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1. Introduction 

Iron (Fe) is an essential element for all living organisms because of its property of being able 
to catalyze oxidation/reduction reactions. Fe serves as a prosthetic group in proteins to 
which it is associated either directly or through a heme or an iron-sulfur cluster. It exists in 
two redox states, the reduced ferrous Fe2+ and the oxidized Fe3+ form and is able to loose or 
gain an electron, respectively, within metalloproteins (e.g. Fe-S cluster or heme-Fe proteins). 
Such metalloproteins are involved in fundamental biochemical reactions like the electron 
transfer chains of respiration and photosynthesis, the biosynthesis of DNA, lipids and other 
metabolites, the detoxification of reactive oxygen species.  

The cellular processes that involve Fe take place in distinct intracellular compartments like 
e.g. cytoplasm, mitochondria, plastids, cell walls, which therefore need to be provided with 
an adequate amount of Fe. Since this metal is involved in a wide range of essential 
processes, the undersupply with Fe leads to severe deficiency symptoms in the affected 
organism.  

Fe deficiency is one of the most prevalent and most serious nutrient deficiencies threatening 

human health in the world, affecting approximately two billion people (de Benoist et al., 

2008). Various physiological diseases, such as anaemia and some neurodegenerative 

diseases are triggered by Fe deficiency (Sheftela et al., 2011). Especially those countries are 

affected by Fe deficiency diseases, where people have low meat intake and the diets are 

mostly based on staple crops. Young children, pregnant and postpartum women are the 

most commonly and severely affected population groups, because of the high Fe demands 

of infant growth and pregnancy (de Benoist et al., 2008). Human health problems caused by 

Fe deficiency can be prevented by specific attention to food composition and by choosing a 

balanced diet with sufficient and bio-available Fe content. 

Several possibilities exist to enrich the diet with bio-available Fe, which all have advantages 
and disadvantages. Supplementation of Fe in the diet is possible by supply of Fe chelates 
and salts in form of pills (Yakoob & Bhutta, 2011). However, formulations which are well 
tolerated by patients are expensive and particularly in underdeveloped areas of the world 
difficult to supply daily, as additional systems for purchasing, transport and distribution 
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have to be established, associated with extra costs. The fortification of food products like 
flour with Fe salts is also effective (Best et al., 2011) and in place in some developed 
countries (Huma et al., 2007). Generally, an existing food industry is required for food 
processing, so that again supply is difficult in underdeveloped countries. The diversification 
of the diet with an emphasis on improvement of Fe-rich food crops like certain green leafy 
vegetables and legume seeds would be highly effective and desirable. In fact, it is actually 
the simplification of the diet with its low diversification that is the main cause of the 
micronutrient deficiency (Nair & Iyengar, 2009). The structure of agriculture, the green 
revolution and the need to supply sufficient food in light of a rapidly increasing world 
population had caused a concentration on calorie-rich carbohydrate-providing crops 
(Gopalan, 1996). Finally, the bio-fortification of staple crops is considered to be a very 
effective method which would reach many people even in underdeveloped countries (Bouis 
et al., 2011). A prerequisite is that the local staple crops are bio-fortified so that they contain 
more and better available Fe. This can generally be reached by breeding, which is performed 
either by the breeding industry or by governmental agencies. The newly bred lines need to 
be distributed to and accepted by the local farmers. In any case, it seems that the prevention 
of Fe deficiency in the population of underdeveloped countries may strongly depend on 
governmental willingness, administration and regulation concerning the quality and 
quantity of food. It is clear that none of the above mentioned treatments is “cheap”. Yet, the 
economic losses due to fatigue and neuronal dysfunctions might be far greater in negative 
value than the expected expenses to prevent these problems (Hunt, 2002). Therefore, the 
combat against Fe deficiency diseases is among the top priorities particularly listed by the 
WHO (de Benoist et al., 2008). 

Here, we present some of the approaches for bio-fortification of crops with Fe. This report 
will focus on the underlying technological advances and our knowledge about the 
physiological processes leading to the enrichment of specific plant organs with Fe and their 
increased bio-availability.  

2. Overview about Fe homeostasis in plants 

The most important plants for nutrition of humans and mammals are the highly evolved 

flowering plants (angiosperms). These include the major crops and plant model organisms 

like rice, maize, legumes and Arabidopsis thaliana. Fe is found in all plant organs, which 

include roots, leaves, flowers, fruits with seeds, storage organs like tubers. Depending on 

the plant crop species and its use all these various parts can be edible, and in this case the 

concentrations of bio-available Fe should be high. Under natural conditions, all Fe of living 

organisms ultimately enters the nutrition chain via plant roots. In the soil, Fe mainly exists 

as Fe3+, often bound as iron hydroxides in mineral soil particles (Marschner, 1995). Plants 

need a Fe concentration of 10-6 M for optimal growth, but the concentration of free Fe3+ in an 

aerobic, aqueous environment of the soil with a pH of 7 is about 10-17 M. At lower pH the 

solubility of Fe is increased, but a  Fe3+ concentration of 10-6 M is reached at pH 3,3 (Hell & 

Stephan, 2003). 30% of the world`s crop land is too alkaline for optimal plant growth. 

Moreover, it appears that some staple crops, like rice, are especially susceptible to Fe 

deficiency. Under alkaline and calcareous soil conditions, bioavailable Fe concentrations are 

low in the soil despite of the abundance of this metal in the earth crust. To meet their 

demand for Fe, plants need to mobilize Fe in the soil by rendering it more soluble before 
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they are able to take it up into their roots. Two effective Fe acquisition systems known as 

Strategy I and Strategy II have evolved in higher plants, based on reduction and chelation of 

Fe3+, respectively (Römheld, 1987; Römheld & Marschner, 1986). The group of strategy I 

plants includes all dicotyledonous and all non-grass monocotyledonous plants. They acidify 

the soil, reduce Fe3+ and take up divalent Fe2+ via specific divalent metal transporters (Jeong 

& Guerinot, 2009; Morrissey & Guerinot, 2009). All monocotyledonous grasses are Strategy 

II plants, including all major cereal crop plants like rice (Oryza sativa), barley (Hordum 

vulgare), wheat (Triticum aestivum) and maize (Zea mays). These plants synthesize and secrete 

Fe3+-chelating methionine derivatives termed phytosiderophores of the mugineic acid 

family and subsequently take up Fe3+-phytosiderophore complexes (Jeong & Guerinot, 2009; 

Kobayashi et al., 2010; Morrissey & Guerinot, 2009). Fe reaches leaves mainly in complexed 

form with citrate through the xylem, which is a plant conductive tissue for water and 

mineral long-distance transport. Typical sink organs like immature organs receive Fe via the 

phloem pathway, which represents the conductive tissue for assimilates and signals. Inside 

plants, Fe is distributed to all tissues and cellular compartments through the activities of 

several different types of membrane-bound metal transport proteins (Curie et al., 2009; 

Jeong & Guerinot, 2009). Metal ions are predominant in a bound or chelated form inside 

cells to enhance solubility and transport but at the same time minimize toxicity effects of 

metal ions. In plants, oganic acids like citrate and malate, the amino acid histidine and the 

plant-specific methionine derivative nicotianamine are mainly involved in Fe transport and 

solubility (Briat et al., 2007; Callahan et al., 2006). Chelators for metals also include 

polypeptides such as phytochelatins (PCs) and metallothioneins (MTs) which are essentially 

involved in the tolerance to potentially toxic heavy metal ions (Hassinen et al., 2011; Pal & 

Rai, 2010). Fe can be stored in form of ferritin in the plastids which also serves to reduce 

oxidative stress (Briat et al., 2010b). In the vacuole Fe is frequently bound by phytic acid, 

which is composed of inositol esterified with phosphorous acid. The ionized form binds 

several mineral ions including Fe. It is present in cereal grains, nuts and leguminous seeds 

(Gibson et al., 2010). 

In conclusion, plants contain a complex regulation network of genes which provide uptake, 

chelation, transport, sub-cellular distribution and the storage of Fe. Knowing these processes 

is the prerequisite for their manipulation in order to breed in the future high-quality 

nutritious crops. 

3. Biofortification strategies 

Bio-fortification designates the natural enrichment of plants with nutrients and health-
promoting factors during their growth. Bio-fortification focuses on generating and breeding 
major staple food crops that would produce edible products enriched in bioavailable 
amounts of micronutrients, provitamin A carotenoids or several other known components 
that enhance nutrient use efficiency and are beneficial to human health (Hirschi, 2009).  

The bio-fortification approach is interesting for staple crops that were mainly bred for 
carbohydrate content, processing characteristics and yield in the past decades, e.g. maize, 
wheat, rice and also some of the local plants like Cassava, potato and sweet potato. Elite 
lines highly performing in the field might on the other hand be poor in micronutrient 
contents (White & Broadley, 2009). Plants with a higher nutritional value can be produced 
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by classical breeding. In this case, wild relatives or varieties with beneficial micronutrient 
content are selected and the respective trait crossed into the elite lines. This approach is 
labor-intensive, it can be aided by the usage of molecular markers that are closely linked 
with the traits of interest; in an optimal case, the molecular nature of the trait is known and 
can be followed directly with molecular PCR and sequencing technologies in the various 
breeding steps (Tester & Langridge, 2010; Welch & Graham, 2004). Alternatively, bio-
fortified crops with new properties can be generated using gene technology in addition to 
classical breeding. In this case, the trait of interest is constructed in vitro using molecular 
cloning to combine promoters and genes that together confer the trait. These constructs are 
transferred into the crops, which could be achieved for example by biolistic methods based 
on the bombardment of plant cells with the DNA or using as tool Agrobacterium tumefaciens. 
The integration event of the DNA fragment conferring the new trait into the plant genome is 
selected, respective transgenic plants are generated and multiplied (Sayre et al., 2011; 
Shewry et al., 2008). Research on bio-fortification via classical breeding and/or gene 
technology-based breeding was stimulated by non-profit funding organizations, such as 
through the program HarvestPlus (http://www.harvestplus.org) (Bouis et al., 2011) and the 
Golden rice project (http://www.goldenrice.org) (Beyer, 2010). Bio-fortification thus 
became an agricultural and breeding tool to combat human malnutrition in the world.  

For the Fe bio-fortification breeding, several challenges have to be overcome which can be 

mastered if scientists acquire a better understanding of the physiological mechanisms of 

plant metal homeostasis and political regulations allow for distributing such modified 

plants (Hotz & McClafferty, 2007). First, the plants have to increase Fe uptake. Depending 

on the soil properties, specific strategies for Fe mobilization in the soil have to be employed 

by the plants. Plants are then able to render Fe in the soil more soluble and bio-available to 

them. Second, Fe should accumulate in the edible parts of the plant such as seeds and fruits. 

These plant parts should act as effective sinks for Fe. Third, the nutrients should be 

preferentially stored in a form that renders them bioavailable for the human digestive 

system. Fe can be complexed with soluble organic ligands which would increase its bio-

availability. However, some compounds like phytic acid can precipitate Fe and act as 

antinutrients if phytase is not provided.  

First attempts to target physiological processes of Fe homeostasis have already been started 
to test the effect on bio-fortification. Moreover, assays are available to test for uptake of Fe 
from plant food items (Glahn et al., 2002; Lee et al., 2009; Maurer et al., 2010). 

4. Examples for Fe biofortification research in plants 

4.1 Reduction of phytic acid content 

A successful approach for Fe bio-fortification relies on the reduction of Fe complex-forming 
metabolites that act as anti-nutrients, like tannins, a phenolic polymer, and phytic acid 
(Welch & Graham, 2004). Phytic acid (myo-inositol-1,2,3,4,5,6-hexakisphosphate; InsP6) 
comprises up to 80 % of the total seed phosphorus content and its dry mass may account for 
1-2 % of seed weight (Hurrell, 2002). It accumulates as a phosphorous and mineral storage 
compound in globoids in the seeds of many staple crops, including legumes like soybean, 
cereal embryo and/or aleurone cells (Bohn et al., 2008). In developing countries, the 
prevalence of phytic acid in the plant-based diet is believed to contribute to the high rate of 
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Fe deficiency and anemia. On the other hand, reduction of phytic acid contents is also seen 
negative, since in a well-balanced diet it has health-promoting effects on the immune system 
and in preventing kidney stones (Shamsuddin, 2008). Phytic acid content can be reduced by 
disruption of its biosynthetic chain which would result in a “low phytic acid” (lpa) 
phenotype (Raboy, 2007; Rasmussen et al., 2010). Phytic acid is mainly synthesized from d-
glucose-6-phosphate transformed first into 1d-myo-inositol-3-phosphate [Ins(3)P1] (Loewus 
& Murthy, 2000). Several biochemical pathways seem to be involved in transforming 
Ins(3)P1 to InsP6 in plants, depending on the plant species (Bohn et al., 2008; Rasmussen et 
al., 2010). Furthermore, an ABC transporter is required for transport and 
compartmentalization in the final steps which can also be disrupted (Shi et al., 2007). Several 
mutant lines have been identified in various plant species including soybean (Hitz et al., 
2002; Wilcox et al., 2000), maize (Pilu et al., 2003; Raboy et al., 2000), wheat (Guttieri et al., 
2004), rice (Larson et al., 2000; Liu et al., 2007) and Arabidopsis (Kim & Tai, 2011; Stevenson-
Paulik et al., 2005). However, conventional breeding may result in strong phytic acid 
reduction and thereby in counteracting effects of such lpa mutants, like decreased 
germination and reduced seedling growth, if the effect takes place overall in the plants. 
Better mutants can be created using gene technology since only the late functions of the 
genes for phytate synthesis may be abolished and only in certain phases and organs during 
the life cycle of the plants by using specific promoters that allow expression of the 
transgenes under very controlled conditions (Kuwano et al., 2009; Kuwano et al., 2006).  

Alternatively, the late stages of phytic acid biosynthesis and transport may be specifically 

targeted in mutants (Stevenson-Paulik et al., 2005). For example, two Arabidopsis genes for 

inositol polyphosphate kinases, ATIPK1 and ATIPK2, have been disrupted, which are 

required for the later steps of phytic acid synthesis. These mutants were found to produce 

93 % less phytic acid in seeds, while seed yield and germination were not affected. It was 

however found that the loss of phytic acid precursors altered phosphate sensing.  

An alternative approach may rely on the transformation of plants with phytase enzymes. 
Such enzymes are isolated from a multitude of different microorganisms, and heat-stability 
besides enzyme activity are important criteria to consider in the food processing procedure 
(Bohn et al., 2008; Rao et al., 2009).  

Numerous examinations have to follow to find a solution to exclude negative influences of 

phytic acid as an anti-nutrient but sustain its positive effects on plant growth. It has to be 

investigated in future studies how useful phytate-reduced crops are for human Fe uptake. 

4.2 Increase of ferritin content 

Ferritins are multiprotein complexes consisting of ferritin peptide chains that are organized 

in globular manner to contain inside up to 4000 Fe3+ ions. Existing reports suggest that Fe is 

stored short- and long-term in ferritins and utilized for the accumulation of Fe-containing 

proteins. This way, ferritins supply Fe during developmental processes of plants, and some 

plant species contain high ferritin-Fe levels in seeds (Briat et al., 2010a). Ferritins also serve 

to alleviate oxidative stress (Briat et al., 2010b). However, not in every case high ferritin 

levels need to colocalize with high Fe levels in seeds (Cvitanich et al., 2010). Ferritin-Fe is 

separated from other Fe-binding components by its protein coat and its localization inside 

plastids or mitochondria. Ferritins exist in all organisms as a store of Fe. Ferritins in general 
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and ferritins in plant food items provide a high Fe bioavailability (Murray-Kolb et al., 2002; 

San Martin et al., 2008; Theil, 2004). 

Ferritin genes were used in bio-fortification approaches. For example, leguminous ferritin 

genes, especially from soybean and bean, were over-expressed in plants, and subsequently 

an accumulation of ferritin protein was observed in the plants. Ferritins from legumes had 

been used since this plant family contains high ferritin levels in seeds, and the legume seeds 

serve in human and animal nutrition. Over-expression of ferritins in seeds and cereal grains 

resulted in an increased Fe content in these edible parts (Goto et al., 1999; Lucca et al., 2002). 

However, over-expression in vegetative tissues did not have this effect (Drakakaki et al., 

2000), and in some cases even caused Fe deficiency symptoms (Van Wuytswinkel et al., 

1999). Overall, ferritin over-expression has to studied in more detail and it may be needed to 

increase Fe uptake at the same time to have a full effect of Fe increases (Qu le et al., 2005). 

Thus, research on the influence of ferritin on Fe accumulation and bio-availability as well as 

its effect on human Fe uptake revealed that this protein is a promising candidate for bio-

fortification approaches if utilized in an appropriate manner in plants.  

4.3 Increase of nicotianamine content 

Nicotianamine is a key compound of metal homeostasis in plants. Nicotianamine is a non-

proteinogenic amino acid derived from S-adenosyl methionine by the action of the enzyme 

nicotianamine synthase. Nicotianamine is able to bind a number of different metals 

including ferrous and ferric Fe, depending on the pH environment. Nicotianamine ensures 

that Fe remains soluble inside the cells. Thus, Fe can be transported to the multiple 

compartments, and Fe toxicity effects are reduced. Nicotianamine contributes to all 

important sub-processes of plant metal homeostasis: Mobilization and uptake, intercellular- 

and intracellular transport, sequestration, storage and detoxification of metals. Several 

studies presented positive effects of nicotianamine on Fe uptake and accumulation in seeds 

(Cheng et al., 2007; Douchkov et al., 2005; Douchkov et al., 2001; Klatte et al., 2009). 

Therefore, nicotianamine can be considered to be a potential bio-fortification factor for Fe in 

seeds and grains of crop plants. (Lee et al., 2009) showed that overexpression of a 

nicotianamine synthase gene, OsNAS3, resulted in an increase of Fe in leaves and seeds, and 

that in seeds a higher nicotianamine-Fe content was present. Moreover, it was found that 

these transgenic seeds provided a better source of dietary Fe than the wild type seeds (Lee et 

al., 2009). (Zheng et al., 2010) demonstrated by seed-specific expression of OsNAS1 that rice 

grains contained a higher amount of nicotianamine. These transgenic rice grains performed 

better in Fe utilization studies using human cells (Zheng et al., 2010). Other studies also 

indicated that simple overexpression of nicotianamine synthase genes may result in 

increased nicotianamine but not necessarily in augmented Fe utilization by the plants 

(Cassin et al., 2009). Excessive nicotianamine may restrict the availability of Fe when present 

in the apoplast (Cassin et al., 2009). It was also found that nicotianamine synthase 

overexpression can result in increased levels of Fe in leaves, but not consequently in seeds.  

In conclusion, it can be stated that increased nicotianamine synthase gene expression can 

result in beneficial effects on bioavailability of Fe due to the chelator nicotianamine. 

However, care has to be taken on the site and amount of expression.  
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4.4 Combination of factors affecting bio-availability of Fe 

The above studies suggested that targeting single genes may not necessarily result in an 
increased level of bio-available Fe. Combining multiple factors that affect bio-availability can 
be of further advantage. Such approaches have been tested. For example, rice grains 
expressing Aspergillus phytase, bean ferritin and a metallothionein were produced to contain 
higher levels of Fe in a form that might be bio-available (Lucca et al., 2002). In another study, 
maize plants were generated that expressed at the same time Aspergillus phytase and soybean 
ferritin in the endosperm of kernels (Drakakaki et al., 2005). These plants had an increased Fe 
content in seeds by 20-70% and nearly no phytate. Very interestingly, such kernels proved 
advantageous in bio-availability studies to human cells (Drakakaki et al., 2005).  

(Wirth et al., 2009) produced rice plants simultaneously expressing three transgenes, namely 
a bean ferritin gene, Arabidopsis nicotianamine synthase gene AtNAS1 and a phytase. 
Combined ferritin and nicotianamine over-production resulted in a stronger increase of Fe 
content in the endosperm of grains than was achieved in transgenic approaches with single 
genes (Wirth et al., 2009).  

Thus, attempts to increase bioavailable Fe in seeds are becoming more successful, and 
combining multiple targets for breeding of Fe efficiency and Fe bio-availability seems to be 
the key. 

4.5 Breeding for novel traits 

The above presented approaches rely on the targeting of known components of plant Fe 
homeostasis mainly in gene technological approaches. An alternative non-transgenic approach 
is to use the genetic pool of germplasm collections to screen for plant lines that are Fe-efficient 
and have a high bio-availability of Fe. Such genetic traits can be mapped and backcrossed into 
the local elite varieties. An advantage of this genetic screening method is that no assumption 
about the physiology of the traits needs to be made beforehand. Due to the power of modern 
DNA sequencing the new genes and alleles of interest can eventually be molecularly 
identified, such as in the case of a transcription factor gene affecting seed micronutrient 
content (Uauy et al., 2006). In these cases, the power of natural genetic variation is utilized 
which is based on the natural selection of the best available traits that evolved in the 
germplasm collection, frequently based on the interplay of multiple genes and specific alleles 
(quantitative traits). As an example, plant breeders have begun screening for mineral content 
variation in collections of for example wild wheat (Chatzav et al., 2010), rice (Gregorio et al., 
2000) and bean (Blair et al., 2010). Furthermore, recombinant inbred lines generated from the 
original cross of two distantly related inbred lines may help in identifying and mapping of 
single and quantitative trait loci, for example in wheat (Peleg et al., 2009) and Medicago 
(Sankaran et al., 2009). In a different approach, cellular Fe uptake and bio-availability analyses 
have been used to screen rice or maize lines with novel traits not previously associated with 
known components of Fe usage (Glahn et al., 2002; Lung'aho et al., 2011). 

5. Conclusion 

Bio-fortification of crops with micronutrients contributes to the improvement of food quality 
and may help reducing the prevalent disease of Fe deficiency anemia world-wide. Multiple 
approaches using cereals and other crops have been tested and proven successful. It will 
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remain as a challenge in the future to further improve details of these procedures, e.g. by 
exchanging isoforms of the genes, alleles, and new promoters in the case of transgenic 
approaches. Genetic breeding approaches can be improved by selecting novel recombinant 
inbred lines and new germplasm for testing. In some studies, the newly generated plant 
lines have not only been analyzed at plant physiological level for increased Fe content and 
gene/transgene activity but also for their capacity to augment Fe bio-availability to human 
epithelial cells (Drakakaki et al., 2005; Zheng et al., 2010) or to cure Fe deficiency anemia 
(Lee et al., 2009). Such bio-availability studies need to be performed routinely and also used 
in screening procedures to provide criteria for selection of the best plant lines. 
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