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1. Introduction 

In this chapter, we discuss the effects of the cavity length of the active region in quaternary 

Al0.08In0.08Ga0.84N/Al0.1In0.01Ga0.89N multiquantum-well (MQW) laser diodes (LD) on its 

performance. Semiconductor lasers emit coherent laser light with relatively small 

divergence and have long operating lifetimes because their very compact sizes can be easily 

integrated with a solid-state structure. They have very high efficiencies and need only a few 

milliwatts of power because they are cold light sources that operate at temperatures much 

lower than the equilibrium temperature of their emission spectra. The objective of the 

current study is to design the smallest possible semiconductor laser diode with good 

performance. The effects of various values of cavity length (ranging from 400–1200 nm) for 

Al0.08In0.08Ga0.84N/Al0.1In0.01Ga0.89N MQW LD on laser parameters are investigated, 

including internal quantum efficiency ηi, internal loss ǂi, and transparency current density 

J0. High characteristic temperature and low transparency current of the 

Al0.08In0.08Ga0.84N/Al0.1In0.01Ga0.89N MQW LD was obtained at a cavity length of 400 Ǎm. 

2. Overview 

In the last decade of the 20th century, zinc selenide (ZnSe)-based quantum-well (QW) 
heterostructures in the blue-green spectrum were the first laser diodes (LD) investigated by  
Hasse et al. (1991) and(Haase 1991) (Jeon 1991)[1, 2]. However, rapid developments in III-
nitride compounds by Nakamura et al. (1993) have brought LEDs based on these materials 
to technological capability and commerciality (Nakamura 1993)[3]. Violet InGaN QW LD 
under pulsed operation was demonstrated by Nakamura and Akasaki in 1996, and major 
improvements have since been achieved in its performance and device durability(Akasaki 
1996; Nakamura 1996) [4, 5]. High-power LD (approximately 30 mW) was launched as a 
commercial product in September 2000(Nagahama 2000) [6]. Recently, aluminum indium 
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gallium nitride (AlInGaN) alloys have been studied as the basis for next-generation 
optoelectronic applications, such as optical disk technology. Moreover, quaternary AlInGaN 
alloy has a wide band gap energy covering IR, visible, and UV regions, and permits an extra 
degree of freedom by allowing independent control of the band gap energy and lattice 
constant. The specific properties of III-nitride, such as its wide gap, high band offset, strong 
polarization fields, non-ideal alloy system, and so on, need to be identified for the design 
and optimum performance of LDs. Quaternary alloy has the issue of simultaneous 
incorporation of both In and Al, but offers the further quality of a “tunable” material, in 
terms of both the optical emission wavelength and lattice constant. Certainly, these issues 
are coupled with the control of the electrical properties of the p-n junction involved. 
Nagahama et al. (2001) studied both GaN and AlInGaN QW LD in the near-UV region, 
which has led to demonstrations of continuous-wave (CW)-edge-emitting lasers at room 
temperature near 370 nm(Nagahama 2001) [7].  

Quaternary AlInGaN LDs with emission wavelengths less than 360 nm were also developed 
using Al and In content between 3% and 12% (Nagahama 2000; Nagahama S. 2001; Masui S. 
2003; Michael K. 2003)[6, 8–10]. Wavelength “tunability” of the lasers was achieved for 
different Al and In compositions in the quaternary well, and, equally important, in the 
corresponding variations of the threshold current density Jth. In particular, an increase in Jth 
with increasing Al concentrations up to approximately 12 KA/cm2 for x(Al) = 0.08 was 
noted. This increase was likely mainly the result of the quality of the quaternary AlxInyGa1-x-

yN, in terms of both general morphology and defects (Nagahama S. 2001)[10]. A quaternary 
Al0.03In0.03Ga0.94N QW device under CW operation at room temperature, with a maximum 
output power reaching several milliwatts lasing at 366.4 nm, was also observed (Nagahama 
2001)[6]. Shingo et al. reported Al0.03In0.03Ga0.94N UV LD under CW operation with emission 
wavelengths of 365 nm and a lifetime of 2000 h at an output power of 3 mW. They also 
achieved a short lasing wavelength of 354.7 nm under pulse current injection [8]. Michael et 
al. demonstrated room-temperature (RT) pulsed operation of AlInGaN MQW LD emission 
between 362.4 and 359.9 nm. Extending toward deep UV emission wavelength seemingly 
involves big challenges that become increasingly complicated with decreasing lasing 
wavelength [9]. Y. He et al. reported an optically pumped RT pulsed laser at 340 nm based 
on a separate confinement AlInGaN MQW heterostructure design [11]. The improvement of 
lasing characteristics, such as large optical gain and reduced threshold current of the 
GaN/AlInGaN QW laser using quaternary AlInGaN as a barrier, was reported by Seung et 
al. [12]. 

Recently, Michael et al. demonstrated the successful injection of AlInGaN ultravoliet laser 
on low dislocation density bulk AlN substrates using the MOCVD technique. The lasing 
wavelength was 368 nm under pulsed operation [13]. Thahab et al. reported ultraviolet 
quaternary AlInGaN MQW LDs using ISE TCAD software. For DQW, they simulated lasing 
wavelength of 355.8 nm under CW operation. However, the threshold current was high [14]. 
Overall, these initiatives encourage more development efforts on III-nitride materials as 
light emitters into deeper UV.  

Several attempts have been made to improve the lasing characteristic and the reliability of 
the laser diodes in the last few years. The small active region in the laser diodes reduce the 
number of threading dislocation density (TDD) in the active region, which contributes to the 
fabrication of reliable laser diodes [15]. 
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This chapter focuses on the simulation of edge emitting LD, whereas, in most other lasers, 
incorporation of an optical gain medium in a resonant optical cavity exists. The designs of 
both the gain medium and the resonant cavity are critical. The gain medium consists of a 
material that absorbs incident radiation over a wavelength range of interest. If it is pumped 
with either electrical or optical energy, the electrons within the material can be excited to 
higher, non-equilibrium energy levels. Therefore, the incident radiation may be amplified, 
rather than absorbed, by stimulating the de-excitation along with the generation of 
additional radiation. If the resulting gain is sufficient to overcome the losses of some 
resonant optical mode of the cavity, this mode is said to have reached its threshold, and 
coherent light will be emitted. 

Resonant cavity provides the necessary positive feedback for the amplified radiation; lasing 
oscillation can be established nonstop above threshold pumping levels. As with any other 
oscillator, the output power saturates at a level equal to the input, minus any internal losses. 

In this chapter, the effect of cavity length parameter on the optical performance of 
Al0.08In0.08Ga0.84N/Al0.1In0.01Ga0.89N MQW LD is reported. Different important operating 
parameters are investigated, including internal quantum efficiency ηi, the internal loss ǂi, 
characteristic temperature T0, and transparency current density J0 for our structure. For the 
lasers, these parameters are functions of the laser structure cavity dimension. 

3. Oscillation condition of Fabry-Perot Laser 

The simplest LD, Fabry-Perot LD, is realized by a pair of reflector mirrors facing each other, 
which are built together with the active material as resonator.  

 

Fig. 1. Schematic description of a Fabry-Perot resonant cavity with reflecting facets on each 
end, the different modes supported within the cavity (n) exist in integer values. 

For obtaining oscillation conditions, the plane optical waves traveling back and forth along 
the length of the laser are considered. These waves have optical frequencies of ω = 2πf with 
an associated propagation constant of ǃ = 2πǌm, where ǌm is the wavelength in the material. 
Such a wave, which starts from the left-hand reflector and travels to the right, is referred to 
as a forward wave, and has its phase and amplitude written in complex form: 

 ( )
0( ) g z j z j t

f
iE z E e e eα β ω− −=  (1)  

The amplitude decays or grows with distance because the wave suffers scattering and other 
fixed losses ǂi per unit length. However, it also experiences a material optical gain g per unit 
length caused by the stimulated recombination of electrons and holes. Consider that the 
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cavity length is L, the reflectivity of the right and left facets are R1 and R2, respectively, and 
there is no phase change on the reflection from the right facets at either end. The forward 
wave has a reflected fraction R1 at the right facet (z = L). This fraction then travels back from 
right to left. According to Eq. (1), these reverse fields are described by 

 { }( ) ( )( ) ( )
0( ) g L g L zj L j L z

r
i iE z E e e e eα αβ β− − −− − −=  (2) 

where the time variation ejωt occurring in all terms is implicitly included. 

The reverse wave travels back to the left facet (z = 0), and fraction R2 is reflected to form the 

forward wave. For stable resonance, the amplitude and phase after this single whole round 

trip have to be identical with the phase and amplitude of the wave when it began: 

 ( )2 2
0 0 1 2

g L j LiE E R R e eα β− −=  (3) 

This gives the amplitude condition for stable oscillation: 

 ( )2
1 2 1g LiR R e α− =  (4) 

This could be also written as 

 
1 2

1 1
ln

2
ig

L R R
α

⎛ ⎞
= + ⎜ ⎟⎜ ⎟

⎝ ⎠
 (5) 

where the logarithmic term can be considered as a distributed reflector loss ǂm. Considering 

that only a fraction of the photons of the guided optical wave interacts with the active 

region, and considering the optical confinement factor Γ, Eq. (5) should be written as 

  
1 2

1 1
ln

2
i i mg

L R R
α α α

⎛ ⎞
Γ = + = +⎜ ⎟⎜ ⎟

⎝ ⎠
 (6)  

with,  

 0(1 )i gα α α= − Γ + Γ  (7) 

 
1 2

1 1
ln

2
m

L R R
α

⎛ ⎞
= ⎜ ⎟⎜ ⎟

⎝ ⎠
 (8)                     

where ǂi is the loss due to absorptions inside the guide ǂg and outside ǂ0.  

The differential quantum efficiency (DQE) depends on the internal quantum efficiency ηi 
and photon losses η0: 

 0d iη η η= +  (9) 

The photon loss value η0 can be expressed as 
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 0
( )

m

i m

α
η

α α
=

+
 (10) 

where ǂi is the internal loss and ǂm is the optical mirror loss, which could be expressed as in 
Eq. (8). The DQE is dependent on the laser length L and the reflectivity of the mirror facets 
of laser, R1 and R2, as shown in the equation below: 

 
1 2

1 1
1

ln(1 )
i

d i

L

R R

α

η η

⎛ ⎞
= + +⎜ ⎟⎜ ⎟

⎝ ⎠
 (11) 

The term ηd-1(L) is widely used to determine the internal quantum efficiency ηi and internal 
loss from (L-I) measurements with different laser lengths.  

The natural logarithm of the threshold current density, ln (Jth), is plotted on the y-axis with 

temperatures on the x-axis; thus, the inverse of the slope of the linear fit to this set of data 

point is the characteristic temperature T0: 

 0
ln( )th

T
T

J

∆
=

∆
 (12) 

4. Laser structure and parameters used in numerical simulation 

A two-dimensional (2D) ISE-TCAD laser simulation program is used in the simulation of 

the LDs, which is based on solving the Poisson and continuity equations of a 2D structure. 

The Poisson equation is given by [14, 16- 18] 

 .( ) ( )D Aq n p N Nε ϕ + −∇ ∇ = − − +  (13) 

where NA is the acceptor doping density (cm-3), ND is the donor doping density (cm-3),  is 
the permittivity of them medium, � is the potential energy, q is electron charge, and n and p 
are the number of electrons and holes, respectively. The electron and hole continuity 
equations are given by 

 . ( )n n n
n

J q G R
t

∂
+ ∇ = −

∂
 (14) 

 . ( )p p p
p

J q G R
t

∂
+ ∇ = −

∂
 (15) 

where Jn and Jp are the current density of electron and hole, respectively; Gn and Gp are the 
electron generation rate and hole generation rate, respectively; and Rn, Rp are the electron 
recombination rate and hole recombination rate, respectively. 

Physical models included are drift-diffusion transport with Fermi-Dirac statistic, surface 
recombination, Shockley-Read-Hall recombination, Auger recombination, and band gap 
narrowing at high doping levels. The UV LD structure was reported in our previous paper 
[18], which includes a 0.6 µm GaN contact layer, a cladding layer of n-Al0.08Ga0.92N/GaN 
modulation-doped strained superlattice (MD-SLS) that consists of eighty 2.5 nm pairs, and a 
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0.1 µm n-GaN wave-guiding layer. The active region consists of 3 nm Al0.08In0.08Ga0.84N 
MQW sandwiched between 6 nm Al0.1In0.01Ga0.89N barriers. Four other layers exists on top 
of the active region: a 0.02 µm p-Al0.25In0.08Ga0.67N blocking layer, a 0.1 µm p-GaN wave-
guiding layer, and a cladding layer of p-Al0.08Ga0.92N/GaN MD-SLS consisting of eighty 2.5 
nm pairs, and, finally, a 0.1 µm p-GaN contact layer. The doping concentrations are 5 × 1018 
cm-3 for p-type and 1 × 1018 cm-3 for n-type. The LD area is 1 µm × 400 µm, and the 
reflectivity of the two end facets is 50% each. 

5. Results and discussions 

5.1 Quantum well number effective laser diodes performance 

Figure 2 shows the threshold current, output power, slope efficiency, and DQE of MQW LD 
as a function of the QW number. Best performance is shown by LD with four QW. This is 
attributed to a small electron leakage current, uniform distribution of electron carriers, and 
enhanced optical confinement at this number of QW. 

 

Fig. 2. The output power, threshold current, slope efficiency and DQE of 
Al0.08In0.08Ga0.84N/Al0.1In0.01Ga0.89N LDs as a function of the quantum wells number. 

5.2 Cavity length dependence of the threshold current and DQE 

The effect of the cavity length of FQW LD on the threshold current and DQE is shown in 
Figure 3. The threshold current, representing by the slope efficiency increases with the 
decreasing in cavity length due to the increasing in mirror losses [Eq. (8)]. The external 
differential quantum efficiency DQE increases with increasing cavity length. The best values 
for threshold current, output power, slope efficiency, and DQE of four QW LD at a cavity 
length of 400 µm are 31.7 mA, 267 mW, 1.91 W/A, and 0.55, respectively. Longer cavity 
length is not recommended due to induced scattering phenomenon within the gain material 
of the laser structure. 
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Fig. 3. The output power, slope efficiency and DQE of (Al0.08In0.08Ga0.84N/Al0.1In0.01Ga0.89N) 
LDs as a function of cavity length. 

5.3 LD internal quantum efficiency ηi and internal loss 

The internal quantum efficiency ηi and internal loss ǂi values of the 
Al0.08In0.08Ga0.84N/Al0.1In0.01Ga0.89N for four QW LD are calculated using Eq. (11). Figure 4 
shows that at L = 0, ηi and ǂi are equal to 71.4 % and 6.92 cm-1, respectively, which show that 
good optimization of the geometrical condition of L = 400 µm considered when designing 
the LD. 

 

Fig. 4. The inverse DQE of (Al0.08In0.08Ga0.84N/Al0.1In0.01Ga0.89N) LDs as a function of cavity 
length. 
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5.4 Transparency threshold current density Jth 

Figure 5 shows the threshold current density as a function of inverse cavity length. Hence, 
the intercept of the linear fit line with the vertical axis represented the transparency 
threshold current value J0. The four QW LD have a J0 value of 9.7 KA/cm2, which is an 
acceptable value if compared with ternary LD due to the lattice match between 
Al0.08In0.08Ga0.84N well and Al0.1In0.01Ga0.89N barriers. 

 

Fig. 5. Transparency threshold current density J0 value of MQW LD. 

5.5 Characteristic temperature T0 

Figure 6 shows the characteristic temperature T0 value of four QW LD by plotting the 

natural logarithm of the threshold current density ln (Jth) on the y-axis with temperatures on 

the x-axis. The inverse of the slope of this plot (the linear fit to this set of data point) is the 

characteristic temperature T0, which is found to be 97.5 K. 

This value is somewhat lower than the characteristic temperature of ternary InGaN LD. This 

can be explained by the non-uniform distribution of the hole carrier density between wells 

due to the poor hole mobility in the InGaN layer. However, quaternary AlInGaN alloy is 

indeed the promising material to be used for well, barrier, and blocking layer. For a more 

non-uniform hole density distribution between the wells, the hole carriers require additional 

thermal energy to overcome the barrier potential between the wells. When the temperature 

increases, the hole density at the n-side of the QW increases due to the thermally enhanced 

hole transport from the p-side to the n-side of the QW. As a result, the gain at the n-side 

increases, and the thermal contribution of the hole carrier overflow is reduced with 

decreasing mirror loss. The characteristic temperature thus increases. 

www.intechopen.com



Effect of Cavity Length and Operating Parameters on  
the Optical Performance of Al0.08In0.08Ga0.84N/ Al0.1In0.01Ga0.89N MQW Laser Diodes  

 

11 

 

Fig. 6. The characteristic temperature T0 value of four QWs LD. 

6. Summary 

The cavity length of quaternary Al0.08In0.08Ga0.84N/Al0.1In0.01Ga0.89N MQW LD plays an 
important role in LD performance. The influence of cavity length on the threshold current, 
slope efficiency, characteristic temperature, and transparency threshold current density is 
studied. A higher characteristic temperature and suitable transparency current density can 
be obtained by decreasing the mirror loss. High characteristic temperature of 97 K, high 
output power of 267 mW at room temperature, and low threshold current density of 31.7 
mA were achieved by applying a cavity length of 400 µm. 
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