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1. Introduction  

Stress is defined as any soil and climatic conditions or combination of both that hinders the 
full realization of genetic potential of a plant, limiting their growth, development and 
reproduction. These effects in plants of agricultural interest have a major impact on 
productivity and quality and thus represent, together with biotic stress, the cause of the gap 
between yield potential and actual production (Ciais et al., 2005). Stressful environmental 
conditions are extreme air temperature, drought, excessive presence of salts, anoxia and 
hypoxia, ozone and heavy metals. Among these factors, heavy damages on agricultural 
production in Mediterranean environments are exerted by drought, salt stress and early 
spring low temperatures. The changes in climate forecasted for the near future are expected 
to exacerbate the onset and magnitude of events of stress due to increased drought and 
erratic rainfall and rise of evapotranspiration rates due to growing temperatures.  

Responses to drought are species specific and often genotype specific (De Leonardis et al., 
2007). Moreover, the nature of drought response of plants is influenced by the duration and 
severity of water loss (Pinheiro & Chaves, 2011), the age and stage of development at the 
point of drought exposure (De Leonardis et al., 2007), as well as the organ and cell type 
experiencing water deficits (Pastori & Foyer, 2002).  

Plants use various mechanisms to cope with drought stress including their morphology, 
physiology and metabolism at organ and cellular levels (Levitt, 1972). The Figure 1 shows 
the drought response strategies which include i) escape, ii) avoidance, and iii) tolerance. 
Escaping strategy, via a short life cycle or developmental plasticity (Araus et al., 2002), 
allows the plant to complete its life cycle during the period of sufficient water supply before 
the onset of drought. The drought avoidance mechanism, via enhanced water uptake and 
reduced water loss (Chaves et al., 2002), involves strategies which help the plant to maintain 
high water status during periods of stress, either by a more efficient water absorption from 
roots or by reducing evapotranspiration from aerial parts. Drought tolerance, via osmotic 
adjustment, enhanced antioxidative capacity and physical desiccation tolerance of the 
organs, allows to withstand water deficit with low tissue water potential (Ingram & Bartels, 
1996). The osmotic compounds synthesized include proteins and aminoacids (like proline, 
aspartic acid and glutamic acid), methylated quaternary ammonium compounds (e.g. 
glycine betaine, alanine betaine), hydrophilic proteins (e.g. late embryogenesis abundant 
(LEA), carbohydrates (like fructan and sucrose) and cyclitols (e.g. D-pinitol, mannitol).  
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Fig. 1. Plant drought response mechanisms and main related traits. 

Recent research has uncovered physiological-, biochemical- and molecular-based 
mechanisms involved in the drought response in plants (Amudha & Balasubramani, 2011).  

More research into how plants respond to drought conditions is needed and will become 
more important in the future based on climate change predictions of an increase in arid 
areas (Petit et al., 1999). Understanding plant responses to drought is of great importance 
in order to select plants more tolerant to stress (Reddy et al., 2004). Advances in the 
understanding of these processes may lead to genetically modified drought tolerant crop 
plants.  

This chapter focuses on the most recent findings on water stress response in plants. Both 

morpho-physiological traits and molecular changes contribute to promote stress resistance. 

In particular, the future perspectives of breeding for drought tolerance are viewed as 

resulting from the integration of genomic approaches based on the identification of genomic 

regions involved in the control of stress-related traits and a deep knowledge of the 

molecular mechanisms acting at cellular level in response to drought stress.  

2. Morpho-physiological traits involved in the response to water stress 

As the damage exerted by water stress is translated into important loss in amount and 
quality of crop yield, the improvement of drought tolerance represented and still 
represents one of the major objectives of plant breeding. At this purpose, a very important 
task consists of the identification of the main phenotypic features for plant to cope with 
drought, and therefore the formulation of the drought-tolerant ideotype. Physiological 
traits relevant for the responses to water deficits and/or modified by water deficits span a 
wide range of vital processes. 

Morphological traits as early plant vigour, wider leaves and a more prostate growth habit can 
sustain a rapid ground cover thus avoiding loss of water by soil evaporation and suppressing 
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weed competition for water, with a clear advantage on maintaining a favourable plant water 
status in order to sustain transpiration and yield (Mastrangelo et al., 2011a). 

Plant phenology (escape) represents an important aspect for selecting drought tolerant 
crops, as it allows the alignment of plant life cycle to the features of the target drought 
environment. In this regard, the genetic improvement of crops has to take into account the 
modality of drought stress occurrence in the various environments, and in particular the 
stress timing, frequency and intensity. As an example, earliness is an effective breeding 
strategy for enhancing yield stability in Mediterranean environments where crops are 
exposed to terminal drought stress, even if an extreme earliness leads to yield penalty 
(Cattivelli et al., 1994). Nevertheless, in the case of cereal species in environments in which 
the drought stress is experienced in early season during the initial vegetative stage, late 
flowering, followed by a short grain-filling period, can lead to higher yield (van Ginkel et 
al., 1998). However, early-flowering varieties will escape terminal drought, but they are not 
necessarily considered drought-resistant. 

One basic mechanism for reducing the impact of drought is early stomatal closure at the 
beginning of a period of water deficit. Stomatal closure reduces water loss, but also reduces 
the gas exchange between the plant and the ambient air. The reduced CO2 intake then 
results in reduced photosynthesis (Chaves et al., 2002). Nevertheless high yield requires 
high stomatal conductance to sustain a great CO2 fixation. Some leaf traits, such as stomatal 
number/density and leaf mesophyll structure can be important in increasing the water use 
efficiency. In particular, studies carried out in wheat suggest that the high-yielding modern 
varieties are “opportunistic”, that is they have high rates of stomatal conductance with 
optimal soil moisture, but markedly reduce stomatal conductance when soil moisture is 
limiting (Siddique et al., 1990; Rizza et al., 2011). Maximal rates of photosynthesis were also 
positively correlated with increased yields of advanced varieties, while leaf temperatures 
were negatively correlated (Fischer et al., 1998). Leaf permeability is another crucial trait, as 
leaves can lose water through cuticle, increasing crop transpiration without an associated 
benefit in CO2 fixation. Glaucousness, which is caused by the presence of epicuticular wax, 
can prevent these losses (Kerstiens, 2006).  

At cellular level, osmotic adjustment is an adaptive mechanism in which the accumulation 

of solutes helps to maintain a favourable gradient of water potential in the soil-plant-air 

system. It allows to maintain a sufficient water absorption from a relatively dry soil for 

sustaining photosynthetic and transpiration activity, and cell expansion for root growth 

(Mastrangelo et al., 2011a; Dichio et al., 2006). Regarding the importance of this trait in 

improving grain yield in water stressed environment, a positive correlation between 

osmotic adjustment and yield increases has been found in particular in conditions of severe 

water stress (Serraj & Sinclair, 2002). 

Besides above-ground traits of plant, deep rooted cultivars have demonstrated a clear yield 
advantage under water stress conditions. An increased root development in presence of water 
stress represents a complementary strategy to stomatal closure regulation. The influence of 
root architecture on yield and other agronomic traits, especially under stress conditions, has 
been widely reported in all major crops (Tuberosa et al., 2002a; de Dorlodot et al., 2007). 

A deep and expanded root system should permit to explore a greater soil volume and extract 
more water. The information available on the genetic control of root traits in the field and their 

www.intechopen.com



 
Advances in Selected Plant Physiology Aspects 

 

48

relationships with yield is limited, mainly due to difficulty of measuring root characteristics in 
a large number of genotypes. Moreover, field studies on roots often require destructive 
approaches and are complicated by heterogeneity in soil profile, structure, and composition. 
The acquisition and analysis of root parameters such as total root length are tedious, time-
consuming, and often inaccurate (Zoon & Van Tienderen, 1990). Furthermore, environmental 
effects on root development have been documented by a number of researcher. Many of the 
root characteristics, such as length, average diameter, surface area, and mass have been used to 
asses the quantity of roots and the functional fraction of the root system. Total root mass is 
usually viewed as easier to measure than root length or surface area and has frequently been 
used to compare root systems. However, total root mass alone cannot describe many root 
functions adequately involved in plant-soil relationship.  

In the case of annual crops capture of water, at sowing for establishment and late in the season 
for grain filling, may be the most important target for root system traits. The location and the 
timing of these water sources within the soil profile depend on the soil type and its water 
holding capacity, the preceding crop and its water use, the soil water content at sowing and 
the pattern of rainfall during and after the crop growing season. Modelling can estimate when 
and where valuable water is likely to be present in the soil profile for targeting root traits 
(Lilley & Kirkegaard, 2007; Sadras & Rodriguez, 2007). Late-season water, for example, may be 
located mid-profile, or at the bottom of the root zone. This suggests that it would be beneficial 
to combine root vigour with other root characteristics to favour resource capture.  

The other characteristics may include weak root gravitropism to promote a more wide-
spreading root system for shallower water uptake, or a strong gravitropism to promote 
deeper root penetration and deep-water uptake (Ho et al., 2005; Manschadi et al., 2006), 
faster extension towards moisture (hydrotropism) (Eapen et al., 2005) and more or less 
nodal and seminal root axes (Hochholdinger et al., 2004). Root growth in soil can be limited 
by physical, chemical, and biological properties of the soil. Despite the intense work carried 
out on these topics, there is still insufficient understanding upon the soil factors which limit 
root growth, and the influence of time period and weather conditions on them. Without this 
information, it is difficult to manage soil to maximize crop production. In terms of physical 
limitations to root growth, water stress (too little water for root growth), hypoxia or anoxia 
(too little oxygen), and mechanical impedance (soil that is too hard for roots to penetrate 
rapidly) are the major causes of poor root system growth and development. In particular, 
there is a strong interplay between the strength and water content of soil. As soils dry, 
capillary forces make matric potential more negative, often causing strength to increase 
rapidly (Whitmore & Whalley, 2009). A review from Bengough et al. (2011) describes 
selectively both old and new literature on root elongation in drying soil and the role of 
water stress, mechanical impedance, and their likely interactions. 

3. Breeding for drought tolerance improvement  

Drought tolerance has been historically one of the major targets of genetic improvement 
of crops, and some relevant results have been obtained during the last century despite the 
low heritability, due to a high genotype x environment (G x E) interaction, of this trait. 
Consistent genetic gains (from 10 to 50 kg ha-1 yr-1) have been registered for cereals and 
legumes over the last century in all countries, including those characterized by vast 
drought-prone regions (Calderini & Slafer, 1998; Abeledo et al., 2002). Many studies 
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suggest that cultivars selected for high yield in stress free environments are also adapted 
to stress prone environments (Cattivelli et al., 2008). In different field experiments modern 
durum wheat genotypes outperformed the old ones in all test environments including 
those with moderate drought stress and showed a stronger responsiveness to improved 
fertility (De Vita et al., 2010). Moderate drought stress is defined physiologically as 
reduced cell turgor that generally results in reduced stomatal conductance (reduced water 
loss from the leaf), and lower cellular water potential, which allows the tissue to hold onto 
the water that is in the leaf more tenaciously (Levitt 1972). This suggests that some of the 
traits selected to improve potential yield can still sustain yield at least in mild to moderate 
drought conditions ensuring yield stability (Slafer et al., 2005; Tambussi et al., 2005). A 
possible explanation is that the main targets of selection (high harvest index in wheat and 
barley, stay green in maize and sorghum, resistance to pests and diseases, nitrogen use 
efficiency) are equally useful under dry and wet conditions and, often, the best 
performances for these traits were overriding the differences in drought adaptability 
(Mastrangelo et al., 2011a).  

In some cases adaptive traits were shown to contribute significantly to performance under 

drought. Retrospective studies on maize showed that most of the genetic yield improvement 

for hybrids bred in the second half of the last century could be attributed to traits related to 

tolerance to stress, like high plant population density, weed interference, low night 

temperatures during the grain-filling period, low soil moisture, and low soil N (Cattivelli et 

al., 2008; Tollenaar & Wu, 1999; Tollenaar & Lee, 2002). 

Because of the complex nature of drought tolerance, conventional breeding has obtained 

little success in this regard. Successful cases of genetic improvement for yield in drought-

prone environments have been obtained by selecting for secondary traits related to drought 

tolerance. In maize the silk-tassel interval was identified as a highly indicative secondary 

trait for drought-resistant breeding (Bolanos & Edmeades, 1996). Spikelet fertility can be 

visually estimated under field conditions and has been used as an indirect index for drought 

screening in rice (Garrity & O’Toole, 1994). Another example is based on the use of carbon 

isotope discrimination (Δ) as a surrogate for water use efficiency to select wheat lines with 

high water use efficiency in drought-prone environments (Rebetzke et al., 2002). During 

photosynthesis plants discriminate against the heavy isotope of carbon (13C) and, as a result, 

in several C3 species, Δ is positively correlated with the ratio of internal leaf CO2 

concentration to ambient CO2 concentration (Ci/Ca) and negatively associated with 

transpiration efficiency. Thus, a high Ci/Ca leads to a higher Δ and a lower transpiration 

efficiency (Farquhar & Richards, 1984). 

In the last years a great effort has been devoted to the identification of genomic regions 

involved in the control of traits related to drought stress tolerance. Once the region has been 

mapped, closely linked molecular markers are identified, which can be used in breeding 

programs based on MAS (Marked Assisted Selection). The wide range of physiological and 

biochemical mechanisms involved in dehydration response explains the complexity of plant 

response to drought, for which a high number of quantitative trait loci (QTLs) widespread 

on many chromosomes have been found (Cattivelli et al., 2008).  

As an example, Yang et al., (2007) reported several QTLs for accumulation and 
remobilization of water-soluble carbohydrates in wheat stems. Depending on cultivars and 
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environments, stem water-soluble carbohydrates accumulated before flowering, and during 
the early periods after flowering, contributed up to 70% or more of the grain weight under 
terminal drought conditions (Yang et al., 2001). Major genomic regions controlling 
productivity and related traits (Carbon isotope ratio, osmotic potential, chlorophyll content, 
flag leaf rolling index) were identified on chromosomes 2B, 4A, 5A and 7B by Peleg et al., 
(2009) in durum wheat. QTLs for productivity were associated with QTLs for drought-
adaptive traits, suggesting the involvement of several strategies in wheat adaptation to 
drought stress. Sixteen QTLs were identified in durum wheat by Maccaferri et al. (2008), 
including two major QTLs on chromosome arms 2BL and 3BS that affected grain yield and 
showed significant effects in multiple environments (rainfed and irrigated).  

Five QTLs for anther-silking interval were identified in the maize drought tolerant line 
Ac7643 and transferred to the susceptible line CML247 by marker-assisted backcross. 
Hybrid lines were obtained that performed better than controls in well watered and mild 
drought condition in terms of grain yield (Ribaut & Ragot, 2007). 

The identification of markers or genes associated with root growth and architecture 
would be particularly useful for breeding programmes to improve root traits by 
molecular marker-assisted selection. Few papers have described work on the 
identification of QTLs for root traits in wheat.  

Root system architecture (RSA), the spatial configuration of a root system in the soil, is used 
to describe the shape and structure of root systems. Its importance in plant productivity lies 
in the fact that major soil resources are heterogeneously distributed in the soil, so that the 
spatial development of roots will determine the ability of plant to secure edaphic resources 
(Lynch, 1995). The search for QTLs has been a major research avenue in investigating the 
genetic variation of RSA, a task that is complicated by the strong responses of RSA to 
environmental conditions. In several instances overlap of QTLs for root features with those 
for productivity (yield, water use o capture) has suggested the possible role of the former in 
determining the latter (Tuberosa et al., 2002a; 2002b; Steele et al., 2007). Although there are 
few examples of QTLs that individually explained up to 30% of phenotypic variation for 
root traits in rice (Price & Tomos, 1997) and in maize (Giuliani et al., 2005) and for the 
response of RSA to environmental factors, root morphology is in most cases regulated by a 
suite of small-effect loci that interact with the environment (de Dorlodot et al., 2007). This is 
one of the constrains that limit progress from QTL discovery to the release of new varieties.  

Some recent papers have reviewed in details the QTLs identified for traits related to drought 
stress tolerance (Maccaferri et al., 2009; Ashraf, 2010), furthermore, for many crop plants 
information on drought-related QTL findings have been collected in open source databases, 
such as GRAMENE (http://www.gramene.org/) or GRAINGENES (http://wheat.pw. 
usda.gov/GG2/quickquery.shtml#qtls). In particular, Courtois et al. (2009) extracted 
information from about sixty papers published between 1995 and 2007 and compiled a 
database containing QTLs for drought tolerance traits and for 29 root parameters. The data 
describe 2137 root and drought QTLs, out of which 675 for root traits detected in 12 
mapping populations.  

In rice, several QTLs for root deepness were transferred from the japonica upland cultivar 
“Azucena”, adapted to rainfed conditions, to the lowland indica variety “IR64”. MAS 
selected lines showed a greater root mass in low rainfall trials and higher grain yield (Steele 
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et al., 2007). Following these studies, a highly drought tolerant variety, Birsa Vikas Dhan 111 
was released in India, characterized by early maturity, high drought tolerance and high 
grain yield with good grain quality (Steele, 2009).  

Linked molecular markers were identified for resistance to cereal cyst nematode (CCN) root 
disease and the root tolerance to the toxic element Al and are currently used by commercial 
breeding companies. 

Combining, or pyramiding, a number of root characteristics for a target environment can be 
achieved by phenotype selection in the short term. In future, molecular markers may be 
available for these characteristics since a gene regulating hydrotropism has been identified 
in Arabidopsis (Kobayashi et al., 2007); a gene regulating specific root types, including 
seminal versus nodal roots, has been identified in maize (Taramino et al., 2007); and a 
significant QTL associated with large root system size was identified in Arabidopsis 
growing in agar under high osmotic stress (Fitzgerald et al., 2006). 

Over the past few years there have been several mapping studies that have targeted drought 
tolerance and other abiotic stress tolerance loci associated with performance in low yielding 
environments. However, despite this substantial research effort the only markers that have 
found their way into practical plant breeding programmes are those for boron and 
aluminium tolerance (Gupta et al., 2010). 

4. Molecular bases of plant response to water stress 

Molecular and biochemical response of plant to water stress is a very complex task 
depending on multiple factors (Rizhsky et al., 2002; Bartels & Sourer, 2004). Changes in 
membrane integrity and modulation of lipid synthesis are key factors in the primary sensing 
of abiotic stress (Kader & Lindberg, 2010). Secondary, osmotic stress-induced signalling 
involves changes in plasma membrane H+-ATPase and Ca2+-ATPase activities that trigger 
concerted changes of Ca2+ influx, cytoplasmic pH, and apoplastic production of ROS 
(Beffagna et al., 2005).  

Transcription factors represent the first level of regulation of mRNA metabolism, controlling 
the synthesis of pre-mRNA. These molecules are then subject to a splicing process that 
produces mature mRNA. A well studied phenomenon, with a clear role in regulation of 
gene expression in stress conditions, is alternative splicing, in which different mRNAs can 
be produced starting from the same pre-mRNA molecule (Mastrangelo et al., 2011b). The 
amount of mRNAs in the cell can also be controlled by mechanisms affecting their stability. 
Not only proteins but also small non-coding RNA molecules are involved in the regulation 
of these processes, and they have been recognized as important regulators of gene 
expression and genome integrity (Ambrosone et al., 2011). Epigenetic regulation, which 
comprises histone variants and post-translational modifications, DNA methylation and 
certain small-interfering RNA (siRNA) pathways, controls chromatin structure which can be 
modified in response to stress. Finally, availability of mRNAs for translation affects the 
synthesis of the corresponding proteins. In the last years, a new mechanism of post-
transcriptional regulation of gene expression was identified in the sequestration of mRNAs 
in the cytoplasm to generate Stress Granules (SG). SG, produced as result of stress condition, 
were represented by a subset of mRNAs aggregated with specific proteins, allowing 
physical separation of these mRNAs from the translational machinery and resulting in 
transient translational repression (Anderson & Kedersha, 2009).  
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4.1 Transcriptional factors influencing the expression of genes in response to 
environmental signals 

Plant transcription factors are involved in the response to environmental stresses as critical 

regulators of the expression of stress-related genes. More than 1,500 genes coding for 

transcription factors have been annotated in Arabidopsis, and they are classified into several 

families based on the structure of their DNA-binding domains (Ratcliffe & Riechmann, 2002 

– http://datf.cbi.pku.edu.cn/). In particular, members of the MYB, MYC, ERF, bZIP, and 

WRKY transcription factor families have been implicated in the regulation of plant stress 

responses (Hussain et al., 2011). 

Studies carried out in the model species Arabidopsis allowed to identify different stress 

signal transduction pathways leading to the activation of members of the above mentioned 

transcription factor families. These pathways can be either dependent or not by the plant 

hormone ABA (Hirayama and Shinozaki, 2010). 

Among transcription factors depending on ABA, bZIPs are a large family of transcription 

factors with 75 members annotated in the Arabidopsis genome. Regarding water stress 

response, the ABRE-binding factor (ABF)/ABA-responsive-element-binding (AREB) 

proteins respond at the transcriptional and post-transcriptional level to drought and salt 

stress (Choi et al., 2000; Uno et al., 2000), increasing drought stress toleracence (Table 1).  

MYC and MYB proteins have a role in late stages of stress response and are also activated 

following accumulation of endogenus ABA. They generally promote water stress tolerance 

by acting as positive regulators (Table 1), even if a different mechanism was described for 

the AtMYB60 and AtMYB44 genes, that are involved in stomatal movements, and function 

as transcriptional repressors (Cominelli et al., 2005; Jung et al., 2008). 

More than 100 members of the NAC gene family have been identified in both Arabidopsis 

and rice (Fang et al., 2008; Ooka et al., 2003). Members of this family are involved in drought 

and salinity stress response, as well as in diverse processes as developmental programs, and 

biotic stress responses (Olsen et al., 2005). RD26, a dehydration-induced NAC protein 

induced by drought, high salinity, ABA, and JA treatments, represents a key factor in 

mediating cross-talk between ABA signalling and JA signalling during drought and 

wounding stress responses (Fujita et al., 2004).  

An example of ABA-independent transcription factors acting in drought response are 

zinc finger homeodomain (ZFHD) proteins. Arabidopsis ZFHD1 binds the ZFHDR motif 

in the promoter of ERD1 gene, which is also regulated by NAC proteins (Hirayama & 

Shinozaki, 2010). 

Ethylene responsive factors (ERFs) represent a class of genes which function in both ABA-

dependent and independent pathways. They are a transcription factor superfamily that is 

unique to plants, with 124 members in Arabidopsis (Riechmann et al., 2000). ERF proteins 

share a conserved 58–59 amino-acid domain (the ERF domain) that binds to two similar cis-

elements: the GCC box, which is found in several PR (Pathogenesis-Related) gene promoters 

where it confers ethylene responsiveness, and the C-repeat (CRT)/dehydration-responsive 

element (DRE) motif, which is involved in the expression of dehydration- and low-

temperature-responsive genes. 
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Gene Gene family Species Gene expression Phenotype of transgenic or mutant plants Reference

SodERF3 Sugarcane overexpressed
Improved ABA, Salt and Woundig tolerance 

(Tobacco)
Trujillo et al., 2008

WXP1 Medicago overexpressed Improved Drought tolerance (Arabidopsis) Zhang et al., 2007

GmERF3 Soybean overexpressed
Improved Drought, salt and desease tolerance 

(Tobacco)
Zhang et al., 2009

RAP2.6 Arabidopsis overexpressed
Hypersensitive to ABA, salt, osmotic and cold stress 

(Arabidopsis)
Zhu et al., 2010

DREB1C Arabidopsis overexpressed Enhanced dessication tolerance (Arabidopsis) Novillo et al., 2004

AtDREB1A Wheat overexpressed Delayed wilting under drought stress (Wheat)
Pellegrineschi et al., 

2004

AtDREB1A Tobacco overexpressed Improved Drought and cold tolerance (Tobacco) Kasuga et al., 2004

AtDREB1A Rice overexpressed Improved Drought and salt tolerance (Rice) Oh et al., 2005

AtCBF4 Arabidopsis overexpressed
Improved Drought and freezing tolerance 

(Arabidopsis)
Haake et al., 2002

OsDREB1 Rice overexpressed
Improved Drought, Salt and freezing tolerance 

(Rice)
Ito et al., 2006

HvCBF4 Barley overexpressed
Increased Drought, Salt and freezing tolerance 

(Rice)
Oh et al., 2007

AREB1 Arabidopsis overexpressed Improved Dehydration survival (Arabidopsis) Fujita et al., 2005

ABF3/ABF4 Arabidopsis overexpressed Improved Drought tolerance (Arabidopsis) Kang et al., 2002

AREB1 Arabidopsis knock-out mutant Reduced Drought tolerance (Arabidopsis) Yoshida et al., 2010

ABP9 Maize overexpressed
Improved photosynthetic capacity under drought 

stress (Arabidopsis)
Zhang et al., 2008

SlAREB Tomato overexpressed
Improved Drought and Salt tolerance (Arabidopsis 

and Tomato)
Hsieh et al., 2010

OsABF1-1, 

OsABF1-2 
Rice mutant

More sensitive  to drought and salinity treatments 

(Rice)

Amir Hossain et al., 

2010

OsbZIP23 Rice overexpressed Improved Drought and Salt stress tolerance (Rice) Xiang et al., 2008

WRKY25, 

WRKY 33
Arabidopsis overexpressed

Increased sensitivity to ABA and improved salt 

tolerance (Arabidopsis)

Jiang & Deyholos, 

2009

WRKY63 Arabidopsis knock out mutant
Decreased drought tolerance and hypersensitive to 

ABA  (Arabidopsis)
Ren et al., 2010

OsWRKY45 Rice overexpressed
Improved drought tolerance and enhanced desease 

resistance (Arabidopsis)
Qiu et al., 2009

AtMYB60 Arabidopsis null mutation
Decreased wilting under water stress conditions 

(Arabidopsis)
Cominelli et al., 2005

AtMYB44 Arabidopsis overexpressed Improved drought and salt tolerance (Arabidopsis) Jung et al., 2008

AtMYB15 Arabidopsis overexpressed
Improved drought tolerance and enhanced 

sensitivity to ABA (Arabidopsis)
Ding et al., 2009

AtMYB41 Arabidopsis overexpressed
Negative regulation of  transcriptional responses to 

osmotic stress (Arabidopsis)
Lippold et al., 2009

AtRD26 Arabidopsis overexpressed Enhanced sensitivity to ABA (Arabidopsis) Fujita et al., 2004

ANAC019, 

ANAC055, 

ANAC072

Arabidopsis overexpressed Improved drought and salt tolerance (Arabidopsis) Tran et al., 2004

ONAC045 Rice overexpressed Improved drought and salt tolerance (Rice) Zheng et al., 2009

OsNAC10 Rice overexpressed Improved drought tolerance and grain yield (Rice) Jeong et al., 2010

R2R3 MYB 

NAC

DRE binding 

protein 1

bZIP

ERF

WRKY

TF involved 

in stomatal 

movements

 

Table 1. Examples of transcription factors regulating drought tolerance in plants. 

Therefore, these proteins can have a role in both biotic and abiotic stress responses, as 
demonstrated for soybean GmERF3 and the the Arabidopsis ABA-responsive RAP2.6 genes 
(Zhang et al., 2009; Zhu et al., 2010). In Arabidopsis, two distinct gene families of DRE/CRT 
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binding proteins (CBF/DREB1 and DREB2) were described as two distinct targets of cold 
and drought ABA-independent signalling transduction pathways, respectively (Shinozahi & 
Yamaguchi-Shinozaki, 2000). Nevertheless CBF4, a member of CBF/DREB1 family, was 
described as an ABA-dependent regulator of drought adaptation in Arabidopsis (Haake et 
al, 2002). CBF/DREB1 and DREB2 represent therefore a point of integration of different 
signal transduction pathways in response to abiotic stresses. The importance of CBF/DREB 
genes for tolerance to abiotic stresses has been well established in particular in cereals, with 
evidences at level of phenotypic evaluation of over-expressing plants, and co-segregation of 
CBF genes with QTLs for frost tolerance (Vàgùjfalvi et al., 2005). 

Finally, WRKY proteins contain either one or two WRKY domains, 60-amino-acid regions 
that contain the sequence WRKYGQK, and a zinc-finger-like-motif. They are involved in the 
regulation of diverse plant processes including development, response to various biotic and 
abiotic stresses, and hormone-mediated pathways (Ramamoorthy et al., 2008). A. thaliana 
WRKY25 and WRKY33 genes are responsive to osmotic stress but they also are regulated by 
oxidative stress (Miller et al., 2008). Down-stream regulated target genes of WRKY33 
include transcripts with function in ROS detoxification as peroxidases and glutathione-S-
transferases (Jiang & Deyholos, 2009).  

4.2 Stress related transcripts from alternative splicing events 

Alternative splicing is a process which generates two or more different transcripts from the 
same pre-mRNA molecule by using different splice sites. The rate of plant genes subject to 
alternative splicing is comprised between 20 and 70%, depending on the species considered 
(Mastrangelo et al., 2011b). Alternative splicing events do not randomly affect mRNA of all 
genes, rather they seem to occur preferentially to mRNAs of certain classes of genes 
commonly involved in signal transduction, or encoding enzymes, receptors and 
transcription factors (Ner-Gaon & Fluhr, 2006; Lareau et al., 2004). Four main types of 
alternative splicing have been described: exon skipping, alternative 5' and 3' splice sites and 
intron retention. The last one is the most common alternative splicing type in plants and 
fungi (>50% McGuire et al., 2008).  

Alternative splicing has been proposed as one of the regulatory mechanisms amplifying the 
number of proteins that can be produced from a single coding unit. Nevertheless, 
alternative transcripts containing in frame stop codons, often resulting from retained 
introns, can be targeted to degradation by nonsense-mediated decay. This mechanism 
contributes to the fine regulation of the amount of functional protein that will be produced 
in stressed conditions. Otherwise, truncated polypetides can be produced, which are not 
necessarily functionless forms of the full length protein. An example is a stress-related 
transcript of the MPK13 gene, encoding a protein kinase. This transcript is translated into a 
truncated protein that has no protein kinase activity, but enhances the MKK6-dependent 
activation of the MPK13 full-length protein (Lin et al., 2010). 

Many of the above described stress-related transcription factors are regulated by alternative 
splicing. In Arabidopsis, the AtMYB59 and AtMYB48 genes were found to code for 
alternative proteins differing for their MYB repeats and probably for their binding affinities 
to gene promoters (Li et al., 2006; Fig. 2). A stress-dependent alternative splicing mechanism 
was described for the OsDREB2B gene and its homologs in different species (Mastrangelo et 
al., 2011b). A transcript containing a shorter ORF (OsDREB2B1) accumulated in non stress 
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conditions, and was rapidly converted in the full length transcript (OsDREB2B2) by removal 
of an exon carrying an in frame stop codon in response to stress exposure. This mechanism 
is probably aimed to finely and rapidly regulate the amount of functional protein. 
Moreover, this mechanism can keep the transcription of OsDREB2B constitutively active 
without affecting plant growth (Matsukura et al., 2010). 

The serine/arginine proteins are a class of RNA binding proteins involved in splicing 
regulation. Twenty genes encoding serine/arginine proteins have been identified in 
Arabidopsis up to now, and most of their mRNAs undergo alternative splicing following 
developmental and environmental stimuli producing nearly 100 different transcripts (Palusa et 
al., 2007). They can promote alternative splicing of their own transcripts as well as of other 
gene products in response to a number of abiotic stresses (Wang & Brendel, 2006). A similar 
behavior has been shown for some glicyne-rich RNA-binding proteins as AtGRP7 and 
AtGRP8, which are able to auto-regulate their own splicing and cross-regulate with each other 
in a negative feed-back loop (Schoning et al., 2008). Alternative splicing regulation of genes 
producing transcripts that alter the splicing of other genes in turn might considerably enhance 
and amplify the signal-transduction cascade in response to stress stimuli. 

 

Fig. 2. ABA-dependent and independent pathways of response to drought in plants. 

Finally, alternative splicing events also have been described for proteins acting in the 
regulation of gene expression at post-translational level. E3 ubiquitin ligases represent a very 
large and complex gene family involved in regulation of protein half life by spliceosome-
mediated protein degradation. Alternative splicing events were described for two Arabidopsis 
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E3 genes (At4g39140 and At2g21500) and for the durum wheat homolog 6G2, whose mRNA 
retained the last 3’UTR-located intron following exposure to dehydration and cold stress 
(Mastrangelo et al., 2005). The same stresses induced the accumulation of an alternative 
transcript for the Arabidopsis SKP1-like 20 (ASK20) gene (Ogura et al., 2008). 

4.3 Regulatory proteins affecting mRNA availability and activity 

Transport, initiation of translation and degradation by RNA interference have been shown 
to regulate mRNA levels of genes in response to water stress. Many of these processes are 
mediated by RNA-binding proteins (RBP), a variety of heterogeneous proteins involved in 
diverse aspects of post-transcriptional regulation by direct interaction with single/double 
strand RNA molecules. The processes in which they are involved comprise mRNA 
maturation events such as splicing, capping, polyadenylation and export from the nucleus. 
At level of the cytoplasm, they can regulate mRNA localization, stability, decay and 
translation (Burd & Dreyfuss, 1994; Dreyfuss et al., 2002). RBPs are characterized by 
conserved RNA-binding motifs, such as RNA recognition, K homology, glycine-rich, 
arginine-rich, zinc finger (mainly CCCH type - C-x8-C-x5-C-x3-H), and double-stranded 
RNA-binding motifs. RRM motifs in particular are involved in RNA recognition and in 
protein–protein interactions, leading to the formation of heterogeneous ribonucleoprotein 
(RNP) complexes. More than 200 putative RBP genes have been identified in the 
Arabidopsis and rice genomes, and many of them seem to be unique to plants, suggesting 
that they might serve plant specific functions (Lorkovic, 2009; Cook et al., 2010). 

Expression and/or activity of a number of RBPs were found to be regulated in response to 
environmental variables, including water deficit, temperature, light and low-oxygen stresses 
(Park et al., 2009; Sachetto-Martins et al, 2000; Sahi et al., 2007). Several RBPs resulted also to 
be ABA-regulated, supporting the regulatory role of ABA in the control of post-
transcriptional RNA metabolism (Kuhn & Schroeder, 2003). 

The role of RBPs in response to drought stress was also demonstrated by using plant 

mutants. The supersensitive to ABA and drought 1 (sad1) mutant line was isolated in 

Arabidopsis and exhibited enhanced responses to ABA and drought (Xiong et al., 2001). The 

ABA hypersensitive 1 (abh1) mutant showed ABA hypersensitive stomatal closing and 

reduced wilting during drought treatment (Hugouvieux et al., 2001). SAD1 encodes an Sm-

like protein possibly involved in RNA transport, splicing or degradation, while ABH1 

encodes a mRNA cap binding protein which can effectively control ABA signalling 

components at the RNA level (Covarrubiales & Reyes, 2010). These two genes have been 

identified as negative regulators of ABA-dependent germination and drought tolerance, 

together with CBP20 (Cap-Binding Protein 20) and HYL1 (Hyponastic Leaves 1) which codes 

for a double stranded RNA-binding factor necessary for the biogenesis of miRNAs and 

crucial for the precise and efficient cleavage of several primary-miRNAs (Vazquez et al., 

2004; Szarzynska et al., 2009; Kuhn & Schroeder, 2003). 

Some glycine-rich proteins, containing a dispersed CCHC-type zinc finger at the C-terminus 

(Karlson et al., 2002), have been identified in plants as cold shock domain protein (CSDP) 

(Verslues et al., 2006). Arabidopsis AtRZ-1a is a cold shock domain protein and has a 

negative impact on seed germination and seedling growth of Arabidopsis under salt or 

dehydration stress conditions (Kim et al., 2007). 
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Not only the sequence information, but also the secondary and tertiary structures of RNA 
molecules contribute to their biological activity. RNA helicases are RBPs that catalyze RNA 
secondary structure rearrangements, and are potentially required in any cellular process 
involving RNA maturation (Tanner & Linder, 2001; Rocak & Linder, 2004). The majority of 
RNA helicases belong to the superfamily 2 (SF2) composed of three subfamilies, termed 
DEAD, DEAH and DExH/D (Tanner & Linder, 2001). Amino acid sequences outside a 
common core (Asp-Glu-Ala-Asp) are not conserved and are believed to provide helicase 
specificity for target RNAs or protein–protein interactions. RNA helicases are associated with a 
diverse range of biotic cellular functions and are involved in cellular response to abiotic stress. 
Recently, a temperature-regulated RNA helicase, LOS4, has been linked with developmental 
processes including flowering and vernalization in Arabidopsis (Gong et al., 2002; 2005). These 
processes also involve ABA, to which the los4 mutants are sensitive (Gong et al., 2005). 

Two DEAD-box-related helicases, DNA Helicase 47 (PDH47) and PDH45 are induced by a 
variety of abiotic stresses in pea (Chinnusamy et al., 2004; Sanan-Mishra et al., 2005; 
Vashisht et al., 2005). The expression of PDH47 in particular is regulated in a tissue specific 
manner: the gene is induced by cold and salinity stress in shoots and roots, and by heat and 
ABA treatment only in roots (Chinnusamy et al., 2004).  

Finally, evidences have been reported that helicases can be regulated by the stress-induced 
alteration of subcellular localization, and by phosphorylation, which provides the 
opportunity to directly link helicase activity with environmental sensing-signal transduction 
phosphorylation cascades (Owttrim, 2006). 

4.4 Degradation of stress related transcript by siRNAs and miRNAs 

MicroRNAs (miRNAs) and siRNAs are small noncoding RNAs that have recently emerged 
as important regulators of mRNA degradation, translational repression, and chromatin 
modification.  

miRNAs form an abundant class of tiny RNAs characterized by a high level of conservation 
across species, suggesting a common evolutionary basis. They act in regulating the 
expression of protein-coding genes in multicellular eukaryotes (Bartel, 2004). Plant miRNAs 
participate in numerous processes, including development, pattern formation, flowering 
time, hormone regulation, nutrient limitation, response to stress, and even self-regulation of 
the miRNA biogenesis pathway (Jones-Rhoades et al., 2006). Regarding their involvement in 
stress response, abiotic stresses like cold, dehydration, salt stress and nutrient starvation 
regulate the expression of different plant miRNAs (Lu & Huang, 2008). An example is the 
Arabidopsis miR393, that is up-regulated by cold, dehydration, high salinity, and abscisic 
acid (ABA) treatments (Sunkar & Zhu, 2004). In maize 21 miRNA differentally expressed 
under drought stress were identified (Chen et al., 2010).  

In order to understand the mechanisms by which they exert a role in stress protection, it is 
important to characterize their target mRNAs. At this regard, an interesting feature of 
miRNAs is the fact that their targets are often regulatory genes (Jones-Rhoades & Bartel, 
2004; Rhoades et al., 2002; Zhang et al., 2006). The level of miR159 increased in Arabidopsis 
seedlings water stressed. In arabidopsis transgenic plants the over-expression of miRNA159 
reduced the level of MYB33 and MYB101 transcripts, and a hyposensitive phenotype to 
ABA was observed (Reyes & Chua, 2007; Fig. 2). 
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Sunkar and Zhu (2004) reported other ABA induced miRNAs (miR397b and miR402) but 
also cases of miRNA down-regulated by this hormone (miR389a).  

Two members of the miR169 gene family, miR169a and miR169c, are repressed following 
drought treatments in Arabidopsis. As their target is the nuclear factor Y transcription factor 
NFYA5, the aboundance of this transcript increases and promotes stress response in mature 
plants (Li et al., 2008). Nevertheless, even if the same conserved miRNA family regulates 
homologous targets in two different plant species, the effects of this regulation can be 
different. Members of the miR169 family in rice, miR169g and miR169n/o are induced by 
salt (Zhao et al., 2009) and drought (Zhao et al., 2007) and differences in levels of induction 
can be observed in different tissues, being more prominent in roots than in shoots. 
Interestingly, miR-169g, that acts reducing the expression of NFYA, may be regulated 
directly by DREB transcriptional factors (Zhao et al., 2009). 

Ten percent of Arabidopsis genes are in convergent overlapping gene pairs, also known as 
natural cis-antisense gene pairs and overlapping transcripts in antisense orientation could 
form double-stranded RNAs that may be processed into small RNAs (Jen et al., 2005; Wang 
et al., 2005). These nat-siRNAs (natural antisense transcripts-generated siRNAs) have 
recently emerged as important players in plant stress responses. A study in Arabidopsis 
demonstrated the involvement of nat-siRNA in the accumulation of proline during response 
to stress. As an example, the Arabidopsis P5CDH gene, involved in proline catabolism, is 
down-regulated in response to salt stress following the induction of SRO5, a gene of 
unknown function. The two genes form an antisense overlapping gene pair that generates 
two siRNAs (Borsani et al., 2005). 

4.5 Epigenetic contribution to water stress response in plants 

Epigenetic regulation is emerging as an important mechanism in response to stress. Drought 
induced linker histone variant H1-S was shown to be involved in the negative regulation of 
stomatal conductance based on the phenotypic analysis of antisense transgenic H1-S tomato 
plants (Scippa et al., 2004). Several hystone deacetylases (HDACs) are induced by ABA in 
rice (Fu et al., 2007) and Arabidopsis (Sridha et al., 2006). Transgenic Arabidopsis plants 
overexpressing AtHD2C exhibited enhanced expression of ABA-responsive genes and 
greater salt and drought tolerance than the WT plants (Sridha et al., 2006).  

Besides acetylation and de-acetylation, other post-translational mechanisms can regulate the 
abundance and activity of histones. In particular, histone phosphorylation and 
ubiquitination showed a role in enhancing gene transcription (Sridhar et al., 2007; Zhang et 
al., 2007), while biotinylation and sumoylation repress gene expression (Nathan et al., 2006; 
Camporeale et al., 2007). In the desert shrub Zygophyllum dumosum methylation level of 
histone H3 was higher in presence of water than under dry growth conditions indicating 
post-translational regulation of gene expression activity (Granot et al., 2009). 

ABA-mediated pathways also are involved in epigenetic modifications, as suggested by the 
ABA-dependent regulation of barley Polycomb proteins expression, with a role in histone 
methylation control (Kapazoglou et al., 2010).  

Studies on Arabidopsis over-expressing or knock out lines for the SNF2/ BRAHMA-type 
chromatin remodeling gene AtCHR12 indicated a role of this gene in regulation of growth, 
in particular under drought and heat stresses (Mlynarova et al., 2007). In Pisum sativum ABA 
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and drought stress induced the expression of the chromatin remodelling PsSNF5 gene. 
PsSNF5 protein interacts with Arabidopsis SWI3-like proteins (SWI3A and SWI3B), which in 
turn interact with FCA, a protein involved in the regulation of flowering (Sarnowski et al., 
2005; Rios et al., 2007). This is a clear example in which stress response and plant 
development are co-ordinately regulated through chromatin remodeling. 

Direct DNA methylation can also be involved in plant stress response. Drought and salt 
stresses induced a switch in photosynthesis mode from C3 to CAM in the facultative 
halophyte Mesembryanthemum crystallinum L. This metabolic change was associated with 
stress-induced-specific CpHpG-hypermethylation of satellite DNA (Dyachenko et al., 2006). 
In natural populations of mangroves DNA was hypomethylated when grown under saline 
conditions in contrast to populations from non-saline sites (Lira- Medeiros et al., 2010). 

Although global analysis in plants such as Arabidopsis and rice suggests that the vast 
majority of transposons are inactive, methylated, and targeted by siRNAs (Nobuta et al., 
2007; Lister et al., 2008), the induction of alternative epigenetic states not only triggers the 
formation of novel epialleles but also promotes the movement of DNA transposons and 
retroelements that are very abundant in plant genomes (Reinders et al., 2009; Mirouze et al., 
2009). A lot of examples of environmentally induced transposon activities were reported 
(Slotkin & Martienssen, 2007), as the family of copia retrotrasposon, named Onsen, activated 
by heat stress in Arabidopsis (Ito et al., 2011). In natural populations, stress may play a role 
in transposon amplification. An example is the copy number of BARE-1 retrotransposons in 
barley, which varies in natural populations depending on aridity of growth environment 
(Vicient et al., 1999). These evidences indicate that plant populations living in stressed 
environments may carry inherited memories of stress adaptation and transfer this 
epigenetically to next generations. 

5. The molecular response of plants to water stress: A complex frame 
resulting from integration of multiple regulation layers 

The plant response mechanisms to water deficit strictly depend on plant developmental 
stage, stress intensity and stress duration (Bartels & Souer 2004; De Leonardis et al., 2007). A 
study on 325 rice transcription factors demonstrated that many of them have a tissue or 
developmental stage specific expression (Duan et al., 2005). In a genome wide study, Bray 
(2004) compared three independent array experiments dedicated to the Arabidopsis water 
stress response. The experiments differed for plants age, substrate of growth and stress 
applications. Only a small set of genes were commonly induced or repressed. Similar results 
were obtained in wheat, barley and rice (Ozturk et al., 2002; Lan et al., 2005; Mohammadi et 
al., 2007). In Arabidopsis the Nine-Cisepoxycarotenoid Dioxygenase 3 (NCED3), DREB2A and 
RD29B genes were expressed with different levels and timing following two different kinds 
of stress imposition (Harb et al., 2011). These differences observed following a rapid or 
gradual water stress are probably due to the need of plants to optimally react to a stress 
event as it occurs in field conditions. Therefore, many internal and external stimuli have to 
be integrated into common signalling pathways. 

Moreover, plants usually are exposed in field to different kinds of stress simultaneously, 
and the effect of the combined stresses in terms of gene expression is not simply the sum of 
the effects produced by the stresses applied separately (Rizhsky et al., 2002).  

www.intechopen.com



 
Advances in Selected Plant Physiology Aspects 

 

60

The superimposed complexity levels in the response to environmental changes, are 
therefore aimed to ensure temporally and spatially appropriate patterns of downstream 
stress-related gene expression. 

After the translation, many post-translational mechanisms can target proteins modifying 
their activity, sub-cellular localization and half-life (Downes & Vierstra, 2005). 
Phosphorylation is one of the best known mechanism that plays a key role in many 
biological processes, as phosphorylation/de-phosphorylation cascades commonly translate 
extracellular stimuli into the activation of specific responses (Boudsocq & Laurière, 2005). 

Among the polypeptides, ubiquitin and SUMO conjugations are emerging as major post-

translational regulatory processes in all eukaryotes (Stone & Callis, 2007; Miura et al., 2007). 

The covalent binding of poly-ubiquitin usually targets proteins for proteolysis. Conversely, 

monoubiquitination regulate the location and activity of proteins, affecting various cellular 

processes from transcriptional regulation to membrane transport (Hicke, 2001). Similar 

effects are produced by the covalent conjugation of the SUMO (Small Ubiquitin-like 

Modifier) peptide (Hay et al., 2005). Both ubiquitination and sumoylation are involved in 

the promotion of stress tolerance in plants, and they offer a very clear example of multiple 

layer control of key regulators of the stress response. Along this chapter DREB/CBF 

proteins have been described as transcription factors with a pivotal role in plant tolerance to 

cold and drought stress. Their expression has shown to be modulated at transcriptional 

level, but also by alternative splicing (Matsukura et al., 2010). Furthermore, the HOS1 

protein, correspondending to an E3 ubiquitin ligase, mediates the ubiquitination of the 

master regulator for the response to cold, the transcription factor Inducer of CBF Expression 

1, ICE1, and repressor of MYB15 expression. This leads to its proteasome-mediated 

degradation during exposure to cold (Dong et al., 2006). ICE1 protein, in turn, is stabilized 

by sumoylation that therefore acts in this pathway with an antagonistic role with respect to 

ubiquitination (Ishitani et al., 1998). Finally, DREB transcriptional factors can down-regulate 

the expression of NFYA through activation of miRNAs (Zhao et al., 2009). 

The great complexity of the pathway of regulation of gene expression in plant response to 

water stress makes the analysis of transcriptome in different conditions not suitable alone 

to draw a clear picture of tolerance mechanisms. Variations at level of proteins and 

ultimately of metabolites have to be investigated to achieve a more complete evaluation. 

In this light, recent advances in profiling of plant proteome and metabolome in water 

stress conditions have provided chances to integrate data from gene expression and 

protein activities studies. Outcomes indicate an important role of post-transcriptional and 

post-translational mechanisms in coordinating the plant molecular response to water 

stress (Mazzucotelli et al., 2008). 

6. The contribution of genetic and molecular knowledge to the improvement 
of drought tolerance in field 

A very complex network of gene interactions in response to water stress has been described 
in the last years, and a high number of QTLs, widespread in the genome, have been 
identified for tolerance, each of them controlling a low percentage of explained phenotypic 
variabilty. In some cases the molecular basis of resistance QTLs has been explained. Genes 
having a role in stress tolerance were shown to co-localize with tolerance QTLs in mapping 
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populations. This is the case of DREB/CBF genes, for which a large gene cluster has been 
mapped in correspondence of QTLs for frost and drought tolerance in barley and wheat 
(Vàgùjfalvi et al., 2005; Francia et al., 2007). On the other side, many efforts are in course to 
isolate the gene(s) behind tolerance QTLs, in order to have access to the transgenic 
approach, or to design perfect molecular markers to pyramid different QTLs into the same 
genotype through MAS without the risk of losing association due to recombination. The 
Arabidopsis ERECTA gene was cloned, as the sequence beyond a QTL for transpiration 
efficiency (Masle et al., 2005). 

Even if the molecular basis of QTLs is not known, some examples are available in which the 
transfer of some tolerance QTLs in MAS programs has contributed to increase grain yield in 
water stress conditions (see paragraph n. 3).  

Anyway, the investigation of molecular mechanisms which concur in regulating the water 
stress response in plant allows the identification of genes/processes with a key role in 
determining tolerance. The expression of these genes can be altered in transgenic plants in 
order to obtain a tolerant phenotype. Besides the genes reported in Table 1, in some cases 
this approach has been successful in increasing agronomic performance of plants in the 
field. An example is represented by transgenic wheat constitutively expressing the barley 
HVA1 gene, encoding a member of the group 3 late embryogenesis abundant (LEA) 
proteins. Results of nine field experiments over six cropping seasons, showed that the 
HVA1 protein confers a significant protection from water stress (Bahieldin et al., 2005). 
Aquaporins mediate most of the symplastic water transport in plants, which represents a 
limiting factor for plant growth and vigor in particular under unfavorable growth 
conditions and abiotic stress. Differential expression of genes that encode different 
aquaporin isoforms during plant development has been shown to be associated with 
various physiological processes. Such processes include stomatal closure and opening, 
organ movement, cell elongation, and cell division (Kaldenhoff et al., 2008). The SITIP2 
gene coding for an aquaporin was particularly effective in improving water stress 
resistance of tomato plants (Sade et al., 2009). Another successful gene is OsNAC10, 
introduced in field-tested rice plants under the control of the constitutive promoter GOS2 
and the root-specific promoter RCc3 (Jeong et al., 2010). 

7. Perspectives 

Two different but complementary approaches have been presented in this chapter for the 

improvement of water stress tolerance. In the first one, the phenotypic and molecular 

evaluation of suitable genetic materials leads to the identification of genomic regions 

involved in the control of tolerance. At the same time, closely linked molecular markers are 

found, which can be used in MAS programs to transfer useful alleles for tolerance. In the 

second one, the molecular study of the water stress response in plant leads to the 

identification of genes/processes with a key role in determining tolerance. 

In the last years, strong technical advances have been realized, in the frame of the “omic” 

technologies, which make the study of genomes, transcriptomes, proteomes, metabolomes 

and phenomes more rapid and precise. Methods for a more fine phenotypic evaluation of a 

high number of individuals, in both controlled and field conditions, are needed for an 

accurate genetic analysis on segregating populations or germplasm collections. 
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The development in particular of new DNA sequencing technologies rapidly is producing 
huge amounts of sequence information with a number of applications including genome 
resequencing and polymorphism detection, mutation mapping, DNA methylation and 
histone modification studies, transcriptome sequencing, gene discovery, alternative splicing 
identification, small RNA profiling and DNA-protein interactions (Lister et al., 2008; 
Delseny et al., 2010). Thanks to these advancements, new perspectives are open for the 
investigation of genetic and molecular basis of water stress tolerance. Sequencing of entire 
genomes of crop species is expected to provide a huge opportunity to clone QTLs for 
drought-related traits in the near future. Moreover, sequence analysis on a genome-wide 
scale allows the fast and low-cost development of extremely high number of molecular 
markers. The availability in particular of large SNP (Single Nucleotide Polymorphism) 
panels for crops will accelerate the QTL discovery and transfer in MAS programs already in 
course for single marker-trait associations. Furthermore, it will be possible to apply a new 
method called genomic selection (Meuwissen et al., 2001), which predicts breeding values 
using data deriving from all molecular markers covering the whole genome at the same 
time. In this way, breeders now have an opportunity to integrate classical phenotype-based 
selection with selection on the basis of genotype. In particular, they will have the possibility 
to follow genomic variations associated to many traits of interest at the same time. 
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