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Lipotubuloids – Structure and Function 

Maria Kwiatkowska, Katarzyna Popłońska, Dariusz Stępiński,  
Agnieszka Wojtczak, Justyna Teresa Polit and Katarzyna Paszak  

University of Łódź, Department of Cytophysiology  
Poland 

1. Introduction 

In the 19th and 20th centuries these structures were called „elaioplasts” according to 
Wakker (1888) who introduced this term with regard to nucleus-size lipid bodies present in 
Vanilla planifolia leaf epidermis which strongly refracted light. Since they are clearly visible 
under light microscope (Fig. 1A,B) they became the focus of interest in those days and were 
described in about 120 mono- and dicotyledonous plant species. Also in our laboratory 
“elaioplasts” were for the first time observed in 12 Gentiana species (Kwiatkowska, 1959, 
1961) and in Dahlia variabilis (Kwiatkowska, 1963). 

 
Fig. 1. Ornithogalum umbellatum “elaioplast” (lipotubuloid); A – in a living cell; B - after OsO4 
fixation; C – a scheme of epidermis cell with  lipotubuloid; G – Golgi apparatus, 
l – lipotubuloid, lb – lipid bodies, m – mitochondrion, n – nucleus, no – nucleolus, p – plastid,  
t – tonoplast, v - vacuole; bars: 10 μm. 

In 1883 Schimper introduced the term plastids which has been widely accepted since then. 
Among plastids, which are cell organelles containing double phospholipid bilayer, there are 
those producing lipids, i.e. elaioplasts which this term actually means. However, they are 
totally different from Wakker’s “elaioplasts”, the latter not being plastids in the 
contemporary meaning of this term. This was unequivocally proved by EM observations of 
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“elaioplasts” in Ornithogalum umbellatum ovary and stipule epidermis described by 
Raciborski (1895) and Kwiatkowska (1966). Their ultrastructure indicates that they are 
specific cytoplasm domains (Fig. 2) (Kwiatkowska, 1971a, 1971b, 1972a). They do not have 
their own membrane but invaginating into vacuoles are surrounded by a tonoplast (Fig. 1C).  

 
Fig. 2. O. umbellatum lipotubuloid. Electronogram from the ovary epidermis fixed in freshly 
prepared mixture of OsO4 and glutaraldehyde; cw – cell wall, lb – lipid body, m – 
mitochondrion, mt – microtubules, p – plastid, pr – polyribosomes, t – tonoplast; v – 
vacuole; bar: 0.3 μm. 
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Elaioplasts are mainly filled with aggregates of osmiophilic granules identified as lipid 
bodies (Kwiatkowska, 1973a) and surrounded by a phospholipid half unit membrane 
characteristic only of these structures (Yatsu & Jacks 1972). Differences in the structure and 
thickness of lipid mono- and bilayer were revealed only after fixation of O. umbellatum 
epidermis in freshly prepared mixture of OsO4 and glutaraldehyde (Kwiatkowska, 1973a).  

Lipid bodies of plants are covered with proteins, oleosins, which prevent their merging 
during oil seed germination (Huang, 1996; Hsieh & Huang, 2004). It was shown that the 
amount of oleosins in a cell determined the size of lipid bodies (Siloto et al., 2006).  

O. umbellatum lipid bodies are entwined by microtubules adhering to their surfaces and 
running in different directions forming a basket-like structure around them (Fig. 3).  

 
Fig. 3. O. umbellatum lipid bodies surrounded by a half unit membrane, entwined by 
microtubules; arrows indicate actin filaments; lb – lipid body, mt – microtubules, t – 
tonoplast, v – vacuole; bar: 0.1 μm (Kwiatkowska et al., 2005). 

Beside lipid bodies and microtubules in this domain there are numerous ribosomes, ER 
cisternae and vesicles as well as few mitochondria, microbodies and Golgi structures and 
also autolytic vacuoles later during development.  

In order to emphasis that the structures observed in O. umbellatum are not plastids a term 
lipotubuloids has been coined, it reflects the fact that they are rich in lipids and 
microtubules (Kwiatkowska, 1971a, 1971b, 1972a). Lipotubuloids were first reported in O. 
umbellatum, however recently they have also been identified in Haemanthus albiflos (Fig. 4) 
(Kwiatkowska et al., 2010), where they were previously described as “elaioplasts” by 
Politis (1911) and Tourte (1964, 1966). These structures are also present in Vanilla planifolia, 
Funkia Sieboldiana and Athaea rosea (Kwiatkowska et al., 2011a) in which they were 
previously called “elaioplasts” by Wakker (1888), Zimmermann (1893), Wałek-Czernecka 
& Kwiatkowska (1961), respectively.  
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All the above mentioned lipotubuloids contain the same organelle (Fig. 4) which implies 
that their presence there is not accidental but results from a functional relationship between 
them and lipid bodies. The main difference consists in stability of microtubules, those in O. 
umbellatum are markedly more stable, probably due to the polysaccharide layer covering 
them, than the others (Kwiatkowska, 1973b).  

 
Fig. 4. Fragments of Haemanthus albiflos  lipotubuloid with various organelles (A) and 
moreover with microbodies (B); av – autolytic vacuole, d – dictyosome, ER – endoplasmic 
reticulum, lb – lipid bodies, m – mitochondria, mb – microbodies, t – tonoplast; bars: 1 m 
(A), 0.6 m (B) (Kwiatkowska et al., 2010). 

In the case of H. albiflos lipotubuloids become visible only after preincubation in 15 μm 
taxol with microtubule stabilizing buffer (100 mM PIPES, 1 mM MgCl2, 5 mM EGTA) pH 
7.2 for 2 h prior to fixation in the freshly prepared mixture of 2.5% glutaraldehyde and 1% 
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OsO4, followed by postfixation in 1% OsO4 (Fig. 5). The presence of tubulin around lipid 
bodies was confirmed by the immunogold method with the ǂ anti-tubulin antibody 
(Kwiatkowska et al., 2010). 

In the case of V. planifolia, F. Sieboldiana and A. rosea lipotubuloids were fixed according to 
the same procedure but without taxol preincubation. ǂ anti-tubulin antibody application 
also gave positive results: gold grains were localized around lipid bodies of lipotubuloids in 
these plants. 

Contrary to O. umbellatum lipotubuloids, microtubules in the other species were mostly 
observed in cross-sections near lipid bodies, no microtubules between lipid bodies, 
characteristic of O. umbellatum, were noted. This might be the result of poorer stability of these 
microtubules as varying stability of microtubules even in the same cell (Kwiatkowska et al., 
2011c) is a well known phenomenon resulting, among others, from post-translational tubulin 
modifications (PTM) such as acetylation, tyrosination, polyglutamylation, polyglycylation, 
phosphorylation, palmitoylation (Verhey & Gaertig, 2007; Hammond et al., 2008; Fukushima 
et al., 2009). Nevertheless, we think that it is fully justified to call the structures present in H. 
albiflos, V. planifolia, F. Sieboldiana A. rosea lipotubuloids. 

 
Fig. 5. H. albiflos lipid bodies entwined by microtubules (A,B) in cross and longitudinal 
sections (white arrows); lb – lipid bodies; bars: 0.1 μm (Kwiatkowska et al., 2010). 

It is highly probable that among “elaioplasts” which are not plastids described in other 
species further lipotubuloids will be identified. Due to that old papers concerning 
“elaioplasts” are listed in literature and a table presenting families in which “elaioplasts” 
were described is included (Table. 1) 

The main subject of our work have been lipid bodies and microtubules in O. umbellatum 
lipotubuloids which are most stable during fixation for EM. We returned to them after 30 
years (during which we concentrated on Chara spermiogenesis) due to the development of 
new methods and new ideas concerning lipid bodies. 
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Family References 

Monocotyledoneae 

Dioscoreaceae  
Iridaceae 
Liliaceae 
 
 
Orchidaceae 

Politis, 1911 
Politis, 1911; Faull, 1935 
Zimmermann, 1893; Raciborski, 1895; Politis, 1911; Guillermond, 
1922; Wóycicki, 1929; Weber, 1955; Thaler, 1956; Tourte, 1964, 
1966; Kwiatkowska, 1966 
Wakker, 1888; Zimmermann, 1893; Raciborski, 1895; Politis, 1911; 
Faull, 1935 

Dicotyledoneae 

Anacardiaceae 
Campanulaceae 
Compositae 
Cucurbitaceae 
Gentianaceae 
Malvaceae 
 
Orobanchaceae  
Pirolaceae 

Guttenberg, 1907 in Linsbauer, 1930 
Górska-Brylass, 1962 
Beer, 1909 
Riss, 1918 
Kwiatkowska, 1959, 1961 
Politis, 1911; Luxenburgowa, 1928;  
Wałek-Czernecka & Kwiatkowska, 1961  
Bidermann, 1920 
Bidermann, 1920 

Table 1. Examples of plant family of mono- and dicotyledonous class in which “elaioplasts” 
have been identified. 

2. Lipid bodies – Biogenesis and lipid synthesis  

Lipid bodies (lipid droplets, oil bodies, spherosomes) are organelles commonly present in 
plants, animals and some Prokaryote. For many years they were treated only as the source 
of energy, however during the last decade they were shown to play a role in lipid 
homeostasis and to contain numerous proteins involved in signal transductions as well as 
proteins transiently stored or degraded (Martin & Parton, 2005; Cermelli et al., 2006; Welte, 
2007; Fujimoto et al., 2008). Moreover, they became the focus of interest because 
disturbances in their functioning cause many serious dieses in humans and animals such as 
obesity, diabetes, atherosclerosis, cardiovascular disease, allergic inflammation, arthritis, 
mycobacterial infections, bacterial sepsis, acute respiratory distress syndrome (Bozza et al., 
2009). Lipid bodies are also important for plant productivity and biotechnology (Baud & 
Lepiniec, 2010; Lu et al., 2011). 

Cytological studies with the use of light and electron microscopy combined with 
autoradiography and immunocytochemistry might significantly elucidate lipid bodies 
biogenesis and function as well as their interactions with other cell organelles. 
Lipotubuloids which contain an enormous number of lipid bodies and microtubules are 
especially suitable experimental material. 

Biogenesis of lipid bodies is one of cytological controversies. Some scientists believe that 
they are formed in cytoplasm as naked droplets (Lung & Weselake, 2006) which are later 
surrounded by a half unit membrane, others suggest that both ER membranes take part in 
their biogenesis (Robenek et al., 2011). However, the most common hypothesis is based on 
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old ultrastructural observations (Frey-Wyssling et al., 1963) of plant cells which indicate that 
ER contributes to lipid bodies formation resulting from the accumulation of lipids between 
leaflets of a phospholipid bilayer (Fujimoto et al., 2008; Ducharme & Bickel, 2008; Guo et al., 
2009; Ohsaki et al., 2009). 

In O. umbellatum lipotubuloids lipid bodies are formed in the latter way. This process can be 
observed in the lipotubuloids enlarging due to de novo formation of lipid bodies during 
intensive ovary epidermis growth (Kwiatkowska, 1971b). Ovary epidermis cells are 
characterized by intensive growth without mitotic divisions leading to their 30-fold (by 
3000%) enlargement (Fig. 6). It is also closely correlated with lipotubuloid growth 
(correlation coefficient 0.98) which indicates the important role played by these structures in 
cells (Kwiatkowska et al., in prep.). 

 
Fig. 6. O. umbellatum ovary epidermis and lipotubuloid development (Kwiatkowska, 1971b) 

Forming lipid bodies first appear as a gap (Fig. 7A) then change into a lens-like structure 
grey in color (Fig. 7B,C) . Later it enlarges and becomes greatly osmiophilic, due to that the 
phospholipid half unit membrane which surrounds it is poorly visible as a thinner and 
lighter structure than a bilayer membrane (Fig. 7E-G). It appears very clearly later on 
around mature spherical lipid bodies which are filled with less osmiophilic and more 
homogenic substance (Fig. 7I,J) as well as in structures which are transient forms between 
forming and mature lipid bodies (Fig. 7H); these transient forms are connected with ER. 
However, mature lipid bodies are not linked with ER directly, but through microtubules 
which are adjacent to ER at one end and to lipid bodies at the other. 

The immunogold technique revealed single or aggregated gold grains indicating the 
presence of diacylglicerol acyltransferase 1 and 2 (DGAT1 and DGAT2) in the specific rough 
ER regions and which means that these enzymes are synthesized in ER bound ribosomes 
(Fig. 8) (Kwiatkowska et al., 2011b).  
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Fig. 7. Biogenesis of lipid bodies in O. umbellatum lipotubuloids; A - early step of lens-like 
structure formation (arrow); B,C - accumulation of electron-clear substance between two 
leaflets of ER membrane (arrows); D-H - enlargement of nascent lipid body; I,J - matured 
lipid bodies. Connection between lipid bodies and ER by microtubules (white arrow heads); 
ER - endoplasmic reticulum, lb -  lipid body, mt – microtubules, r – ribosomes, white arrow - 
ER membrane bilayer, gray arrow - lipid body monolayer; bars: 50 nm (A-F, H,I),  100 nm 
(G), 50 nm (J), (Kwiatkowska et al., 2011b).  

More gold grains indicating DGAT1 and DGAT2 were observed in characteristic swollen 
regions surrounded by thinner membranes at the ends or sides of ER cisternae (Fig. 9).  

These pictures seem to present lipid bodies in statu nascendi. They suggest that during their 
formation enzymes are transported from ER to the surface of lipid bodies. These pictures 
correspond to gold grains localization indicating DGAT1 and DGAT2 situated at the outside 
zone of mature lipid bodies (Fig. 10). Thus it seems possible that the last stage of lipid 
synthesis, transformation of DAG into TAG, can take place in mature lipid bodies similarly 
as in adipocytes and COS7 fibroblast (Kuerschner et al., 2008).  
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Fig. 8. 10 nm gold grains (arrows)  indicating DGAT2 presence near ribosomes on ER in  
O. umbellatum lipotubuloid (A,B); ER – endoplasmic reticulum, r – ribosomes; bar: 100 nm, 
(Kwiatkowska et al., 2011b). 

 
Fig. 9. Swelling ER cisternae surrounded with a membrane thinner that ER bilayer with gold 
grains indicating DGAT2 presence (arrows) in O. umbellatum lipotubuloid; ER – 
endoplasmic reticulum, lb – lipid body; bar: 100 nm, (Kwiatkowska et al., 2011b). 

 
Fig. 10. Mature lipid bodies in O. umbellatum lipotubuloid; 10 nm gold grains indicating 
DGAT2 presence; sections after hydrogen peroxide treatment to remove osmium; ER – 
endoplasmic reticulum, lb – lipid body, mt - microtubules; bar: 100 nm (Kwiatkowska et 
al., 2011b). 
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Buers et al. (2009) also observed that in macrophages freeze-fracture replica immunogold 
method revealed DGAT2 on lipid bodies surfaces. To the best of our knowledge our results 
of immunogold research revealing DGAT1 and DGAT2 on the surfaces of lipid bodies in O. 
umbellatum lipotubuloids are the only such results to date in plants. In the case of O. 
umbellatum lipotubuloids autoradiographic studies with 3H-palmitic acid at the 
ultrastructural level (Kwiatkowska et al., 2011b) directly prove that lipid synthesis does take 
place at the outside of mature lipid bodies (Fig. 11B-J). 

Fig. 11. O. umbellatum lipotubuloid autoradiograms after 2 h 3H-palmitic acid incorporation; 
A - light microscope picture of a lipotubuloid labeled with silver grains (arrows); B-J – 
electronograms of silver grains localized at the half unit membrane/core border of lipid 
bodies (arrows); c – cytoplasm, l – lipotubuloid, lb – lipid bodies, mt – microtubules; bars: 10 
μm (A), 0.2 μm (B-J), (Kwiatkowska et al., in prep.). 

Autoradiographic labeling disappears after lipid extraction with lipid solvents which shows 
that this precursor becomes incorporated into lipids. It is most clearly seen on light 
microscope pictures of autoradiograms where lipotubuloids are literally sprinkled with 
autoradiographic grains (Fig. 11A) which disappear completely after lipid extraction. These 
pictures bring to the mind the term intuitively proposed by Wakker (1888) – “elaioplasts” 
which means - producing fat. 

Silver grains and gold grains resulting from autoradiographic and immunogold reactions, 
respectively are co-localized at the surface of mature lipid bodies at the half unit 
membrane/core border which clearly indicate their contribution to lipid synthesis contrary to 
lipid bodies in statu nascendi in which lipid synthesis is connected directly with ER (see above).  

Recent studies with immunogold reaction and 20 nm colloidal gold coupled with anti-lipase 
antibodies have shown the presence of lipase near lipid bodies surfaces (Fig. 12) 
(Kwiatkowska et al., in prep.). Similar lipase localization in Ricinus communis was observed 
by Eastmond (2004) with the use of immunogold method. Lipase is probably responsible for 
the disappearance of selective labeling of lipotubuloids incubated for 2 h in 3H-palmitic acid 
and postincubated for 6 h in the non-radioactive medium (Kwiatkowska, 2004). The mature 
lipid bodies are approximately of the same size (0.1-0.4 μm) during ovary development in 
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spite of active lipid synthesis due to the dynamic balance between lipid synthesis and 
lipolysis, however the number of lipid bodies in lipotubuloids which grow significantly, 
increases (Kwiatkowska et al., 2007). Thus the fact that lipid bodies do not enlarge cannot be 
treated as an unequivocal proof that lipid synthesis does not occur in them. 

 
Fig. 12. Immunodetection of lipase in O. umbellatum ovary epidermis; A - Western blot 
analysis; line 1 – SDS-PAGE electrophoretic separation of the ovary epidermis extract; line 2 
– Western blotting of the ovary epidermis extract probed with the anti-human lipase 
antibody; line 3 – molecular mass standards and their weights in kDa; B – lipid bodies with 
20 nm gold grains indicating lipase presence; ER – endoplasmic reticulum, lb – lipid bodies, 
mt – microtubules; bar: 100 nm (Kwiatkowska et al., in prep.). 

3. Microtubules and lipotubuloid movement 

Microtubules as cytoskeleton elements are mostly involved in movement. Lipotubuloids are 
characterized with very specific and dynamic movement (Kwiatkowska, 1972a). It consists 
of sometimes very dynamic rotation with varying speed, direction and axis as well as 
progressive movement (Fig. 13). Lipotubuloid progressive movement depends on cyclosis, it 
stops when cytoplasm movement is arrested with dinitrophenol (DNP) which blocks ATP 
synthesis. Rotation, however, persists for some time after DNP application which suggests 
that it is autonomous, independent of cytoplasm movement. Also the fact that peripheral 
speed of the rotating lipotubuloid reaches 31.4 μm/s and is 6.2 times faster than the 
maximum speed of cytoplasmic motion (Kwiatkowska, 1972a) proves the above suggestion. 

The question arises what is the connection between microtubules and lipotubuloid 
movement. One thing seems certain, microtubules which join lipid bodies create one 
structure able to move as a unity despite not having its own membrane. 
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Fig. 13. A scheme of a lipotubuloid in an epidermal cell of O. umbellatum stipule which has 
turned around (several times) within 10-12 s, changing its direction and axis without a 
change in cellular location; c – cytoplasm, l – lipotubuloid, n – nucleus, v – vacuole, long 
arrows – the direction of lipotubuloid rotation, short arrows – direction of cytoplasm 
movement (Kwiatkowska et al., 2009). 

 
Fig. 14. Fragments of O. umbellatum lipid  body surrounded with microtubules differing in 
width; lb – lipid bodies, numbers denote microtubule diameters in nm; bar: 50 nm 
(Kwiatkowska et al.,2009). 

Moreover, it turned out that microtubules of lipotubuloids differ in diameter (Fig. 14), two 
populations were revealed: wide (43-58 nm) and narrow (24-39 nm). In the lipotubuloids in 
the ovary epidermis which move less dynamically the number of wide microtubules is 
smaller (Kwiatkowska et al., 2006) than in the fast-moving lipotubuloids present in stipule 
(Kwiatkowska et al., 2009). The microtubule diameter depends on the varying number of 
protofilaments which form them, the bigger the number the greater the diameter (Fig. 15A). 
Regardless of the above correlation, analyses of microtubule cross-sections revealed that 
with the same number of filaments (e.g. 10, 11, 12) two microtubule populations were 
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observed both in the control and after DNP removal while under DNP influence only one 
middle-sized population was present (Fig. 15B). It was also shown that the number of 
microtubule protofilaments in the control, under DNP influence and after its removal was 
stable. Analysing wall structure of microtubules varying in size but formed from the same 
number of protofilaments it was revealed that these changes depended on varying tubulin 
monomer sizes as well as different distances between them (Fig. 16).  

 
Fig. 15. A – A scheme of microtubules whose width depends on the number of filaments; 
B - a graph presenting two microtubule populations in the control and after DNP removal, 
and one microtubule population after DNP application (Kwiatkowska et al., 2009). 

In the wider microtubules both these parameters are greater and vice versa (Kwiatkowska et 
al., 2009). All the above proves flexibility of microtubules in vivo depending on their 
functional status. The fixation method used by us makes it possible to “freeze” the 
microtubule structure in the in vivo state due to quick OsO4 penetration as was shown by 
Omoto & Kung (1980). Other authors observed microtubule flexibility in vitro (Nogales et 
al., 1999; Li et al., 2002; Pampaloni & Florin, 2008). 
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In O. umbellatum lipotubuloids, apart from microtubules, there are also short actin filaments 
which were observed in ultrastructural pictures (Fig. 3) (Kwiatkowska et al., 2005). A 
hypothesis has been put forward that interaction of actin filaments with microtubules may 
determine the transformation of wide microtubules into narrow ones and vice versa 
(Kwiatkowska et al., 2009). Microtubules of varying sizes were observed in vitro as a result 
of tubulin co-sedimentation in the presence of actin and myosin Va (Cao et al., 2004). 

 
Fig. 16. Microtubules different in size consisting of the same number of protofilaments; 
visible differences in monomer sizes (arrows) and in distances between them; bars: 25 nm 
(Kwiatkowska et al., 2009). 

We also suppose that changes in lipotubuloid microtubule sizes might the driving force of 
their autonomic rotation. 

It is worth stressing that the rotary-progressive lipotubuloid movement plays an important 
role in substance exchange between them and a cell. This is supported by the results 
concerning the involvement of intracellular motion in spreading various substances in a cell 
(Verchot-Lubicz & Goldstein, 2010).  

4. Microtubules and lipid synthesis in mature lipid bodies 

Autoradiographic ultrastructural studies with the use of 3H-palmitic acid showed that 
incorporation of this precursor into lipids took place at the site of microtubule adhesion to 
the half unit membrane (Fig. 11B-J) thus a hypothesis has been put forward that these two 
structures cooperate in lipid synthesis (Kwiatkowska, 2004). It is supported by the fact that 
after short radioactive incubation microtubules are labeled first while lipid bodies as late as 
after 2 h (Kwiatkowska et al., 2011b). Thus it can be assumed that microtubules take up lipid 
precursors, including radioactive particles, and transmit them to the incorporation site. 

The immunogold labeling showed that gold grains, indicating the presence of two enzymes: 
DGAT1 and DGAT2 as well as of phospholipase D also indispensable for lipid synthesis 
(Andersson et al., 2006), were present at microtubule walls (Fig. 17, 18) (Kwiatkowska et al., 
2011b). The results concerning phospholipase D correspond to these of the co-sedimentation 
assay in which microtubules decorated with phospholipase D were observed (Gardiner et 
al., 2001; Gardiner et al., 2003; Dhonukshe et al., 2003). 

On the basis of autoradiography and immunogold labeling a hypothesis may be put 
forward that microtubules take an active part in lipid synthesis as transmitters of precursors 
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and enzymes to their respective destinations. Valuable proofs of microtubule involvement in 
lipid synthesis come from research with their inhibitors. Pacheco et al. (2007) observed that 
colchicine or taxol similarly blocked lipid body formation, being the reaction to 
inflammation, in mouse monocytes. 

 
Fig. 17. O. umbellatum microtubules in cross (A,B) and longitudinal sections (C,D) with 10 
nm gold grains at the surface indicating the presence of DGAT2 (arrows); lb – lipid bodies, 
mt – microtubules; bar: 100 nm (Kwiatkowska et al., 2011b). 

 
Fig. 18. O. umbellatum microtubules in longitudinal sections (A-C) with 20 nm gold grains at 
the surface indicating the presence of phospholipase D (arrows); lb – lipid bodies, mt – 
microtubules; bar: 100 nm (Kwiatkowska et al., 2011b). 

Recently a similar experiment has been carried out on O. umbellatum lipotubuloids, which 
were incubated for 6 h in propyzamide which is known to induce microtubule degradation 
(Nakamura et al., 2004; Sedbrook et al., 2004). It turned out that it induced partial 
microtubule disintegration and changed their structure by forming on their walls dark 
deposits visible in EM. Most probably they make microtubules lose their transmitting 
abilities, this leads to the blockade of new lipid synthesis which is reflected by inhibited 
incorporation of 3H-palmitic acid into lipotubuloids. This seems to be the decisive proof of 
microtubule role in lipid synthesis (Kwiatkowska et al., 2011b). 

We believe that in the case of lipotubuloids of other plants they may also function as 
transmitters of different substances to lipid bodies, however this issue needs further research. 

Up till now there has been no research proving a similar role of microtubules in lipid 
synthesis in other organisms, although microtubules surrounding single lipid bodies, not 
organized into lipotubuloids, were observed in Marchantia paleacea (Galatis et al., 1978), 
Lactuca sativa (Smith, 1991) and in red alga Gelidium robustum (Delivopoulos, 2003). Small 
sizes and great lability of microtubules probably make observation of more common 
structural and functional correlation between microtubules and lipid bodies impossible. 
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As it was mentioned earlier lipotubuloids are rich in ribosomes and rough ER in the form of 
cisternae and vesicles. No detailed research concerning their functioning was conducted but 
it easily visible that ribosomes are actively involved in translation as they form numerous 
polysomes (Fig. 2). Since formation of new lipid bodies and lipid synthesis involve a whole 
enzymatic system and many regulatory factors active ER and ribosomes in lipotubuloids are 
indispensable.  

Other structures such as mitochondria, microbodies surrounded with single lipid bi-layers 
(glyoxysomes and peroxysomes) as well as Golgi structures are less numerous and have not 
been studied in detail so far. It is believed that lipid bodies cooperate with other organelles as 
“gregarious” organelles (Goodman, 2008). Mitochondria and microbodies are in close contact 
with lipid bodies. Due to synaptic connections (Binns et al., 2006) there is correlation between 
release and oxidation of lipid acids resulting from lipolysis (Goodman, 2008; Fujimoto et al., 
2008; Guo et al., 2009). Moreover, mitochondria may supply energy and NADPH which make 
lipid synthesis and lipid bodies biogenesis possible (Walter & Farese, 2009).  

Golgi structures which are very dynamic organelles may be involved in microtubule 
polymerization as many authors believe (Chabin-Brion et al., 2001; Efimov et al., 2007; 
Kodani & Sutterlin, 2009). On the other hand, COPI (Beller et al., 2008) and COPII complexes 
(Soni et al., 2009) produced by Golgi structures are evolutionary conserved regulators of 
lipid homeostasis. 

 
Fig. 19. An autolytic vacuole (av) after immunogold reaction for lipase in O. umbellatum 
lipotubuloid; lb – lipid bodies, mt – microtubules, t – tonoplast; bar: 500 nm (Kwiatkowska 
et al., in prep.). 

At the final stage of lipotubuloid development autolytic vacuoles appear prior to 
microtubule disappearance leading to disintegration of lipotubuloids into separate lipid 
bodies (Fig. 6). These vacuoles are surrounded with a tonoplast and contain fragments of 
membranes and cell structures which is characteristic of autolytic vacuoles. Immunogold 
labeling revealed in them numerous gold grains indicating the presence of lipase (Fig. 19) 
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(Kwiatkowska et al., in prep.). The above observation supports earlier results of 
cytochemical assays revealing lipase and acid phosphatase in lipotubuloids (Kwiatkowska, 
1971b). Triggering of autolysis during dynamic metabolism was also observed in animal 
cells (Dong & Czaja, 2011). 

5. Lipotubuloids and cuticle synthesis 

It is known that cuticle are produced by epidermis cells which may dedicated more than 
50% of their metabolites to this structure (Suh et al., 2005). In the case of O. umbellatum 
lipotubuloids incubated for 2 h in 3H-palmitic acid and postincubated for 6 h in the non-
radioactive medium autoradiographic grains first assembled over lipotubuloids become 
scattered all over a cell (tangential section) (Fig. 20).  

 
Fig. 20. O. umbellatum light microscope autoradiograms; A – silver grains aggregated over 
lipotubuloids after 2 h incubation in 3H-palmitic acid; B – scattered silver grains after 2 h 
incubation in 3H-palmitic acid followed by 6 h postincubation in non-radioactive medium - 
cells in tangential section; l – lipotubuloid, n – nucleus; bar: 10 μm (Kwiatkowska, 1972b). 

After postincubation the number of autoradiographic grains falls by about 70% which 
means that a great amount of lipids was metabolized during 6 h. The remaining 
autoradiographic grains do not disappear after lipid extraction but their number drops (Tab. 
2). Cell radioactive parts insoluble in solvents are visible on the epidermis cross section at 
the site corresponding to a cuticular layer from Bird’s (2008) cuticule scheme (Fig. 21). Thus 
it seems very probable that there are cutins insoluble in lipid solvents. This part of scattered 
autoradiographic grains which disappeared after lipid extraction may correspond to waxes 
which are easily dissolved in organic solvents (Kwiatkowska et al., in prep.). A hypothesis 
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has been put forward that about 30% of lipids from lipotubuloids turn into cuticle. A 
question arises if this transformation takes place in lipotubuloids or in other cell 
compartments and the lipids from lipotubuloids are only building blocks. This problem is 
worth elucidating since many recent results indicate its great importance with regard to 
economical and biotechnological issues (Heredia et al., 2009; Domίnguez et al., 2011). Cutin 
is the most ubiquitous biopolymer in biosphere (Heredia, 2003). We are planning to take up 
this question soon. 

Labeled area Incubation in 
3H-palmitic acid

Incubation in 
3H-palmitic acid 
after lipid 
extraction 

Incubation in 
3H-palmitic acid 
and 6 h post-
incubation in 
non-radioactive 
medium 

Incubation in 
3H-palmitic acid 
and 6 h post-
incubation in 
non-radioactive 
medium after 
lipid extraction 

Whole Cell 294 ± 14 4 ± 0.8 102 ± 5 19 ± 0.9 
Lipotubuloid 240 ± 9 1 ± 0.5 12 ± 0.4 3 ± 0.8 
The rest of 
cytoplasm and 
nucleus 

54 ± 1.8 3 ± 0.9 90 ± 11 16 ± 1.1 

Table 2. Number of silver grains over particular compartments of O.  umbellatum ovary 
epidermis cell after incubation in 3H-palmitic acid under different experimental 
conditions  SE.  

Fig. 21. A - Cross-section of O. umbellatum ovary epidermis (ep); autoradiogram after 2 h 
incubation in 3H-palmitic acid, 6 h postincubation in the non-radioactive medium and after 
extraction in the lipid solvent; silver grains localized in the cuticular layer (Kwiatkowska et 
al., in prep.); B – a scheme of cuticle according to Bird (2008 - modified); bar: 5 μm. 

6. Conclusions 

Lipotubuloids are a very specific, dynamic, complicated set of metabolically active 
(although seemingly static) lipid bodies containing DGAT and lipase which cooperate with 
microtubules and other organelles. A lipotubuloid is somewhat independent in a cell which 
is reflected by its capability for autonomous rotary movement, however, it is closely 
correlated with the development of the ovary epidermis and cuticle synthesis during seed 
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formation in a fruit. Studies concerning these structures may further elucidate lipid 
metabolism and their functional relation with a cell and its organelles.  
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