies have shown no effect of ǂ-

tocopherol supplementation in both primary and secondary prevention.  

Vitamin E (ǂ-tocopherol) is found in plant oils (Honarbakshsh & Schachter, 2009). This 

vitamin is extensively studied as a possible antioxidant agent against oxidation-induced 

cardiovascular diseases. Administration of 1000 IU/day ǂ-tocopherol has been shown to 

reduce LDL oxidation (Princen et al., 1992). A human study shown that ǂ-tocopherol 

supplementation of 150 IU/day to 1200 IU/day increases it level in plasma and in LDL in 

concentration-dependent manner. In vitro oxidation of LDL was partly inhibited in LDL 

with higher tocopherol content (Dieber-Rotheneder et al., 1991). ǂ-Tocopherol is reported to 

reduce plasma OxLDL levels at 25 IU/day in both men and women, and the effect rises with 

increased supplementation until 800 IU/day (Princen et al., 1995). Tocopherol accumulation 

in monocytes decreases stress-induced adhesion of monocytes to endothelial cells (Islam et 

al., 1998; Devraj et al., 1996; Faruqi et al., 1994; Zapolska-Downar et al., 2000), which in turn 

inhibit the formation of atherosclerotic lesions. Overall, a number of in vitro studies 

demonstrate anti-atherogenic effect of vitamin E by decreasing the production of ROS, lipid 

oxidation, monocyte endothelial cell adhesion and cytokines secretion. However clinical 

studies have not revealed anti-atherogenic effect in human (Yusuf et al., 2000).  
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Vitamin C (ascorbic acid) is principally found in citrus fruits, broccoli, red pepper, and 

cauliflowers, etc. Ascorbate acts in combination with vitamin E and beta–carotene to protect 

them from excretion and recycle them for further use. It is also reported to inhibit OxLDL 

formation indirectly by protecting vitamin E and beta-carotene (Jialal & Grundy, 1991; 

Kagan et al., 1992). Apart from this vitamin C is reported to inhibit endothelial apoptosis 

initiated by inflammatory cytokines in vitro, and reduces circulating apoptotic 

microparticles in human (Rössig et al., 2001). Adhesion proteins such as ICAM-1 can be 

involved in atherosclerosis. Ascorbate supplementation of subjects with low baseline level 

of this vitamin suppresses mRNA and protein expression of ICAM-1 in monocytes 

(Rayment et al, 2003). While these and other studies suggest that vitamin C might have anti-

atherogenic effect, there is no conclusive clinical evidence of such effect.  

ǃ-Carotene is indicated in preventing oxidation of lipids which might decrease 

atherosclerotic lesions formation. ǃ-Carotene is proposed to be efficient scavenger of singlet 

oxygen and it attenuates oxidative stress, however it does not directly inhibit lipid 

peroxidation (Briviba et al., 2004).  

Polyphenols are another group of antioxidants which are abundant in vegetables and fruits 

and are found to reduce the risk of CVD (Naderi et al., 2003). They contain both hydrophilic 

and hydrophobic moieties (Woodman & Chan, 2004). Polyphenols are suggested to inhibit 

lipid peroxidation (Madrau et al, 2009). It has also been reported that flavonoids chelates 

copper and iron ions, rendering them inactive to participate in free radical generating 

reactions (Fernandez et al., 2002). Polyphenols are also known to inhibit enzymes 

responsible for generation of ROS such as NADPH oxidase, lipoxygenase, phospholipase 

A2, and xanthine oxidase (Rice-Evans et al., 1997). Indirectly inhibiting the formation of 

OxLDL, the benefits of flavonoids goes beyond the protection against LDL oxidation to 

protect the HDL-associated paraoxonase activity (Patel et al., 2007). The antiatherogenic 

effect of mulberry leaf extracts (MLE) and the polyphenolic extracts (MLPE), which contain 

polyphenols including quercetin (11.70%), naringenin (9.01%) and gallocatechin gallate 

(10.02%) was studied by Yang et al. 2011. Both MLE and MLPE inhibited the oxidation and 

lipid peroxidation of LDL, while MLPE was shown to be more potent.  

5. Clinical studies: OxLDL and antioxidants 

A number of studies have demonstrated an association of circulating OxLDL with 
atherosclerosis disease (Itabe & Ueda, 2007; Hulthe & Fagerberg, 2002). The size of LDL 
particles might have an effect on LDL oxidation. Smaller LDL was associated with higher 
level of OxLDL. However the association was observed in diabetic subjects, but not in non-
diabetic subjects (Scheffer et al., 2003).  

OxLDL level normalized to LDL or ApoB protein levels was increased in diabetic subject 

with macrovascular diseases compared to diabetic subjects without such diseases. Increased 

OxLDL normalized level was associated with TT genotype of 108C/T polymorphism in PON1 

promoter with lower level of expression of the gene (Tsuzura et al., 2004; Brinkley et al., 2009) 

have demonstrated for the first time that plasma OxLDL levels are related to arterial stiffness 

in elderly men and women; suggesting that the oxidative modification of LDL may be 

associated with changes in the elastic properties of blood vessels. Their findings suggest that 
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while antioxidant supplementation trials have been found to be largely ineffective in 

preventing cardiovascular outcomes, other interventions including aerobic exercise training 

and pharmacological treatment with lipid and blood pressure-lowering medications may have 

significant antioxidant effects that are related to reductions in CVD risk. Another study have 

shown that oxidized lipoprotein(a) is significantly correlated with blood glucose level among 

healthy young women, suggesting that lipoprotein(a) may be oxidized with increased glucose 

concentration even within the normal glucose level (Kotani et al., 2010). 

There is some controversy on the role of antioxidants on development of atherosclerosis. A 

number of clinical studies have demonstrated an anti-atherosclerotic effect of antioxidants 

while a group of other studies do not see any appreciable benefit of the use of antioxidants. 

The following are examples of these studies that have suggested an inhibiting effect of 

antioxidants on lesion development. Gey & Puska (1989) have reported that vitamin E and 

A concentrations in the plasma were inversely proportional to cardiovascular risks. A study 

of 667 cases of atherosclerosis-induced coronary disease developed in originally healthy (not 

diagnosed with coronary heart disease, diabetes, or hypercholesterolemia) 39,910 US men 

have shown a protective effect of vitamin E but not vitamin C. Carotene appeared to be 

protective in non-smoking men, however increased the risk of coronary disease among 

smokers (Rimm et al., 1993). A protective effect of vitamin E was observed in similar study 

of 87,245 women developed 552 cases of major coronary disease in eight years (Stampher et 

al., 1993).  

However a large the Heart Outcomes Prevention Evaluation (HOPE) study did not show 

any anti-atherogenic effect of vitamin E (Yusuf et al., 2000). Subjects who were taking 

vitamin E and placebo developed atherosclerosis-related diseases such as myocardial 

infarction, stroke, unstable angina, congestive heart failure at the same rate. Potential 

explanation for the failure of antioxidants in clinical studies may include the type of dose, 

duration, time of introduction, i.e. stages of the disease at which the 

treatment/supplementation were introduced and the selection of an optimal doses of 

antioxidants. Also, most of the studies did not measure the oxidative stress markers in the 

plasma to take it into account (Parthasarathy et al., 2001). 

Research has provided strong evidence that LDL oxidation plays an important role in the 

pathogenesis of atherosclerosis and cardiovascular diseases. The involvement of lipid 

peroxidation in the propagation of the disease is well supported by clinical and scientific 

research using cell culture and animal models; these studies clearly point that modification 

of the LDL and the accompanied oxidative damage trigger an inflammation response that 

mediate the development of the atherosclerosis. One may assume that antioxidants should 

inhibit the oxidative damage and slow the inflammation processes that lead to CVD and 

associated with metabolic disorders. However despite of some positive findings, antioxidant 

compounds did not consistently prove to be potent protective agents against atherosclerosis. 

In animal atherosclerosis, which is studied in the short term, the emphasis is on establishing 

the lesions. Thus, antioxidants, such as ǂ-tocopherol, might affect predominantly the initial 

formation and progression of the lesion. In humans, particularly in those who already have 

clinically significant events, the early steps might have already occurred. In such cases, ǂ-

tocopherol and similar antioxidants could affect the conversion of aldehydes into carboxylic 
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acids. The latter, are presumed to be nonatherogenic and are easily degraded via fatty-acid 

degradation pathways (Raghavamenon et al., 2009). Based on these arguments it may be 

necessary for the scientific community to revisit the topic and investigate in well structured 

studies the type, dose, duration of the anitoxidants on a well defined population of subjects 

with various stages of CVD and its associated metabolic disorders such as diabetes, obesity 

and hyperlipidemia.  

 

Anti-oxidants Mechanism References 

ǃ-carotene Scavenging ROS and excellent 
trapper of singlet oxygen, acts 
against LDL oxidation 

Honarbakshsh & Schachter, 2009. 
Princen et al., 1992 

Vitamin C Scavenging ROS, reactivating 
other anti-oxidants such as 
Vitamin E; inhibit formation 
of OxLDL, Il-1ǃ secretion or 
chemokines and monocyte –
endothelial cell adhesion and 
ǃ-carotene which are anti-
atherogenic 

Dunstan et al., 2007 
Honarbakshsh & Schachter, 2009. 
Jialal & Grundy, 1991.  

Kagan et al, 1992.  
Rössig et al, 2001.  
Gokce et al., 1999,  
Rayment et al., 2003.  
Heller et al., 1999 

Vitamin E Scavenging ROS, reported to 
inhibit formation of OxLDL, 
Il-1ǃ secretion or chemokines 
and monocyte –endothelial 
cell adhesion 

Dunstan et al., 2007 
Honarbakshsh & Schachter, 2009. 
Princen et al., 1992. 

Islam et al., 1998. 
Devraj et al., 1996.  
Faruqi et al, 1994. 
Zapolska-Downar et al., 2000 

Selenium Cofactor for glutathione 
peroxidase. Has antioxidant 
capacity. 

Michiels et al., 1994 
 

Zinc Cofactor for superoxide 
dismutase. Protects cells from 
oxidative damage. 

Michiels et.al., 1994 

Curcumin Chelating of iron and copper 
ions, scavenging of ROS, 
inhibiting lipid peroxidation 
Protects anti-oxidant 
enzymes.  

 Wongcharoen & Phrommintikul, 
2009 

Quercetin Scavenging of metals ions, 
and inhibition ROS. 
Activation of NF-κB, which is 
involved in development of 
atherosclerosis. 

Cho et al., 2003 

Resevetrol Inhibits ROS production and 
lipid peroxidation 

Ramprasath & Jones, 2010 

Ergothioneine Protects endothelial cells from 
oxidative damage by reactive 
nitrogen species. 

Martin, 2010 

 

The table describes the currently investigated antioxidants and their relation to markers of CVD.          

Table 2. Role of Antioxidants in Cardiovascular Disease 
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Clinical study Findings No of patients References 

Department of 
Internal Medicine, 
Kochi Medical 
School, Kochi, Japan. 

OxLDL increased in subjects with 
PON1 genotype that lead to 
decreased expression of PON1 
protein  

155 Tsuzura et al., 2004 

AIR study OxLDL role in atherosclerosis and 
inflammation 

391 Hulthe & Fagerberg, 
2002 

CARDIA study OxLDL indication metabolic 
syndrome and in abdominal 
obesity, hyperglycemia and 
hypertriglyceridemia 

1889 Holvoet et al., 2008 

Metabolic 
Laboratory, 
Department of 
Clinical 
Chemistry study, 
Netherlands  

Smaller LDL are associated with 
higher level of OxLDL  

116 Scheffer et al., 2003 

HOPE Study No effect of vitamin E on 
development of CVD 

9541 Yusuf et al., 2000 

Table summarizes some clinical studies measured OxLDL in plasma  

Table 3. Clinical studies on OxLDL 

6. Conclusions and perspectives 

The low density lipoprotein oxidation hypothesis is pivotal to the explanation of the 
formation of fatty streak lesions. A wide range of atherogenic processes has been reported to 
be influenced by OxLDL and its components. The presence of OxLDL in lesions and plasma 
of patients with various forms of coronary artery diseases and other related metabolic 
disorder confirms the role of oxidized lipids in atherosclerosis. This conclusion led to 
numerous studies on the role of antioxidants in the prevention or treatment of 
atherosclerosis. However they did not yield uniformed outcome on the role of antioxidants 
in suppressing of the atherosclerotic process. Possible reasons might include discrepancies 
in experimental models, study designs, and schemes of treatment. Results shown in cell 
culture or animal models do not necessarily translate to similar results in human due to the 
major difference between the atherosclerosis development and stages in the animal models 
and human. Another factor that has not been tested yet is a possible inhibition of oxidation 
of OxLDL-released aldehydes by antioxidants. If oxidation of aldehydes is inhibited, they 
modify proteins and cause wide spectra of biological effects that exaggerate atherosclerotic 
processes. The future studies on the role of antioxidants in atherosclerosis should take in 
consideration these factors. 
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