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Plant-Heavy Metal Interaction:
Phytoremediation, Biofortification
and Nanoparticles

Elena Masarovic¢ova and Katarina Kral'ova
Comenius University in Bratislava
Slovak Republic

1. Introduction

Contamination of ecosystems and action of toxic metals to plants is one of the major
problems of all over the world. Most of these metals are present in the environment as a
consequence of geological and/or anthropogenic activities. Metal contamination in
agricultural environments can originate from atmospheric pollution, pesticide applications,
contamination by chemical fertilizers, and irrigation with wastewater of poor quality.
Although, some of metals are bioelements (macro- and micronutrients) at normal
concentration, they can cause harmful effects on the plants in excess. Moreover, these metals
have strong impact on human health through the food chain. Toxic metals or metals, as
bioelements in higher than normal concentrations, are group of substances belonging to the
xenobiotics. Frequently is also used term heavy metals, that are metals with specific weight
higher than 5 gem?, e.g. Cd, Hg, Pb, Cr, Ag and Sn (di Toppi & Gabbrielli, 1999).
Knowledge of dominant fluxes of metals in the soil-root-shoot continuum can also help
agronomic strategy to address the problem of crop growth under metal-excess, biomass
production and food quality. In addition to the highly toxic heavy metals, light metals (e.g.
Mg, Al) and metalloids (e.g. As and Se) are of great environmental and health significance.
Extraordinarily dangerous for both humans and plants are mainly metals that attack activity
of the enzymes containing -SH group (e.g. Cd, Hg and Pb). These metals can initiate acute
or more dangerous and frequently occurring chronic diseases. Therefore, new and
environmental-friendly technologies, such phytoremediation appeared to remove the
harmful metals from the environment. Based on their strategy, plants growing on soil
containing metal can be classified as accumulators and excluders. Later the following
groups of plants were suggested: metal excluders and metal non-excluders (indicators,
hyperaccumulators) (in detail see Masarovic¢ova et al., 2010).

Medicinal plants have an increasing economic importance and the food, pharmaceutical and
cosmetic industry produce important goods with these plants. Products based on natural
substances enjoy an increasing value. However, anthropogenic activity and its effects on
environment recently showed that medicinal plants have also responded on the changing
environmental conditions. Some medicinal plants produce specific secondary metabolites,
which can detoxify some of toxic metals. Thus, medicinal plants can also have non-
traditional use e.g. in phytoremediation technologies. In the last years the practical use of
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alternative medicine in healing processes showed continually increasing tendency. Several
species of medicinal plants can be used as supplementary nutrition due to their ability to
accumulate some essential nutrition elements (e.g. Se, Zn, and Fe) in the edible parts of these
plants. Such fortification of plants with essential nutrients (phytofortification) in an easily
assimilated form can help to feed the rapidly increasing world population and improve
human health through balanced mineral nutrition. In general, data related to toxic metal
contents (e.g. Cd) in pharmaceutically utilized parts of the medicinal plants are also
considered from the aspect of ,food safety”. Therefore it should be stressed that cultivation
and use of medicinal plants have to respect the potential hazard connected with
environmental contamination, mainly with toxic metals (Masarovicova & Kral'ova, 2007).

2. Crops

While the green revolution resulted in the development of new cultivars of crops suited to
high input of fertilizer and water, many regions of the world rely on contaminated soils
utilized for food production. The continuous application of large amounts of fertilizers and
other soil amendments to agricultural land has raised concern regarding the possible
accumulation of elevated levels of trace element constituents and potential harm to the
environment. Furthermore, increasing amounts of urban and industrial wastes which may
contain also significant quantities of toxic metals are being disposed on the agricultural
lands (Raven and Leoppert, 1997). Mining, processing metal ore, wastewater irrigation, solid
waste disposal, sludge application, vehicular exhaust and many industrial activities are the
major and harmful sources of soil contamination with toxic metals. Therefore, an increased
uptake of toxic metals by food crops grown on such soils together with human health risks
are often recorded. Excessive accumulation of toxic metals in agricultural soils and the
aforesaid elevated toxic metal uptake by crops affect both food quality and safety.
Numerous regions in the world are known where cultivation of food and feed crops is
irresponsible due to the presence of excessive amounts of plant-available toxic metals,
leading to economic losses and negative effect for food chain (Meers et al., 2010). Severe
toxic metal contamination of soil may cause a variety of problems, including the reduction
of crop yield, serious damage of plants and intoxication of animals and humans.

2.1 ,,Second” green revolution

According to Lynch (2007) at present we need a “second” green revolution, to improve the
yield of crops grown in infertile (or low fertile) soils by farmers with little access to fertiliser.
Just as the green revolution was based on crops responsive to high soil fertility, the
“second” green revolution will be based on crops tolerant to low soil fertility. Root
architecture is critically important for both soil exploration and nutrients and water uptake.
Architectural traits that enhance topsoil foraging are important for acquisition of
phosphorus from infertile soils. Genetic variation in the length and density of root hairs is
important for the acquisition of immobile nutrients such as phosphorus and potassium.
Genetic variation in root cortical aerenchyma formation is important in reducing the
metabolic costs of root growth and soil exploration. Genetic variation in rhizosphere
modification through the efflux of protons, organic acids and enzymes is important for the
mobilisation of nutrients such as phosphorus and transition metals, and the avoidance of
aluminum toxicity. Manipulation of ion transporters may be useful for improving the
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acquisition of nitrate and for enhancing salt tolerance. Genetic variation in these traits is
associated with substantial yield gains in low-fertility soils. In breeding crops for low-fertility
soils, selection for specific root traits through direct phenotypic evaluation or molecular
markers is likely to be more productive than conventional field screening. Crop genotypes
with greater yield in infertile soils will substantially improve the productivity and
sustainability of low-input agroecosystems, and in high-input agroecosystems will reduce the
environmental impacts of intensive fertilisation. Above mentioned author stressed that
population growth, ongoing soil degradation and increasing costs of chemical fertiliser will
make the , second” green revolution a priority for plant biology in the 21st century.

2.2 Effect of metals on physiological processes

In general, the metals play an important role in the metabolic pathway during the growth
and development of plants, when available in appreciable concentration. Bioelements are
essential for many proteins in plants, although they are toxic in excess. Plants differ
greatly in metal uptake and accumulation characteristics. Thus, uptake and distribution of
metals in plant body depends upon availability and concentration of metals as well as on
plant species.

Kranner & Colville (2011) published review paper providing information of metal impact on
seed of plants (including the crops and medicinal plants) from the aspect of biochemical and
molecular implications and their significance for seed germination. The authors noticed that
metals generally affect seed variability and germination in a strictly concentration-
dependent manner when exogenously applied in the micro- to mili-molar range. The seeds
of metal tolerant plants and hyperaccumulators may have a substantially higher threshold
for toxicity than non-tolerant ones. However, knowledge of the effects of metals on seeds is
only starting to emerge, in particular on the mechanisms of damage. In addition, more
studies are needed that investigate the effects of metals on seed germination in situ. It was
found, that the inhibition of seed germination by certain metals, e.g. Cd, may be reversible
by rinsing the seeds in water. There is some evidence that Cd and Cu can inhibit seed water
uptake, which has the potential to impact on germination. On the other hand, seed
dormancy status can also be affected by low metal concentrations, but the precise
mechanisms of action are far from understood. Moreover, it is largely unknown where
metals are deposited in developing seeds and which levels are toxic to the embryo as
compared to the endosperm or cotyledons. More work is needed to understand how seed
longevity is affected by metals. According to the authors, regarding the mechanism of
damage and seed stress response, surprising few studies have concentrated on the
detoxification of metals by phytochelatins in seed, although some papers have reported on
metallothioneins. Importantly, for a more comprehensive understanding of the effects of
metals on seed viability and dormancy, the signalling networks need to be explored
including the interaction of seed hormones with metals. Similarly, Shanker et al. (2005)
published review article devoted to the chromium toxicity in plants. It was stressed that
toxicity of Cr to plants depends on its valence state: Cr(VI) is highly toxic and mobile
whereas Cr(IlI) is less toxic. Since plants lack a specific transport system for this metal, it is
taken up by varied transporters of essential ions such as sulphate or iron. Toxic effects of Cr
on plant growth and development include alterations in the germination process as well as
the growth of roots, stems and leaves, which may affect total dry mass production and yield.
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Cr also causes deleterious effects on plant physiological processes such are photosynthesis,
water relations and mineral nutritions. Metabolic alterations due to Cr exposure have also
been described in plants by a direct effect on enzymes or other metabolites or by its ability to
generate reactive oxygen species which may cause oxidative stress. These authors noticed
that Cr, in contrast to other toxic metals like Cd, Pb, Cu or Al, has received little attention
from plants scientists. Its complex electronic chemistry has been major hurdle in unravelling
its toxicity mechanism in plants.

We have already mentioned that Cd and Cu were very often used for investigation of
their negative effects on plants. Thus, Hattab et al. (2009) studied physiological effects of
Cd and Cu on growth and photosynthesis of pea (Pisum sativum L.). It was found, that
root and shoot lengths, the concentration of photosynthetic pigments and the rate of
photosynthesis were affected by the high metal concentrations. The analysis of metal
accumulation showed that leaves significantly accumulate Cd for all tested
concentrations. However, Cu was significantly accumulated only with the highest tested
dose. These findings can explain the higher inhibitory effects of Cd on growth and
photosynthesis in pea plants. These results are valuable for understanding the biological
consequences of toxic metals contamination particularly in soils devoted to organic
agriculture. Similarly, Shukla et al. (2003) examined the influence of cadmium on the
wheat (Triticum aestivum L.) plant. The root, shoot-leaf length and the root, shoot-leaf
biomass progressively decreased with increasing Cd2* concentration in the nutrient
medium. Cd?* uptake and accumulation was found to be maximum during the initial
growth period. Cd?+ also interfered with the nutrients uptake, especially Ca2?*, Mg2+, K+,
Fe2+, Zn2*, and Mn2* from the growth medium. Growth reduction and altered levels of
major biochemical constituents such as chlorophyll, protein, free amino acids, starch, and
soluble sugars, that play a major role in plant metabolism, were observed in response to
varying concentrations of Cd2* in the nutrient medium. In this paper the effects of Cd2* on
growth, biomass productivity, mineral nutrients, chlorophyll biosynthesis, protein, free
amino acid, starch, and soluble sugars content in wheat plants were estimated to establish
an overall picture of the Cd2?* toxicity at structural and functional levels.

According to the Gupta & Gupta (1998) nutrient toxicities in crops are more frequent for
manganese and boron than for other nutrients. Manganese toxicity was found on acid soils
in many parts of the world, boron toxicities occurred in irrigated regions where irrigation
waters were exceptionally high in B. Most other nutrient toxicities occurred when large
amounts of nutrients in question have been added in waste, e.g. sewage sludge. Crops
grown near mines and smelters were prone to nutrient toxicities. In general, the symptoms
of toxicity in crops occurred as burning, chlorosis and yellowing of leaves. Toxicities can
result in decreased yield and/or impaired crop quality. Use of crop species and genotypes
less sensitive to toxicity were recommended where toxicity is suspected.

Tudoreanu & Phillips (2004) in their paper concluded that there is currently only a limited
understanding and quantification of key parameters which would allow a comprehensive
mechanistic model of Cd uptake by different plant genotypes to be constructed, and also
that there is a limited number of empirical observations of key endpoints for an empirical
model. Further work on these aspects is essential to facilitate the construction of effective
models to control excessive Cd accumulation in the food chain.
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Metal toxicity is influenced not only by metal concentration, but also by mineral
composition and organic substances in the soil, pH, redox-potential and presence of other
metals in the soil. The most important factor which modifies metal toxicity is relationship to
the mineral substances in the plants grown in contaminated areas. Toxic metals can induce
excessive input or output of elements from plants and thus also modify metal content in the
plants. It was found that, e.g. Cd acts negatively on uptake of many nutrients through
deterioration of plasmatic membrane of the roots (lipid peroxidation, protein degradation),
by effect on ATP-ses and other carriers, as well as by respiration decrease of root with
following decrease of active uptake and transport of nutrients. Decline of essential elements
in the plants can be also consequence of their washing out from the damaged roots and
immobilisation of elements in the roots (Siedlecka, 1995). This author found that Cd also
induced Fe deficiency despite the fact that Fe was in medium in sufficient amount. As a
consequence of negative effect of Cd there were observed leaf —rolling, —yellowing,
—darkening or leaf wilting (e.g. Hagemeyer et al., 1986). Cd decreased water potential and
transpiration rate as a consequence of decrease of stomatal conductance (Barcel6 &
Poschenrieder, 1990). This metal seriously damaged photosynthetic apparatus, induced
inhibition of both photosystems (PS I and PS II), non-cyclic transport of electrons (Siedlecka
& Krupa, 1996) as well as Calvin cycle including activity of Rubisco and PEP-carboxylase
(e.g. Stiborova et al., 1986). The other authors (e.g. SerSeit & Kralova, 2001) confirmed direct
interaction Cd2* with photosynthetic apparatus, namely with light phase of photosynthesis.
Cadmium ions can interact with tyrosine radicals located on 161st position of D1 or D2
proteins as well as with reaction centre of PS I. These ions can release Mn2* from manganese
cluster which is component of water splitting complex. As a mechanism of action it is
supposed formation of complexes of Cd2* with amino acids of proteins in photosynthetic
centres. Effect of Cd on respiration rate was found at low Cd concentration stimulative and
at high Cd concentration inhibitive (influence of Krebs cycle) (Burzynski, 1990). In our
recent review paper (Masarovicova et al., 2011) we presented comprehensive outline related
to the effect of metals on cytology, anatomy, physiology and production of crops used as a
food, fodder as well as technical plants.

2.3 Defense reactions of plants

Plants respond to stress induced by cadmium using some defense reactions such are
immobilization, exclusion, accumulation of cadmium ions in vacuole, synthesis of
phytochelatins and stress proteins as well as production of ethylene (e.g. di Toppi &
Gabbrielli, 1999). Immobilization in both, cell wall and extra cellular polysaccharides
(mucilage, callose) is the first barrier against Cd2* transport into the root. Exclusion
represents prevention of Cd?* enter into the cytosol through plasmatic membrane. However,
in the case of higher Cd2* concentration the plasmatic membrane can be seriously damaged
(in detail see Budikovad & Mistrik, 1999). One of the frequent mechanism of plant
detoxification is synthesis of phytochelatins which form with their-SH group and cadmium
ions various types of complexes (Grill et al., 1985). Formation of stress proteins is induced
by any stress factors including toxic metals. In root cells contaminated by cadmium was
found production of specific m-RNA transcripts which control synthesis of stress proteins
(in detail see Tamas et al., 1997). Plants under Cd stress produce more ethylene, whereby
higher amount of this gas is formed in roots than in the shoots (Rodecap et al. 1981).
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Subsequently, the further reactions are initiated such are lignine formation (Ievinsh et al.,
1995), induction of ascorbate peroxidase activity (Mehlhorn, 1990) and change in gene
expression (Whitelaw et al., 1997).

2.4 Food - Quality, sufficiency, safety, and human health risks

Since food production lag behind the rate of growth in population, it is necessary to
develop not only high-yielding varieties of food crops but also to develop strategies for
integrated nutrient management, integrated pest management, and efficient utilization of
water and soil resources. The identification of the origin, quality and authenticity of food,
including ingredients and food sources is of prime importance for the protection of
consumers. Moreover, traceability of substances in food plays important role for both
food safety and human health risks. It means the ability to trace the substances in food
“through all stages of production, processing and distribution”: primary production,
storage, transport, sale, importation, manufacture, distribution, supply (Regulation
EC/178/2002 - General Food Low).

World Health Organisation (WHO) has stated its commitment on food safety as an essential
public health issue and jointly with the Food and Agriculture Organisation (FAO) sponsor
the Codex Alimentarius Commission where international standards on guidance are
prepared for member and non-member states. In Europe, the European Food Safety
Authority (EFSA) was also constituted for need to guarantee a high level of food safety.

Means and opportunities by which to satisfy the health and nutritional needs (using also
GM crops) of impoverished nations and communities differ significantly from those who
enjoy greater affluence. The planet’s resources and scientific ingenuity are sufficient to
satisfy everyone’s need, but not everyone’s greed. Present and predictable world-wide
demand for bioscientists and bioengineers exceeds best estimates of supply. Systematically
planned, long-term investments by governments and bioindustries to generate adequate
qualified people are urgently needed. (Hulse, 2002).

Food chain contamination is one of the important pathways for entry toxic metals as well as
excessive and so harmful concentration of essential nutrients into the human body. The
consumption of plants produced on contaminated agricultural soils together with inhalation
of contaminated particles are two principal factors contributing to human exposure to
metals. Wastewater irrigation, solid waste disposal, sludge applications, vehicular exhaust
and various industrial activities also contribute to both soil and food crops contamination
with toxic metals. Especially, wastewater-irrigated plants were contaminated with Cr, Cu,
Ni, Pb and Cd and exceeded the permissible limits for vegetables set by SEPA (State
Environmental Protection Administration, China) as well as WHO. Both, adults and
children consuming food crops grown in wasterwater-irrigated soil ingest significant
amount of the metals studied (in detail see Khan et al., 2008).

Potential health risks of humans and animals from consumption of food and fodder can be
due to metal uptake from contaminated soils through plant roots or direct deposition of
contaminants from the atmosphere onto plant surfaces. In the absence of a basic
understanding of metal behavior in each specific situation, a more precautionary approach
to toxic metal additions to soils is warranted (McBride, 2003). Therefore information about
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toxic metal concentrations in food products and their dietary intake is very important for
assessing their risk to human health (Zhuang et al., 2009).

It can be concluded that cultivation of crops for human (food) or livestock (fodder)
consumption on soils contaminated by toxic metals can lead to the uptake and
accumulation of these metals in the edible parts of plants with potential risk to both,
animal and human health. However, different metals can behave entirely differently in
the same soil, as can a particular metal in different soils. Detailed knowledge of the soil at
the application site, especially pH, buffering capacity, organic matter and clay content, is
so essential (McBride, 2003).

3. Medicinal plants

Chemical studies concerning therapeutical properties of medicinal plants are mostly
directed to the determination of the structure of organic substances, especially those which
might have to do with their medicinal uses. The importance of their mineral constituents is
often overlooked in spite of evidence that many of them are essential to the medicinal plants
themselves, and in most cases the synthesis of these organic compounds requires the action
of enzymes containing metallic ions at their active centres. Furthermore, one has to consider
that these same elements are important to animal and human beings and the knowledge of
their concentration could help to explain the therapeutical properties of medicinal plants.
Elements such are manganese, iron, copper or zinc operate as activators or enzymes
important for healing process - synthesis of extracellular substances, cellular division,
digestion of necrotic tissue etc. Considering that the elements are complexed with organic
substances they can help to concentrate organic substances responsible for the action or the
action can be due to the whole complex (in detail see Pereira & Felcman, 1998). Moreover, it
could be stressed that toxic substances including toxic metals (or essential bioelements in
higher than physiological concentration) are also very serious factor which negatively
influences not only growth, production, structure and function of these important group of
plants but also diminish their phytotherapeutical action.

3.1 Response of medicinal plants to metal presence

As has already been mentioned, medicinal plants have also responded on the changing
environmental conditions. In our laboratory we focused on three medicinal species:
Hypericum perforatum L., Matricaria recutita L. and Salvia officinalis L. which are in general the
most frequent medicinal plants used in phytotherapy. Major constituents of Hypericum
perforatum L. extracts include several classes of compounds exemplified by flavonols,
flavonol glycosides, biflavones, naphthodianthrones, phloroglucinols, tannins, coumarins,
essential oils, xanthophylls and others (Nahrstedt & Butterweck, 1997). These compounds
are very important for this medicinal plant to preserve it against toxic metal stress. Thus, we
studied tolerance of H. perforatum to toxic effect of copper and cadmium with respect to
metal accumulation in individual plant organs (Kralova & Masarovic¢ova, 2004). It was
confirmed that as the most sensitive parameter to Cu treatment was found to be the root dry
mass. The length of shoot as well as shoot dry mass was not significantly affected. Lower
values of root dry mass could be explained with significant reduction of lateral roots and
root hairs by Cu treatment. The roots of H. perforatum accumulated markedly higher
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concentrations of Cu than the shoots. The metal accumulation in both plant organs showed
an increase with increasing metal concentration. Bioaccumulation factors (BAF), i.e.
quotients obtained by dividing the concentration of the metal in dry mass of individual
plant tissues (root and shoot, respectively) by its concentration in the external exposure
medium, were also calculated. Taking into account the actual dry mass of individual plant
organs (root and shoot), Cu portion in shoot was in the investigated concentration range
approximately 20 % from the total uptaken metal content by the whole plant. With respect
to relatively high Cd content in the shoot dry mass (1087 pg g1) H. perforatum could be
classified as Cd hyperaccumulator. In this paper was firstly discussed possible contribution
of the formation of metal complexes with secondary metabolites of H. perforatum to the plant
metal tolerance. Later we stated (Masarovi¢ova & Kral'ova, 2007) that for plants producing
specific secondary metabolites (medicinal plants) the further, additive mechanism of
tolerance arose. This additive mechanism is connected with chelatation of metal ions by
some specific secondary metabolites such are hypericin and pseudohypericin (Fig. 1)
produced by H. perforatum. The toxic ionic form of metal is thus changed into non-toxic
metal chelate. This assumption was based on the findings of Falk and Schmitzberger (1992)
and Falk and Mayr (1997) who stated that the pronounced acidity of the bay-region hydroxyl
groups of hypericin make salt formation a definite possibility: hypericin is present in the
plant material mainly as its potassium salt. In addition, in structurally similar bay-
hydroxylated fringelites salt formation with divalent ions, such as Ca2?* yields polymeric
systems, which because of their extreme insolubility are highly stabile in fossils.

OH o OH

hypericin pseudohypericin
Fig. 1. Structures of hypericin and pseudohypericin.

The peri-hydroxyl groups situated in the neighbourhood of the carbonyl groups display the
best prerequisites to form chelates with transition metal ions. Such coordination complexes
could be characterized in the case of fringelite D and Zn?* (Falk & Mayr, 1997).

Afterwards Palivan et al. (2001) investigated the formation of copper complexes with
hypericin in solutions using EPR spectroscopy and found that hypericin forms a four-
coordinated copper species where the solvent participates to the coordination sphere of the
metal. Taking into account the above mentioned results concerning complex formation
between hypericin and copper it could be assumed that this secondary metabolite of H.
perforatum as well as structurally similar pseudohypericin will form similar complexes with
further transition metal ions (Fig. 2). Due to such interaction the concentration of free metal
ions will decrease and their toxic effect will diminished. Thus, formation of complexes

www.intechopen.com



Plant-Heavy Metal Interaction: Phytoremediation, Biofortification and Nanoparticles 83

between heavy metals and the above mentioned secondary metabolites could be regarded as
a further additive mechanisms contributing to enhanced tolerance of H. perforatum against
divalent metals such as copper and cadmium.

The above-described chelatation of cadmium ions with hypericin could contribute to
enhanced tolerance of H. perforatum plants to cadmium stress and to their cadmium
hyperaccumulating ability (in detail see Masarovi¢ova et al., 2011). Classification of this
medicinal plant species as a Cd hyperaccumulator firstly was confirmed by Marquard and
Schneider (1998) and consequently also in our research (Masarovicova et al., 1999; Kral'ova
et al., 2000).

peri - OH
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HO
bay - OH—
HO

Fig. 2. Complex of hypericin with metal ions Cd2* and K*.

According to Murch et al. (2003) metal contamination can change the chemical composition
of H .perforatum, thereby, seriously impacting the quality, safety and efficacy of natural plant
substances produced by medicinal plant species. The seedlings of H. perforatum lost
completely the capacity to produce or accumulate hyperforin and demonstrated a 15-20-fold
decrease in the concentration of pseudohypericin and hypericin. Several authors confirmed
that M. recutita species tolerate Cd concentrations corresponding to the middle-strong
contaminated soils (Grejtovsky & Pri¢, 2000; Masarovi¢ova et al.,, 2003) and high Cd
concentration in shoots assigns also this medicinal plant to Cd hyperaccumulators.

In our further paper (Kral'ova et al., 2000) the effect of cadmium (12 uM Cd(NOs),; pH = 5.5)
on growth, plant biomass (root and shoot) and root dark respiration rate of H. perforatum
(cultivated hydroponically) as well as cadmium accumulation in all plant organs was
investigated. On the basis of found results it could be concluded that Cd enhanced the
permeability of membranes in both root and shoots. Consequently, above mentioned metal
ions were transported into the leaves where their higher content was estimated. Cd
administration did not affect the growth and dry biomass of the shoot and root and the
root:shoot ratio. However, the root dark respiration rate of the Cd-treated plants was faster
than those of control plants.

It has been already mentioned that M. recutita L. belongs to the most favoured medicinal
plants not only in Slovakia but also over the world (Masarovi¢ova & Krélova, 2007). This
species produces a variety of volatile secondary metabolites, e.g. chamomillol, gossonorol,
cubenol, a-cadinol, chamazulene, B-farnesene, (-)-a-bisabolol, (-)-a-bisabololoxide A, (-)-o-
bisabololoxide B, 1-azulenethanol acetate and (-)-a-bisabolol acetate, herniarin, etc.
Traditionally, in Eastern Slovakia large regions are used for commercial chamomile

www.intechopen.com



84 Advances in Selected Plant Physiology Aspects

cultivation. As chamomile species are long-term cultivated in field conditions, it is
important to know how many of Cd is taken up from the soil, transported and accumulated
in individual parts of plants. Therefore Cd content in the pharmaceutical important plant
part - anthodium was also estimated (Salamon et al., 2007).

Marquard & Schneider (1998) were the first to confirm that chamomile plants had the
potential to accumulate high levels of cadmium from the soil. In our paper (Pavlovi¢ et al.,
2006) two tetraploid cultivars of Matricaria recutita L. (cv. Goral and cv. Lutea) were
investigated in response to Cd application. Significant inhibition of root growth was
observed in both chamomile cultivars after Cd-treatment. We did not found any differences
in Cd accumulation in root between cultivars, but cv. Lutea accumulated slightly higher
amount of Cd in the shoot. In root test we observed fragility, browning and twisting of
roots. In shoots leaf roll, chlorosis and leaf growth inhibition occurred. During the root test
chamomile plants cv. Goral formed the anthodia in all concentrations except control, despite
the fact that the plants were only 3 weeks old. According to our observation, the plants
started blossoming when they are 8 - 12 weeks old, however Cd treatment resulted in
reduced size of flowers. The measurements confirmed higher inhibition of photosynthesis
in cv. Lutea, although these plants accumulated less Cd than cv. Goral. Similar decrease
of shoot dry weight in both cultivars was also detected. Decrease of net photosynthetic
rate could be due to structural and functional disorders in many different levels. Shoot and
root respiration rates were not changed significantly in both chamomile cultivars. We
confirmed that chamomile belongs to the group of Cd accumulator species. If we take into
account high content of Cd in chamomile shoot (over 300 pg g at 12 pmol dm? Cd in
solution), only small extent of damages occurred in Cd treated plants. Therefore this
medicinal plant species exhibited high tolerance to Cd treatment. This fact was also
confirmed by Masarovicova et al. (2003) when the effect of cadmium and zinc separately (10
umol dm- for Cd and 50 umol dm-3 for Zn), as well as combined application of these ions on
physiological processes (photosynthetic rate and dark respiration rates of leaves and roots,
chlorophyll concentration) and production parameters (shoot and root biomass, shoot:root
ratio, length of shoots and roots) of young plants of H. perforatum and M. recutita was
investigated. As the applied metal concentrations did not significantly affect studied
parameters (except of root respiration rate) we can conclude that both investigated
medicinal plants could be used in phytoextraction and subsequent remediation of soils
contaminated by cadmium and zinc. Jakovljevic et al. (2000) investigated the influence of the
different doses of sodium selenate (0, 100 and 500 g Se per hectare) applied by foliar
spraying on the yield and quality of chamomile. The applied doses of Se did not influence
the formation of dry chamomile flowers yield and the content of essential oil. However, the
applied Se caused the significant increase of the content of bisabolol oxide A and B, followed
by the decrease of the chamazulene content in the chamomile essential oil. Significant
increase of Se content in the chamomile flowers (12.9 to 53.6 ppm) has also been observed.

Salvia officinalis L. is in general also one of the most important medicinal and aromatic plants
with the great spectrum of application in phytotherapy, cosmetic and food industry. The
genus Salvia includes more than 400 species. S. officinalis as a perennial plant originates from
the Mediterranean region. In regard to the analysis of sage essential oil the major
compounds are thujone, cineole, camphor and caryophyllene. These secondary metabolites
are biologically active compounds in herba salviae having application in phytotherapy. In
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food industry this aromatic plant species is recommended as a spice or additive substance
(cf. Langer et al., 1996; Perry et al., 1999). From all above-mentioned aspects it is important
to have information of toxic metal effects on growth and metal accumulation into the
different plant organs of this species. Since Marquard & Schneider (1998) characterised S.
officinalis as excluder of cadmium we studied effect of large external concentration range of
cadmium (30 - 480 pmol dm-3 Cd(NO3)2) on production characteristics (length of roots and
shoots as well as dry mass of roots and shoots) of this species. We tested two cultivars: cv.
Krajova (Slovakian provenance) and cv. Primorska (Yugoslavian provenance). Two months
old plants were cultivated hydroponically seven days under controlled conditions in
Hoagland solution without and in the presence of Cd(NOs), (Masarovicova et al., 2004).
There were found differences in phenology and production parameters between two tested
cultivars of different provenance. Cv. Krajova was already sensitive to the concentration of
60 pmol dm-3 Cd(NOs3)> when the oldest leaves dried. At concentration of 120 umol dm-3
Cd(NO:3); all older leaves were dried and younger leaves were wilt. At the concentration 240
umol dm-3 Cd(NOs), the brown spots were observed on the leaves and at the both applied
highest metal concentrations (360 and 480 pmol dm-3 Cd(NOs),) the all leaves were dried
and on apical side of the leaves depigmentation was observed. Cultivar Primorska seems to
be more tolerant to metal treatment. Visual changes occurred at the concentration of 120
umol dm-3 Cd(NOs), when dried only some of older leaves of the plant. At the concentration
of 240 pmol dm -3 Cd(NO3), the leaves were dried but they were green coloured. This fact
confirms the disturbance of water regime and indicated strong water stress. At highest
tested Cd concentrations (360 and 480 umol dm-3 Cd(NQOs),) all leaves were already dried
and the damage of leaf pigmentation as the brown coloured spots was observed. In spite of
high concentration of Cd (360 - 480 umol dm-3) length of the roots in both cultivars was
almost not influenced. Also for the shoots of both cultivars only a slight reduction of length
was found. On the other hand, dry mass of the shoots decreased at all applied Cd
concentrations more expressively than the dry mass of the roots. The negative effect of the
high Cd concentrations on the shoot dry mass was manifested mainly in cv. Krajova. Both
cultivars uptaken the greatest portion of Cd into the roots, but cv. Primorska accumulated in
the shoot app. two-times more Cd than cv. Krajova. However, differences were found in
translocation of cadmium from roots into the shoots. Cv. Krajova did not allocate Cd from
roots into the shoots already at 240 umol dm-3 Cd(NOs3); which confirm existence of some
barriers in the roots.

4. Classification of metallophytes and plant strategies for metal uptake

A metallophyte is a plant that can tolerate high levels of toxic (heavy) metals. Such plants
range between "obligate metallophytes" (which can only survive in the presence of these
metals), and "facultative metallophytes" which can tolerate such conditions but are not
confined to them. Metallophytes commonly exist as specialised flora found on spoil heaps of
mines. Primarily these plants have potential for use for phytoremediation of contaminated
ground. In our earlier paper (Masarovicova et al., 2010) classification of metallophytes and
actual theory of the strategies in the response of plants to toxic metals were presented, and
for hyper/accumulators and excluders the bioaccumulation and translocation factors were
discussed. Based on this review the following outline could be described. Strategies of the
plants grown on the metal containing soil, classified as accumulators and excluders, were
first time published by Baker in 1981 (Baker, 1981) based on the ratio between leaf: root
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metal concentration. Later this conception was improved suggesting the following two
groups of plants: metal excluders and metal non-excluders (indicators, hyperaccumulators).
The plant strategy of hyperaccumulators was originally introduced to define plants
containing > 0.1 % (1000 pg g on dry matter -DM-basis) of Ni in dried plant tissues (Brooks
et al., 1977). For other metals such as Zn and Mn the threshold is 10 000 pg g (1%) of metal
in aerial dry mass. Baker et al. (1994) determined threshold for Cd 100 pg g (0.01%).
Nowadays the accepted concentration defining hyperaccumulation for Cd is still 0.01 % of
this metal in the shoot. Hyperaccumulator plants can be regarded as one subset of a larger
category of metal-tolerant plants. However, the exact relationship between metal tolerance
and metal hyperaccumulation has not yet been fully resolved (Pollard et al., 2002). Recently,
conditions for above-mentioned classification of plant strategies were improved by two
further characteristics: bioaccumulation factor (BF or BAF) and translocation factor (TF).
Both factors have to be considered for evaluation whether a particular plant is a metal
hyperaccumulator (Ma et al., 2001). The term BF, defined as the ratio of metal concentrations
in plant dry mass (ug.g! DM) to those in soils (ug g soil), has been used to determine the
effectiveness of plants in removing metals from soils (Tu and Ma, 2002). The term TF,
defined as the metal concentration in plant shoot to this in the roots, has been used to
determine the effectiveness of plants in translocating metal from the root to the shoot (Stoltz
and Greger, 2002; Tu and Ma, 2002; Deng et al., 2004). However, fraction of accumulated
metal allocated in shoots related to the total amount of metal accumulated by plants
respects also actual plant biomass. Consequently, relative high value of this fraction could
be also reached when TF value is lower, however actual shoot biomass is high. In the
course of hyperaccumulation the following processes are usually observed: (a) higher
metal uptake connected with high effectiveness of metal translocation from the root into
the shoot, (b) preference of biomass allocation into the root where also high metal
concentration occurs (c) development of larger root system in comparison with shoot
biomass, which is favourable for total ion uptake by the plant (Cosio, 2004). These features
are currently included in BAF. It should be stressed that complex study of plant species is
needed to assort it to group of metal hyper/accumulators, metal excluders or plants
tolerant to the tested metal. Moreover, all important parameters (e.g. bioaccumulation
factor, translocation factor) should be estimated before recommendation if tested plant
species is utilizable in phytoremediation technology.

4.1 Hyperaccumulating plants — How and why do they do it?

Recently appeared paper (Rascio & Navari-Izzo, 2011) describing three basic hallmarks to
distinquish hyperaccumulators from related non-hyperaccumulating species: a strongly
enhanced rate of toxic metal uptake, a faster root-to-shoot translocation and greater ability
to detoxify and sequester metals in the leaves. An interesting breakthrough that has
emerged from comparative physiological and molecular analyses of hyperaccumulators
and related non-hyperaccumulators is that most key steps of hyperaccumulation rely on
different regulation and expression of genes found in both kinds of plants. In particular, a
determinant role in driving the uptake, translocation into the leaves, sequestration in
vacuoles or cell walls of great amounts of toxic metals, is played in hyperaccumulators by
constitutive overexpression of genes encoding transmembrane transporters. Among the
hypotheses proposed to explain the function of hyperaccumulators, most evidence has
supported the “elemental defence” hypothesis, which states that plants hyperaccumulate
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toxic metals as defence mechanisms against natural enemies, such as herbivores.
According to the most recent hypothesis of “joint effects”, toxic metals can operate in
concert with organic defensive compounds leading to enhanced plant defence overall.
Above-mentioned authors stressed, that more elements and a larger number of
hyperaccumulators need to be examined to validate the hypothesis of defensive effects of
toxic metals. Moreover, the investigations need to move from laboratory to field
conditions to provide realistic information about defence mechanism of the plants under
natural stand. It should be emphasized the interest in the potential exploiting of
hyperaccumulators as a rich genetic resource to develop engineered plants with enhanced
nutritional value for improving public health or for contending with widespread mineral
deficiencies in human vegetarian diets (Palmgren et al., 2008). This aspect concerning
biofortification is discussed in the section 6 of this chapter.

5. Phytoremediation: Environmental-friendly, cost-effective and natural green
biotechnology

Rapid expansion and increasing sophistication of various industries in the last century has
remarkably increased the amount and complexity of toxic or hazardous substances, such are
heavy metals, radionuclides, organic and inorganic wastes, pesticides, etc. which may be
bioremediated by suitable organisms (plants and microbes). This technology was termed as
bioremediation or phytoremediation (in detail see Singh & Tripathi, 2007).
Phytoremediation is environmental-friendly, cost-effective and natural green biotechnology
for the removing xenobiotics, including toxic metals, from the environment using some
species of the plants. It seems unbelievable, that these pioneering ecological approaches
appeared over the last 20 years. However, problem of toxic metals contamination of
environment is still continuously worsening due to intensive, various and mostly negative
human activities. This unfavourable state leads to intensification of research dealing with
phytotoxicity of the metals and with mechanisms used by plants to face against their
harmful effects. Great interest has been gained by the behaviour of hyperaccumulators
growing on metalliferous soils, which accumulated toxic metals in the leaves at
concentration much higher than other plant species. Aims of studying these
hyperaccumulators has been to highlight physiological and molecular mechanisms
underlying the hyperaccumulation ability, to discover adaptive functions performed by
hyperaccumulation in these plants and to explore the possibility of using them as tools to
remove metals from contaminated or natural metal-rich soils. However, in spite of
important progress made in recent years by the numerous studies accomplished, the
complexity of hyperaccumulation is far being understood and several aspects of this
remarkable feature still await explanation (c.f. Rascio & Navari-Izzo, 2011).

5.1 Phytoremediation classification and principles

There are several types of phytoremediation technologies currently and quite successfully
available for clean-up of both contaminated soils and water. The most important of them
could be characterised as follows: reduction of metal concentration in the soil by cultivating
plants with a high capacity for metal accumulation in the shoots (phytoextraction),
adsorption or precipitation of metals onto roots or absorption by the roots of metal-tolerant
aquatic plants (rhizofiltration), immobilization of metals in soils by adsorption onto roots or
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precipitation in the rhizosphere (phytostabilization), absorption of large amounts of water
by fast growing plants and thus prevent expansion of contaminants into adjacent
uncontaminated areas (hydraulic control), decomposition of organic pollutants by
rhizosphere microorganisms (rhizodegradation), and re-vegetation of barren area by fast
grown plants that cover soils and thus prevent the spreading of pollutants into environment
(phytorestauration) (in detail see Masarovicova et al., 2009).

It was found that the most effective but also the most technically difficult phytoremediation
technology is phytoextraction. This technology is based on hyperaccumulation of the metals
into the whole plants. This approach involves cultivation of metal-tolerant plants
(hyperaccumulators) that concentrate metals in the aboveground organs of the plant. At the
end of the growing season, plant biomass is harvested, dried, and the contaminant-enriched
mass is deposited in a special dump or added into a smelter. The energy gained from
burning of the biomass could support the profitability of this technology, if the resultant
fumes can be cleaned appropriately. For phytoextraction to be effective, the dry biomass or
the ash derived from aboveground tissues of a phytoremediator crop should contain
substantially higher concentrations of the contaminant than the polluted soil (Krdamer, 2005).

Metal-tolerant species (including some of energetic crops such are Hordeum vulgare, Triticum
aestivum, Brassica napus, Brassica juncea, Helianthus annuus,) can accumulate high
concentration of some toxic metals in their aboveground biomass. As has already been
mentioned, one group of metallophytes are hyperaccumulators (metal extractors). However,
besides hyperaccumulators the fast-growing (high-biomass-producing) plants (e.g. Salix
spp., Populus spp.) can also be used in phytoremediation technology. In spite of lower shoot
metal-bioaccumulating capacity of these species, the efficient clean-up of contaminated
substrates is connected with their high biomass production. Aronsson et al. (2002) have
already recognized that it is both environmentally and economically appropriate to use
vegetation filters of short rotation willow to purify waters and soils.

Capability of the plants to reduce the amount of heavy metals in contaminated soils depends
on plant biomass production and their metal bioaccumulation factor, which is the ratio of
metal concentration in the shoot tissue to the soil. The bioaccumulation factor is determined by
the ability and capacity of the roots to take up metals and load them into the xylem, by the
mass flow in the xylem stream as driven by transpiration, and by the ability to accumulate,
store and detoxify metals while maintaining metabolism, growth and biomass production
(Guerinot & Salt, 2001). With the exception of hyperaccumulators, most plants have metal
bioconcentration factors less than 1, which means that it takes longer than a human lifespan to
reduce soil contamination by 50%. To achieve a significant reduction of contaminants within
one or two decades, it is therefore necessary to use plants that excel in either of these two
factors, e.g. to cultivate crops with a metal bioconcentration factor of 20 and a biomass
production of 10 tonnes per hectare (Mg/ha), or with a metal bioconcentration factor of 10 and
a biomass production of 20 Mg/ha (Peuke & Rennenberg, 2005).

It was concluded that the most frequent practical application has phytoextraction which has
been growing rapidly in popularity worldwide for the last twenty years. In general, this
process has been tried more often for extraction of toxic metals than for organic substances.
Phytoextraction as an environment friendly approach could be used for cleaning up sites
that are contaminated with toxic metals. However, the method has been questioned because

www.intechopen.com



Plant-Heavy Metal Interaction: Phytoremediation, Biofortification and Nanoparticles 89

it produces a biomass-rich secondary waste containing the extracted metals. Therefore,
further treatment of this biomass is necessary - gasification (i.e. pyrolysis) which could help
make phytoextraction more cost-effective. Hence, processing of biomass to produce energy
and valuable ash in a form which can be used as ore or disposed safely at low cost is
advantageous. Recovery of energy by biomass burn or pyrolysis could help to make the
phytoextraction a cost-effective technology (Li et al., 2003).

5.2 Phytoattenuation

In general, term ,, attenuation” is used in physics (in some context also called extinction) as a
gradual loss in intensity of any kind of flux through a medium. Recently (Meers et al., 2010)
appeared the first time term , phytoattenuation” for risk-reduction of metals in the produced
biomass while allowing maximum economic valorisation of marginal land as main
objectives. Before this notice, Meers et al. (2005) observed that of four biomass producing
crops - energy plants (Brassica rapa, Cannabis sativa, Helianthus annuus and Zea mays) maize
exhibited the highest biomass potential on moderately metal contaminated land, with the
lowest metal accumulation in the harvestable plant parts. This fits well within the intended
scope of phytoattenuation, namely risk-reduction of metals in the produced biomass (by
using an excluder species) while allowing maximum economic valorisation of marginal land
as main objectives. Otherwise, the primary objective in the current context is allowing an
optimal economic use of marginal/contaminated land with risk-reduction of the metals in
the produced biomass, whereas the second objective is the gradual “attenuation” of the
metals from the soil.

It was recognized, that worldwide there are numerous regions where conventional
agriculture is affected by the presence of elevated amounts of plant-available trace
elements, causing economic losses and endanger or diminish food and feed quality and
safety. Phytoremediation as a soil remediation technology only appears feasible if the
produced biomass might be valorised in some manner. It was proposed the use of energy
crops (such are maize, sunflower, or sorghum) aiming at risk-reduction and generation of
an alternative income for agriculture, yet in the long run also a gradual reduction of the
pollution levels. Since the remediation aspect is demoted to a secondary objective with
sustainable risk-based land use as first objective, Meers et al. (2010) suggested and
introduced the term “phytoattenuation”. This concept is in analogy with “natural
attenuation” of organic pollutants in soils where also no direct intended remediation
measures but a risk-based management approach is implemented. In the current field
experiment, cultivation of energy maize resulted in 33,000-46,000 kW h of renewable
energy (electrical and thermal) per hectare per year which by substitution of fossil energy
would imply a reduction of up to 21 tons hal year! CO; if used to substitute a coal fed
power plant. Metal removal was very low for Cd and Pb but more significant for Zn with
an annual reduction of 0.4-0.7 mg kg in the top soil layer. Above mentioned authors
stressed that removal efficiency could be further enhanced by introducing winter crops
for bio-energy purposes in crop rotation. The use of whole plant for industrial purposes is
currently the only realistic scenario to combine phytoremediation with risk-based soil
management. Metal concentrations in the green maize shoot were too high for use as
fodder, but still were acceptable use as feedstock for anaerobic digestion. However,
climatic conditions also play important role. Thus for warmer more southern regions in
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Europe other crops such are maize, sunflower or sorghum may potentially serve as
alternative energy crops for similar purpose. There is also an urgent need to find and
characterize other hyperaccumulators, to cultivate them and better assess agronomic
practices and management to enhance plant growth and metal uptake by selective
breeding and gene manipulation. Even then, metal uptake might pose environmental
risks, unless the biomass produced during the phytoremediation process could be
rendered economically by burning it to produce bio-ore and converting it into bioenergy.
However, according to the authors Rascio & Navari-Izzo (2011) it is only matter of time
before the commercialization of phytoextraction using high-biomass hyperaccumulator
plants becomes widespread, considering that not only will it remediate contaminated sites
but will generate income from agricultural lands otherwise not utilized.

6. Biofortification a phytofortification

Biofortification is the process of increasing the bioavailable concentrations of essential
nutrients in edible portions of food crops through agronomic intervention or genetic
selection (White & Broadley, 2005). Phytofortification as a part of biofortification is the
fortification of plants with essential nutrients, vitamins and metabolites during their growth
and development, there by making these additives more readily available for
human/animal consumption (in detail see Kralova & Masarovicova, 2006). The idea of
fortifying food crops with the essential minerals required for a healthy diet is thus relatively
new. As many of the metals that can be hyperaccumulated are also essential nutrients, it is
easy to see that food fortification and phytoremediation are two sides of the same coin
(Guerinot & Salt, 2001).

Plants are at the beginning of food chain, therefore improving the nutrients uptake from
soil and enhancing their movement and bioavailability in the edible parts (see below) of
crops will provide benefits for both, animal and humans. It can be stated that
biofortification provides a truly feasible means of reaching malnourished populations in
relatively remote rural areas, delivering naturally-fortified foods to population groups
with limited access to commercially-marketed fortified foods. According to Palmgren at
al. (2008), there are two main challenges ahead: (i) to develop crops that have an increased
content of essential nutrients in the edible parts of plant but that at the same time exclude
toxic elements that exhibit similar chemical properties; and (ii) to avoid sequestration of
nutrients in the inedible parts of plants, for example in the roots. A breeding approach to
produce nutritionally improved food crops relies on genetic diversity in natural
populations that can be crossbred to introduce traits/ genes from one variety or line into a
new genetic background.

Phytofortification is divided into agronomic and genetic phytofortification. The first one
uses soil and spray fertilizers enriched by individual essential elements (e.g. Fe, Zn and Se).
This approach has been adopted with success in Finland for enrichment of crops by Se.
Agronomic biofortification could be used as a cost-effective method to produce high-Se
wheat products that contain most Se in the desirable selenomethionine form. Increasing Se
content in wheat is a food systems strategy that could increase the Se intake of whole
populations. Genetic phytofortification presents the possibility to enrich food crops by
selecting or breeding crop varieties, which enhanced Se accumulation characteristics
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(Broadley et al., 2006). A strategy of genetic phytofortification offers a sustainable, cost-
effective alternative to conventional supplementation and fortification programs. Genc et al.
(2005) suggested that a combined strategy utilising (a) plant breeding for higher
micronutrient density, (b) maximising the effects of nutritional promoters (e.g. inulin,
vitamin C) by promoting favourable dietary combinations, as well as by plant breeding; and
(c) agronomic biofortification (e.g. applying selenate to cereal crops by spraying or adding
to fertiliser) is likely to be the most effective way to improve the nutrition of populations.
Because selenium as an essential micronutrient for humans and animals is deficient in at
least a milliard people worldwide, selenium-accumulating plants are a source of genetic
material that can be used to alter selenium metabolism and tolerance to help develop food
crops that have enhanced levels of anticarcinogenic selenium compounds (Ellis and Salt,
2003). Wheat (Triticum aestivum L.) is a major dietary source of Se. Agronomic
biofortification (e.g. application of selenate on soil) could be used by food companies as a
cost-effective method to produce high-Se wheat products that contain most Se in the
desirable selenomethionine form. Increasing the Se content in wheat is a food systems
strategy that could increase the Se intake of whole human population (Lyons et al., 2003,
2005). Finland, for example, fortifies with Se, although there is not strong evidence of
selenium deficiency-related public health problems (Aro et al., 1998).

Finally, it has to be emphasized the interest in the potential exploiting of
hyperaccumulators as a rich genetic resource to develop engineered plants with enhanced
nutritional value for improving public health or for contending with widespread mineral
deficiencies in human vegetarian diets (Palmgren et al., 2008). However, the strategies of
food crop biofortification are still in infancy, even though that importance of
biofortification for the humans makes this an exciting line of future research in the field of
hyperaccumulation of essential bioelements.

7. Nanoparticles and plants

Nanoparticles (nano-scale particles = NSPs) are atomic or molecular aggregates with
dimension between 1 and 100 nm that can drastically modify their physico-chemical
properties compared to the bulk material. NSPs can be made from variety of bulk materials
and they can act depending on chemical composition, size or shape of the particles.
According to the Ruffini-Castiglione & Cremonini (2009) there were identified three types of
NSPs: natural (e.g. volcanic or lunar dust, mineral composites), incidental (resulting from
anthropogenic activity, e.g. diesel exhaust, coal combustion, welding fumes) and
engineered. To the last type of NSPs belong also metal based materials - quantum dots,
nanogold, nanozinc, nanoaluminium, TiO, ZnO and Al;Os (Li & Xing, 2007). There is now
an extensive discussion about the risks of the anthropogenic or engineered NSPs into
environment, plants as well as human health. Handy et al. (2008) in their recent paper
summarized information concerning the current status, knowledge gaps, challenges and
future needs of NSPs ecotoxicology. These authors concluded that NSPs can be toxic to
bacteria, algae, invertebrates and fish species, as well as mammals. However, much of the
ecotoxicological data is limited to species used in regulatory testing and freshwater
organism. Data on bacteria, terrestrial species, marine species and higher plants is
particularly lacking. Till now only some studies have focused on the effects and mechanisms
of nanomaterials on higher (vascular) plants. The results of these studies have been reported
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by Ruffini-Castiglione & Cremonini (2009) with the aim to provide further insight into
connections between plants and NSPs.

Stampoulis et al. (2009) studied effect of Ag, Cu, ZnO, and Si nanoparticles and their
corresponding bulk counterparts on seed germination, root elongation, and biomass
production of Cucurbita pepo plants which were grown in hydroponic solutions. It was
found that seed germination was unaffected by any of the treatments, but Cu nanoparticles
reduced emerging root length by 77% and 64% relative to untreated controls and seeds
exposed to bulk Cu powder, respectively. Biomass of plants exposed to Ag nanoparticles
was reduced by 75%. Although bulk Cu powder reduced biomass by 69%, Cu nanoparticle
exposure resulted in 90% reduction of biomass relative to control plants. For Ag and Cu
metals it was found, that half of the observed phytotoxicity originated from nanoparticles.
Similarly, Li & Xing (2007) investigated effects of some metal nanoparticles (Al, Zn, ZnO) on
seed germination and root growth of six plant species (radish, rape, rye-grass, lettuce, corn,
and cucumber). Seed germination was not affected except for the inhibition of nanoscale
zinc on ryegrass and zinc oxide on corn at 2000 mg/L. Inhibition on root growth varied
greatly among nanoparticles and plants. Suspensions of 2000 mg/L nano-Zn or nano-ZnO
practically terminated root elongation of the tested plant species. Fifty percent inhibitory
concentrations (ICsp) of nano-Zn and nano-ZnO were estimated to be near 50 mg/L for
radish, and about 20 mg/L for rape and ryegrass. The inhibition occurred during the seed
incubation process rather than seed soaking stage.

Saison et al. (2010) studied toxic effect of core-shell copper oxide nanoparticles on the green
alga Chlamydomonas reinhardtii with regards to the change of algal cellular population
structure, primary photochemistry of photosystem II and reactive oxygen species formation.
Algal cultures were exposed to 0.004, 0.01 and 0.02 g/L of core-shell copper oxide
nanoparticles for 6 h. It was found that core-shell copper oxide nanoparticles induced
cellular aggregation processes and had a deteriorative effect on chlorophyll by inducing the
photoinhibition of photosystem II. The inhibition of photosynthetic electron transport
induced a strong energy dissipation process via non-photochemical pathways. The
deterioration of photosynthesis was interpreted as being caused by the formation of reactive
oxygen species induced by core-shell copper oxide nanoparticles. However, no formation of
reactive oxygen species was observed when C. reinhardtii was exposed to the core without
the shell or to the shell only.

7.1 Biosynthesis of metal nanoparticles

In modern nanotechnology one of the most exciting area of research is the formation of
nanoparticles (biosynthesis of metal nanoparticles) through the biological interventions. It is
known, that plants also have inherent capacity to reduce metal through their specific
metabolic pathway. Shekhawat & Arya (2009) used seedlings of Brassica juncea prepared in
vitro to produce silver nanoparticles. Two weeks old seedlings were transferred into nutrient
solution augmented with silver nitrate. After seven days (in hydroponics cultivated) plants
were harvested and analyzed through UV-VIS spectrophotometer and by Transmission
Electron Microscopy (TEM) that confirmed the nanoscale silver nanoparticles. Beattie &
Haverkamp (2011) investigated sites for the reduction of metal ions Ag* and Au?* to Agland
Au® metal nanoparticles in Brassica juncea plants. Harvested plants were sectioned and
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studied by transmission electron microscopy, total metal content was analysed by atomic
absorption spectroscopy and chemical state of the both metals was determined using X-ray
absorption spectroscopy. Nanoparticles of Agl and Au® were found in leaves, stem, roots
and cell walls of the plants at a concentration of 0.40% Ag and 0.44% Au in the leaves. It is
interesting, that the sites of the most abundant reduction of metal salts to nanoparticles were
chloroplasts, regions of high reducing sugar (glucose and fructose) content. Above
mentioned authors proposed that these sugars are responsible for the reduction of these
metals. At present these gold nanoparticles are also named ,green-gold”. Similarly,
Ankamwar (2010) reported synthesis of gold nanoparticles in aqueous medium using
Terminalia catappa leaf extract as the reducing and stabilizing agent. On treating chloroauric
acid with this leaf extract rapid reduction of chloroaurate ions was observed leading to the
formation of highly stable gold nanopaticles in solution. Gold nanoparticles ranged in size
from 10 to 35 nm with mean size of 21.9 nm. It was stressed by Kumar & Yadav (2009) that
biosynthetic processes for nanoparticles would be more useful if nanoparticles were
produced extracellularly using plants or their extracts and in a controlled manner according
to their size, dispersity and shape. Plant use can also be suitably scaled up for large-scale
synthesis of nanoparticles. These authors summarized plant species which can form silver
and gold nanoparticles, to which belong well known species such are Triticum aestivum,
Avena sativa, Medicago sativa, Cicer arietinum, Pelargonium graveolens, Aloe vera or many other
species, e.g. Cymbopogon flexuosus, Cinnamommum camphora, Azadirachta indica, Tamarindus
indica, Emblica officinalis, etc.

While many studies were aimed to metal uptake by plants, particularly with regard to
phytoremediation and hyperaccumulation, only few have distinguished between metal
deposition and metal salt accumulation. Therefore Haverkamp & Marshall (2009) described
the uptake of AgNO; NaszAg(5:0s);, and Ag(NH3)2NO3 solutions by hydroponically
cultivated plants of Brassica juncea and the quantitative measurement of the conversion of
these salts to silver metal nanoparticles. It was found that there is a limit on the amount of
metal nanoparticles that may be deposited, of about 0.35 wt.% Ag on a dry plant basis, and
that higher levels of silver are obtained only by the concentration of metal salts within the
plant, not by deposition of metal. The limit on metal nanoparticle accumulation, across a
range of metals, is proposed to be controlled by the total reducing capacity of the plant for
the reduction of the metal species and limited to reactions occurring at an electrochemical
potential greater than zero volts. Metal nanoparticles in plants were observed for gold, silver
and copper. However, silver is very often used as a model compound because this metal not
only can form metal nanoparticles in plants, but high levels of silver have been “achieved in
plants, silver nanoparticles exhibit good catalytic properties, this metal has a high
electrochemical reduction potential and also other useful properties.

It should be noticed, that not only vascular plants but also microorganisms such as bacteria,
yeasts, algae, fungi and actinomycetes can be used for biosynthesis of nanoparticles (in
detail see Sastry et al.,, 2003). However, Navarro et al. (2008) stressed, that there is a
remarkable lack of information on some key aspects, which prevents a better understanding
and assessment of the toxicity and ecotoxicity of nanoparticles, especially engineered
nanoparticles to living organisms - vascular as well as non-vascular plants. Therefore,
collaboration between ecotoxicologists, toxicologists, biologists, chemists, biophysicists, and
analytical researchers is needed.
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8. Utilization of metallomics for better understanding of metal-induced stress
in plants

In the future for elucidation of the physiological roles and functions of biomolecules binding
with metallic ions in the biological systems increasingly widespread use of metallomics could
be expected. The term “metallome” was first coined by Williams (2001) who referred to it as an
element distribution, equilibrium concentrations of free metal ions, or as a free element content
in a cellular compartment, cell, or organism and the ensemble of research activities related to
metal ions in biological systems has been recently referred to as “metallomics” (Haraguchi,
2004). Later it was proposed that the term “metallome” should be extended to the entirety of
metal and metalloid species present in a cell or tissue type (Szpunar, 2004). In the study of
metallomics, elucidation of the physiological roles and functions of biomolecules binding with
metallic ions in the biological systems should be the most important research target. According
to Haraguchi (2004), metallomics may be called, in another words, ““metal-assisted function
biochemistry”. The wider use of molecular biology methods is expected to complement the in
vivo bioanalytical data with in vitro molecular genetic data and lead to an understanding of
metal functions at the molecular level (Mounicou and Lobinski, 2008). Lombi et al. (2011)
summarized in detail the main techniques used to investigate metal(loids) in situ in plants,
including histochemical techniques, autoradiography, laser ablation inductively coupled
plasma mass spectrometry ((LA)-ICP-MS), secondary ion mass spectrometry (SIMS), scanning
electron microscopy (SEM), proton/particle induced X-ray emission (PIXE), synchrotron
techniques (utilising high energy X-rays), X-ray fluorescence spectroscopy, tomography —
differential absorption, tomography —fluorescence, as well as X-ray absorption spectroscopy
(XAS). However, it could be stressed that sample preparation will continue to be a critical step
for the majority of in situ techniques and in this regard the physiological aspects, in relation to
sample preparation, should be at least as important as the methodological needs.
Comprehensive review papers related to metallomics were published by Mounicou et al.
(2009), Lobinski et al. (2010) and Arruda &Azevedo (2009).

9. Some aspects of bioethics

It should be stressed that negative effects of toxic metals on crops and medicinal plants is
manifested not only in undesirable decrease of yield but also in endangered food safety
what is serious action and intervention into the whole human population (cf. Nasreddine &
Parent-Massin, 2002; Prasad 2004; Reeves & Chaney, 2008). From global aspect it can be
stated that crops have dominant use as a food and fodder. Only in advanced and highly-
developed countries these plants are also used as technical plants (e.g. for alternative source
of energy or environment protection). Therefore it is so stressed ethical aspect if the crops
(e.g. maize, cereals, potatoes, rapeseed, and sunflower) could be used exclusively for
alimentary purposes or also as an alternative energy source. Moreover, topic of the effect of
toxic substances including heavy metals on physiological and production characteristics of
the both, crops and medicinal plants is in general extraordinarily important.

10. Conclusion

Numerous regions in the world are known where cultivation of food crops and medicinal
plants is irresponsible due to the presence of excessive amounts of plant-available toxic
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metals, leading to economic losses and negative effects for the human food chain as well as
for human health. It was stressed that cultivation and use of crops and medicinal plants
have to respect the potential hazard connected with environmental contamination, mainly
with toxic metals. Although, some of metals are bioelements (macro- and micronutrients) at
normal concentration, they can cause harmful effects on the plants in excess. Therefore, new
and environmental-friendly, cost-effective and natural green technologies, such
phytoremediation appeared to remove the harmful metals from the environment. This
review has illustrated from the known behaviour of toxic metals that broad assumptions
about the general behaviour and bioavailability of metal contaminants should be considered
from many aspects including the metal nanoparticles - their formation as well as action on
physiological processes of the plants. It was described that there were developed strategies
of the plants grown on the metal containing soil, classified as metal excluders and metal
non-excluders (indicators, hyperaccumulators). Since anthropogenic activity also affects
medicinal plants it was mentioned that this group of plants likewise have non-traditional
use in phytoremediation and biofortification technologies. Moreover, crops and medicinal
plants can be used as supplementary nutrition due to their ability to accumulate some
essential nutrition elements (e.g. Se, Zn, and Fe) in the edible parts of these plants. Such
fortification of plants with essential nutrients (phytofortification) in an easily assimilated
form can help to feed the rapidly increasing world population and improve human health
through balanced mineral nutrition. It was stated that crops have dominant use as a food
and fodder. However, only in advanced and highly-developed countries these plants are
also used as technical plants. Therefore it was stressed ethical aspect if the crops could be
utilised exclusively for alimentary purposes or also as an alternative energy source.
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