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1. Introduction  

Plants are sessile organisms and as such must have mechanisms to deal with both abiotic 
and biotic stresses to ensure survival. The term “abiotic stress” includes many stresses 
caused by environmental conditions such as drought, salinity, UV and extreme 
temperatures. Due to global climate change it is predicted that abiotic stresses will increase 
in the near future and have substantial impacts on crop yields (Intergovernmental Panel of 
Climate Change; http://www.ipcc.ch). Therefore, understanding abiotic stress responses 
and the connection between such responses and agronomically important traits is one of the 
most important topics in plant science. Often plants will experience more than one abiotic 
stress at a time, making it difficult to determine the effect of a single stress under field 
conditions. Therefore, much of the progress in understanding plant defence signaling and 
response has come from laboratory studies, especially those using the model plant species 
Arabidopsis thaliana, which belongs to the family Brassicaceae.  

1.1 Responses to different abiotic stresses share common components 

An understanding of abiotic stress responses depends on an understanding of the molecular 
processes underlying those responses. Plant defences against different abiotic stresses have 
both common and unique elements. Common elements include increases in reactive oxygen 
species (ROS) and cytosolic Ca2+ as well as activation of kinase casades. In addition, stresses 
can lead to increased concentrations of hormones such as salicylic acid (SA), jasmonic acid 
(JA), abscisic acid (ABA) and ethylene, all of which have been implicated in response to 
environmental conditions (reviewed in (Hirayama & Shinozaki, 2010)). 

The increase in ROS is an especially important common connection between different 
stresses. ROS are continuously produced in the plant through cellular metabolism and 
plants have many antioxidants and scavenging enzymes to maintain homeostasis. However, 
under stress conditions ROS accumulates. Although these molecules can damage cells 
(Moller et al., 2007), they are also known to have signalling functions (Foyer & Noctor, 2009). 
In fact, while excess ROS is toxic, a certain level of ROS production is necessary for a 
successful response to stress, including salt (Kaye et al., 2011). In addition, ROS 
accumulation has been shown to have a role in priming plants for enhanced stress resistance 
(reviewed in (Conrath, 2011)). However, excess ROS can lead to cell death (Kangasjarvi et 
al., 2005; Overmyer et al., 2005) and perturb development (Tognetti et al., 2011). 
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1.2 Abiotic stress causes largescale changes in gene expression  

Plant defences are characterized by large reprogramming of gene expression, much of it 

through regulation of transcription. Research over the last two decades has lead to the 

identification of many stress-inducible genes, especially since the publication of the 

Arabidopsis genome (Arabidopsis Genome Initiative, 2000), which allowed global gene 

expression experiments. Since 2000, several other plant species have had their genomes 

sequenced, allowing expansion of this type of analysis. Functional analysis has confirmed 

the importance of many of these genes in stress tolerance. More recently, genes whose 

expression is downregulated under stress conditions have received attention (Bustos et al., 

2010). It is now understood that transcriptional repression responses are an integral part of 

adaptive responses to stress. 

To mount an effective defence, ultimately a transcription factor needs to bind and activate or 

repress its target genes. Since there are both common and unique effects from different 

stresses, comparison of the transcriptional profiles of such stresses has revealed both 

common and unique gene activation and repression patterns and lead to the development of 

models of transcriptional regulation of abiotic stress responses. The transcriptional control 

of stress can be divided into several temporal phases, most likely due to varying 

dependency on different signaling molecules or protein synthesis (Yamaguchi-Shinozaki & 

Shinozaki, 2006). Changes can begin within 15-30 minutes of exposure and last for several 

days (Kilian et al., 2007). The common stress transcriptome represent a shared response and 

is likely responsible for the widely observed cross-protection where exposure to a given 

stress increases the resistance of the plant to a second. 

Many transcription factors involved in stress responses have been identified. Often the 

expression of genes encoding these transcription factors responds rapidly to abiotic stress 

treatments (Gadjev et al., 2006; Kilian et al., 2007). During domestification of crops, selection 

for stress tolerance has acted on such transcription factors (Lata et al., 2011), underlining 

their importance. These proteins have also been targets for development of abiotic stress 

tolerant transgenic plants (Hussain et al., 2011). Transcription factors that regulate stress 

responses belong to many different families. However, there are certain families that include 

a relatively large number of members that have been implicated in environmental response. 

These include the DREB1/CBF family of AP2 transcription factors (Lata & Prasad, 2011) as 

well as other AP2-type factors (Dietz et al., 2010), Class I homeodomain-leucine zipper 

proteins (Elhiti & Stasolla, 2009) and the WRKY family (Rushton et al., 2011). Interestingly, 

the families mentioned here are all plant-specific (Riechmann et al., 2000), suggesting that 

they may have evolved to help plants deal with the stress of life on land. However, 

members of transcription factor families that are found outside of plants have also been 

implicated in control of stress-inducible gene expression. 

The activity of these transcription factors is also controlled at posttranscriptional levels. Of 
particular note, they can be regulated through protein-protein interactions and/or 
posttranslational modifications. For example, AtMEKK1 can phosphorylate WRKY53 and 
regulate its activity during senescence (Miao et al., 2007). DREB2A, which when 
constitutively active confers salt and high temperature tolerance (Sakuma et al., 2006b), 
interacts with the Med25 subunit of the Mediator complex to regulate gene expression 
(Elfving et al., 2011), while heterodimers of bZIP1 and bZIP53 act together to activate 
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transcription during low energy stress (Dietrich et al., 2011). Thus, the protein complexes in 
which transcription factors are found and the modifications they have are essential to 
determine their activity. 

1.3 Epigenetic control of abiotic stress response 

As discussed above, upon stress plants reprogram their transcriptome. Although 
transcription factors are important for this reprogramming, it is thought that alteration of 
chromatin structure is also critical (Arnholdt-Schmitt, 2004). Genomic DNA is packaged 
around nucleosomes into chromatin, the confirmation of which can restrict access of 
proteins to the DNA. Therefore, transcription is heavily influenced by dynamic changes in 
chromatin structure (Kwon & Wagner, 2007). Chromatin structure is regulated by several 
mechanisms, including histone and DNA modifications, chromatin remodelling, which uses 
ATP hydrolysis to alter histone-DNA contacts, and histone variants (JM. Kim et al., 2010; 
Pfluger & Wagner, 2007). Alterations in chromatin structure are known to impact stress 
tolerance (JM. Kim et al., 2010).  

Posttranslational modifications of histones are one of the best-studied aspects of 
chromatin regulation. Over 25 sites of histone modification have been identified in 
Arabidopsis (Zhang et al., 2007) and the pattern of modification is known to alter upon 
stress (JM. Kim et al., 2008). For example, a decrease in trimethylation of histone H3 Lys27 
(H3K27me3), which is a maker of less transcriptionally active genes, is seen at cold-
responsive loci upon exposure to cold (Kwon et al., 2009). Some of the proteins 
responsible for histone modifications have been implicated in abiotic stress response as 
well. The histone deacetylase HDA6 is involved in ABA signalling and salt stress response 
and required for jasmonate-induced gene expression in addition to a role in flowering 
time control (LT. Chen et al., 2010; K. Wu et al., 2008; Yu et al., 2011). It is also necessary 
for freezing tolerance (To et al., 2011a). Mutations in HOS15, which encodes a WD-repeat 
protein, cause hypersensitivity to freezing and HOS15 increases deacetylation of histone 
H4 (Chinnusamy et al., 2008; J. Zhu et al., 2008). The histone acetylase AtGCN5 has roles 
in gene expression in response to cold and light (Benhamed et al., 2006; Stockinger et al., 
2001). Many more such connections are being discovered. 

Another important level at which gene expression is epigenetically controlled is degree of 
nucleosome coverage of a gene. Generally, nucleosome density is decreased and chromatin 
structure relaxed when transcription is activated (Lieb & Clarke, 2005). Chromatin 
remodelling factors are necessary for the rearrangement of nucleosomes on DNA and 
several of these have been implicated in stress response. For example, the SWI/SNF family 
member AtCHR12 has been shown to mediate the transient growth arrest seen under 
adverse environmental conditions (Mlynarova et al., 2007). Another member of this family, 
SPLAYED (SYD), also regulates stress pathways (Walley et al., 2008). DEAD-box helicases, 
which unwind duplex DNA or RNA, can also affect chromatin structure and several have 
been implicated in various stress responses (Vashisht & Tuteja, 2006). Interestingly, in 
Arabidopsis nucleosomal DNA is more highly methylated than flanking DNA and 
nucleosomes are enriched on exons (Chodavarapu et al., 2010). Genes whose coding regions 
are methylated tend to be longer and more functionally important and include many stress-
regulated genes (Takuno & Gaut, 2011). In plants DNA methylation status is dynamic, 
regulated by DNA methylation and demethylation reactions and influenced by histone 
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modifications (reviewed in (He et al., 2011)). High DNA methylation is associated with 
silenced transposable elements. However, this modification also functions in gene 
regulation and transcribed genes will also contain methylated bases. Although the 
involvement of DNA methylation in abiotic stress response has not been extensively 
examined, it is involved in defence against gemini viruses (Raja et al., 2008, 2010) and 
important in the vernalization response (DH. Kim et al., 2009). In addition, the histone 
deactylase HDA6, discussed above, has been shown to regulate silencing in cooperation 
with the DNA methyltransferase MET1 (To et al., 2011b), providing a link from DNA 
methylation to ABA and jasmonate signalling.  

1.4 Costs of defense responses  

Plants have developed many sophisticated defence pathways to allow them to thrive even 
in the presence of suboptimal environmental conditions. Phenotypes involved in tolerance 
or defence against environmental stress can be inducible or constitutive. The evolution of 
induced responses is thought be the result of the high cost of maintaining the response in 
the absence of stress. This is because of the reallocation of energy and resources to defence 
from growth and reproduction (Walters & Heil, 2007). Research has begun to measure the 
benefits and costs of adaptation to stressful conditions, for example during cold acclimation 
(Zhen et al., 2011) and tolerance (Jackson et al., 2004). In addition, analysis of mutant and 
transgenic plants with derepressed stress responses to both biotic and abiotic stresses often 
have developmental abnormalities and reduced seed set. For example, CONSTITUTIVE 
EXPRESSION OF PR GENES5 (CPR5) was originally identified in a mutant screen for 
constitutive expression of systemic acquired resistance; the cpr5 mutant has chlorotic lesions, 
reduced trichome development and stunted growth (Bowling et al., 1997). CPR5 encodes a 
transmembrane protein that represses leaf senescence and pathogen-defence responses in 
Arabidopsis (Kirik et al., 2001; Yoshida et al., 2002). An altered cellular redox state is present 
in cpr5 mutants, which underlies the chlorotic lesions and maybe the other developmental 
defects as well (Jing et al., 2008) and CPR5 has been hypothesized to act as a repressor of 
ROS accumulation (Jing & Dijkwel, 2008).  

The cost of stress response is reflected in a phenotype observed in plants exposed to chronic, 

sublethal abiotic stress, the so-called stress-induced morphogenetic response (SIMR; (Potters 

et al., 2007; Tognetti et al., 2011)). SIMR is characterized by reduced cell elongation, blockage 

of cell division in primary meristems and activation of secondary meristems (Potters et al., 

2009). Plants displaying SIMR often show accumulation of antioxidants and other 

compounds that act as modulators of stress responses. It is thought that these changes allow 

the redistribution of resources to stress response pathways, permitting plants to acclimate to 

their environment. Another aspect of the SIMR response is accelerated flowering, a response 

that has been associated with many abiotic stresses, including nutrient deficiency (Wada et 

al., 2010; Wada & Takeno, 2010) and salinity (Ryu et al., 2011) and is thought to guarantee 

reproduction before any potential lethality caused by stress. SIMR has been hypothesized to 

be mediated by accumulation of ROS caused by the stressful conditions and subsequent 

alterations in auxin accumulation and signaling (Potters et al., 2007; Tognetti et al., 2011). In 

Arabidopsis, SIMR has been shown to be induced under several different abiotic stress 

conditions (Potters et al., 2007; 2009), including salt stress (Zolla et al., 2009) and exposure to 

the nonprotein amino acid amino-butyric acid (CC. Wu et al., 2010). 
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Fig. 1. The SRO family of PARP-like proteins is plant specific. A. Simplified phylogeny of 
Plantae. Branch lengths do not reflect genetic distance. Presence or absence of PARP 
superfamily members and SRO subfamily members are indicated, based on ((Citarelli et al., 
2010) and searches of EuroPineDB (for Pinus pinaster; (Fernandez-Pozo et al., 2011)) and the 
potato genome (Potato Genome Sequencing Consortium, 2011)). B. Schematic representaion 
of domains found in two representative Arabidopsis SRO family members. Protein domains 
are illustrated by colored boxes and defined according to Pfam 25.0 (Finn. et al., 2010). 
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2. The SRO family: A novel group of poly(ADP-ribose) polymerase-like 
proteins found only in land plants 

The poly(ADP-ribose) polymerase (PARP) superfamily is distributed across the breadth of 
the eukaryotes (Citarelli et al., 2010) and was first identified as enzymes that catalyze the 
posttranslational modification of proteins by multiple ADP-ribose moieties (poly(ADP-
ribosyl)ation; (Chambon et al., 1963)). It is now recognized that there are many types of 
PARPs and PARP-like proteins; they are characterized by a shared PARP catalytic domain 
but differ outside of this domain. The functions of these proteins have also expanded and 
some members of this family do not act in poly(ADP-ribosyl)ation. Bona fide PARPs attach 
ADP-ribose subunits from nicotinamide adenine dinucleotide (NAD+) to target proteins 
(MY. Kim, 2005). However, other members of the PARP superfamily have been shown to 
have either mono(ADP-ribose) transferase (mART) activity (Kleine et al., 2008) or to be 
enzymatically inactive (Aguiar et al., 2005; Jaspers et al., 2010b; Kleine et al., 2008; Till et al., 
2008). Biologically, PARP superfamily members are involved in a broad range of functions, 
including DNA damage repair, cell death pathways, transcription and chromatin 
modification/remodeling (reviewed in (Hassa & Hottiger, 2008)).  

Although non-enzymatically active PARP superfamily members have not been as well 
studied as those with known poly(ADP-ribosyl)ation activity, some information is available. 
Human PARP9 (HsPARP9), which does not have enzymatic activity, is inducible by 
interferon and is able to increase the expression of inteferon-stimulated genes (Juszczynski 
et al., 2006), suggesting a role in host defense against viruses. Another enzymatically 
inactive PARP, HsPARP13, interacts with viral RNA from select viruses and recruits factors 
to degrade that RNA (G. Chen et al., 2009; Gao et al., 2002; Y. Zhu & Gao, 2008). HsPARP13 
is also able to induce type I interferon genes by associating with the RIG-I viral RNA 
receptor in a ligand dependent maner, promoting oligomerization of this protein. This 
stimulates ATPase activity of RIG-I and enhancement of NF-KB signaling (Hayakawa et al., 
2011). Even those PARPs for which poly(ADP-ribosyl)ation activity has been demonstrated 
have functions that do not depend on such activity. For example, HsPARP1 was originally 
isolated based on its catlytic activity. However, it has been shown to function in gene 
expression non-enzymatically, both as a transcription factor/coregulator and at the 
chromatin level. For example, HsPARP1 functions as a coactivator of NF-KB but enzymatic 
activity is not required for this function (Hassa et al., 2003; Oliver et al., 1999). HsPARP1 can 
bind directly to regulatory sequences, impacting transcriptional activity, as has been shown 
for the CXCL1 promoter (Nirodi et al., 2001) or bind to other proteins that mediate the DNA 
binding, as has been shown for the COX-2 promoter region (Lin et al., 2011). In addition, it 
can bind to nucleosomes and promote compaction of chromatin by bringing together 
neighboring nucleosomes in the absence of NAD+ or enzymatic activity (MY. Kim et al., 
2004; Wacker et al., 2007). Clearly, the functions of PARP proteins extends beyond 
poly(ADP-ribosyl)ation. 

2.1 The SRO family 

Compared to mammals, in which the PARP superfamily has been greatly amplified, both in 
numbers and types (Hassa & Hottiger, 2008), plants have relatively few such proteins 
(Citarelli et al., 2010). The red and green algae do not encode members of this family or 
encode only one or two representatives (Fig. 1A; (Citarelli et al., 2010)). Land plants, 
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however, have several types of PARPs and PARP-like proteins, including a novel group of 
PARP proteins, the SRO family (Fig. 1A, B; (Citarelli et al., 2010; Jaspers et al., 2010b)). 
Although first identified in Arabidopsis thaliana (Belles-Boix et al., 2000), these proteins are 
found throughout land plants and consist of two subgroups (Citarelli et al., 2010; Jaspers et 
al., 2010b). The first is found in all examined groups of land plants and consists of relatively 
long proteins with a WWE protein-protein interaction domain (Aravind, 2001) in the N-
terminus and a C-terminal extension past the PARP catalytic domain (Fig. 1B). This 
extension contains an RST domain (Jaspers et al., 2010a). The second subgroup is confined to 
the eudicot group of flowering plants. These proteins appear to be truncated relative to the 
other subgroup and likely arose from a partial gene duplication. They have lost the N-
terminal region, including the WWE domain, and retain only the catalytic domain and the 
RST domain (Fig. 1B). The SRO family is characterized by changes in their putative PARP 
catalytic domains that suggest that they may not act enzymatically. Arabidopsis thaliana 
RADICAL-INDUCED CELL DEATH1 (RCD1), the first member of the SRO family 
identified, has been shown to be inactive and not even bind NAD+ (Jaspers et al., 2010b). 
However, the catalytic domains within this group show variability and this observation may 
not be applicable to all SRO family members (Citarelli et al., 2010).  

Arabidopsis 
thaliana gene 

Locus ID 
Selected plant 

orthologsa 
Expression 

patternb 
Enzyme 
activity 

Associated 
with stress? 

AtRCD1 At1g32230 

OsQ0DLN4 
OsQ336N3 
OsQ0J949 
OsQ654Q5 
VvA7PC35 
VvA5BDE5 
PtB9MU68 
PtB9GZJ6 

Expressed in 
all organs 

No 
(Jaspers et al., 
2010b) 

Yes 

AtSRO1 At2g35510 See AtRCD1c 
Expressed in 
all organs 

ND Yes 

AtSRO2 At1g23550 

PtB9INI8 
PtB9HDP9 
PtB9HDP8 
PtB9HDP5 

Expressed in 
all organs 

ND Yes 

AtSRO3 At1g70440 See AtSRO2c ND ND Yes 

AtSRO4 At3g47720 
VvA5BFU2 
PtB9I3A2 
PtB9IES0 

ND ND ND 

AtSRO5 At5g62520 See AtSRO4c 
Expressed in 
all organs 

 
Yes 

Table 1. SRO family members found in Arabidopsis thaliana. a Orthologs as found in (Citarelli 
et al. 2010). bGenevestigator (Zimmermann et al., 2005). Those genes with no data are not 
represented on ATH1 GeneChip (Affymetrix). cRepresent paralogs in Arabidopsis thaliana. 
NA, not applicable; ND, no data; Mt, Medicago truncatula; Os, Oryza sativa; Pp, Physcomitrella 
patens; Pt, Populus trichocarpa; Sm, Selaginella moellendorffi; Vv, Vitis vinifera; Zm, Zea mays. 
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3. The SRO family and abiotic stress response 

Although the SRO family is found in all examined land plants, almost all of the work on this 
family has been carried out using Arabidopsis. In this plant there are nine genes encoding 
members of the SRO family (Table 1; (Belles-Boix et al., 2000; Ahlfors et al., 2004)). Two 
paralogous genes, RCD1 and SIMILAR TO RCDONE1 (SRO1), encode members of the 
ubiquitous SRO subfamily, which contains the long N-terminal region containing a WWE 
protein-protein interaction domain (Fig. 1B). Consistent with their paralogous natures, 
RCD1 and SRO1 are partially redundant (Jaspers et al., 2009; Teotia & Lamb, 2009). The 
other four genes, SRO2-5, encode members of the eudicot-specific subfamily encoding 
truncated proteins.  

3.1 Loss of RCD1 and/or SRO1 alters abiotic stress response 

The SRO family was originally discovered based on the ability of one member, 
Arabidopsis RCD1/CEO1, to rescue oxidative stress response defects in mutant yeast 
(Belles-Boix et al., 2000). Mutants in this gene were discovered based on their 
hypersensitivity to ozone (Overmyer et al., 2000) and resistance to methyl viologen (Fujibe 
et al., 2004). rcd1 mutants are also hypersensitive to other sources of apoplastic ROS, such 
as H2O2 (Overmyer et al., 2005; Teotia & Lamb, 2009) as well as salt (Katiyar-Agarwal et 
al., 2006; Teotia & Lamb, 2009). Conversely, rcd mutants are resistant to UV-B and the 
herbicide paraquat, which generate reactive oxygen species in the plastid (Ahlfors et al., 
2004; Fujibe et al., 2004; Teotia & Lamb, 2009). In contrast, sro1-1 plants are not resistant to 
the chloroplastic ROS induced by paraquat but are resistant to apoplastic ROS and high 
salt levels (Teotia & Lamb, 2009). Loss of either RCD1 or SRO1 confers resistance to 
osmotic stress (Teotia & Lamb, 2009). These results suggest that the relationship between 
RCD1 and SRO1 and their contribution to abiotic stress is complex and that the two genes 
may have some independent functions. In addition, loss of RCD1 or SRO1 alters responses 
to a number of different abiotic stresses, suggesting that these genes have broad functions. 
The stress responses of rcd1; sro1 double mutant plants are technically difficult to access. 
Most rcd1-3; sro1-1 plants die as embryos (Teotia & Lamb, 2009) and of those that 
germinate (approximately 40%), only 10-15% will produce more than 2-3 true leaves 
(Jaspers et al., 2009; Teotia & Lamb, 2009). However, these double mutant seedlings do 
display some photobleaching under normal light conditions, suggesting they are under 
photooxidative stress (Fig. 2A; (Teotia & Lamb, 2009)).  

Consistent with the response changes upon exposure to multiple abiotic stresses, rcd1 
single mutants have been shown to accumulate ROS (Overmyer et al., 2000) and nitric 
oxide (Ahlfors et al., 2009) under non-stress conditions. In addition, expression of a 
number of stress-regulated genes is altered in this background (Ahlfors et al., 2004; 
Jaspers et al., 2009). For example, expression of AOX1A, encoding a mitochondrial 
alternative oxidase, is increased in rcd1-1. Cold and ABA regulated genes have reduced 
basal expression when RCD1 is reduced. However, for the majority of genes whose 
expression was examined, loss of SRO1 does not change expression levels (Jaspers et al., 
2009), presumably due to the greater role RCD1 plays in stress response (Jaspers et al., 
2009; Teotia & Lamb, 2009). An exception is tAPX, encoding a plastid localized ascorbate 
peroxidase thought to be involved in defense against H2O2 (Kangasjarvi et al., 2008), 
whose expression is lower in sro1-1 plants. rcd1-3; sro1-1 double mutant plants exhibit 
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increased expression of stress response genes and accumulation of SUMOylated proteins 
(known to accumulate during stress; (Kurepa et al., 2003)) under nonstress conditions 
(Teotia et al., 2010). Taken together, these data suggest that RCD1 and SRO1 may function 
as inhibitors of some stress responses, perhaps through regulation of ROS accumulation, 
consistent with their function in responses to a broad range of abiotic stresses.  

 

Fig. 2. Loss of RCD1 or RCD1 and SRO1 leads to developmental defects. (a) rcd1-3; sro1-1 
seedling. White arrow points to potential photobleaching. (b) rcd1-3 plant grown under 
short day conditions (8 hours light/16 hours dark). Red arrow points to an aerial rosette. (c) 
Adult Arabidopsis plants. From left to right: wild type, sro1-1, rcd1-3, rcd1-3; sro1-1. 

3.2 Other SRO family members in Arabidopsis also contribute to stress responses 

In contrast to the work on RCD1 and SRO1, relatively little work has been done on SRO2-5. 

No functional data exists on SRO3 or SRO4 and they are not represented on the Affymetrix 

ATH1 genechip and, therefore, not in publically available expression databases (Table 1). 
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However, SRO3 expression is significantly reduced under light stress and induced by salt 

stress and ozone (Jaspers et al., 2010b). SRO2 has been shown to be upregulated in response 

to high light in chloroplastic ascorbate peroxidase mutants (Kangasjarvi et al., 2008). SRO5 

expression is relatively low under normal conditions but its expression has been shown to 

be induced by salt treatment (Borsani et al., 2005) and repressed by high light (Khandelwal 

et al., 2008). sro5 plants were more sensitive to H2O2-mediated oxidative stress and to salt 

stress (Borsani et al., 2005). SRO5 has also been implicated in regulation of proline 

metabolism under salt stress both at the small RNA level and by couteracting ROS 

accumulation caused by proline accumulation (Borsani et al., 2005). Inhibiting ROS 

accumulation may be a core function of the SRO family. 

3.3 Loss of RCD1 and SRO1 leads to a SIMR-like phenotype 

As discussed above, chronic exposure to abiotic stress can lead to a developmental 

syndrome termed SIMR (Potters et al., 2007; Tognetti et al., 2011). Single rcd1 mutants 

display some phenotypes that resemble those of SIMR, including reduced height (Fig. 2C; 

(Ahlfors et al., 2004; Teotia & Lamb, 2009)) and shorter primary roots accompanied by a 

greater number of lateral roots (Teotia & Lamb, 2009). In addition, loss of RCD1 leads to 

accelerated flowering under long day conditions (Teotia & Lamb, 2009). This coorlelates 

with accumulation of ROS and NO (Ahlfors et al., 2009; Overmyer et al., 2000), as well as 

changes in expression of stress-induced genes (Ahlfors et al., 2004; Jaspers et al., 2009). sro1 

plants display some subtle developmental defects, consistent with it playing a minor role 

compared to RCD1 (Teotia & Lamb, 2009).  

The rcd1-3; sro1-1 double mutants are severely defective. The majority of rcd1-3; sro1-1 

individuals die during embryogenesis (Teotia & Lamb, 2009). rcd1-3; sro1-1 plants are very 

small and pale green as seedlings (Fig. 2A); at least some of this decrease in size is caused by 

a decrease in cell elongation (Teotia & Lamb, 2009). However, double mutant plants also 

make fewer cells (Teotia & Lamb, 2011). In the roots of rcd1-3; sro1-1 plants, the meristems 

are smaller with fewer mitotic cells and cell differentiation is disrupted. The specialized cell 

walls of several cell types such as lateral root cap cells and the conducting cells of the xylem, 

are often defective (Teotia & Lamb, 2011). These phenotypes resemble extreme SIMR 

phenotypes and are accumpanied by molecular signs of chronic stress (Teotia et al., 2010). A 

resonable hypthothesis based on the available data is that RCD1 and SRO1 function to 

inhibit stress responses, particularly accumulation of ROS, and that in their absence, there is 

a derepression of these pathways, leading both to altered stress responses and 

developmental defects (Fig. 3A). 

4. Molecular functions of the SRO family 

Although the SRO family is a subgroup of the PARP superfamily, it does not appear likely 

that they act in poly(ADP-ribosyl)ation (Jaspers et al., 2010b). Therefore, the molecular 

function of these proteins remains to be elucidated. RCD1 and SRO1 accumulate in the 

nucleus in Arabidopsis (Jaspers et al., 2009), although there is one report that RCD1 may 

also be found at the plasma membrane (Katiyar-Agarwal et al., 2006). SRO5 has been 

reported in the mitochondria (Borsani et al., 2005) but also in other subcellular locations 

(Jaspers et al., 2010b). RCD1, SRO1 and SRO5 have all been shown to interact with 
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transcription factors in yeast two-hybrid assays (Belles-Boix et al., 2000; Jaspers et al., 2009, 

2010b). These interactions are mediated by the RST domain characteristic of the SRO family 

(Fig. 3B), which is also found in the transcription initiation complex component TAF4 

(Jaspers et al., 2010a). Based on localization and binding to transcription factors, members of 

the SRO family may act in gene expression regulation.  

 

Fig. 3. Model of how SRO family members regulate abiotic stress. A. SRO family members 
inhibit accumulation of reactive oxygen species, which contributes both to altered abiotic 
stress responses and stress-induced morphogenetic response phenotypes. B. SRO family 
members act as scaffolds bringing together transcription factors bound to their RST domains 
with other proteins. Members that contain WWE domains may recruit chromatin 
remodeling complexes through their WWE domains. Domains shown as in Fig. 1B. C. SRO 
family containing complexes function to regulate gene expression. 

The type of transcription factors bound by the SRO family members are diverse, 
including members of the bZIP, WRKY, bHLH, HSF and AP2/ERF families. A number of 
the identified transcription factors have been shown to be involved in abiotic stress 
responses. For example, SRO5 binds to a heat shock factor, HSFA1E (Jaspers et al., 
2010b), which is necessary to induce expression of HsfA2, encoding a key regulator of the 
HSF network under salt and high light stress (Nishizawa-Yokoi et al., 2011). RCD1, SRO1 
and SRO5 all bind to DREB2A (Jaspers et al., 2010b), an AP2/ERF transcription factor 
involved in cold acclimation (Sakuma et al., 2006a). Therefore, it is reasonable to 
hypothesize that the changes in stress-inducible gene expression seen in mutants of SRO 
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family members arise from changes in activity of the transcription factors they bind, 
although this has not been demonstrated. 

It is not yet clear how the binding of SRO family members to transcription factors affects the 
function of these proteins. Other types of PARP superfamily proteins have roles in 
transcriptional regulation and epigenetic control of gene expression; these roles are not 
always dependent on poly(ADP-ribosyl)ation activity as discussed above. HsPARP13 is not 
enzymatically active and has been shown to be part of multicomponent complexes in which 
it appears to act as a scaffold, bringing different molecules together (G. Chen et al., 2009; 
Gao et al., 2002; Hayakawa et al., 2011; Y. Zhu & Gao, 2008). Therefore, we hypothesize that 
members of the SRO family act to regulate gene expression within complexes that they 
anchor (Fig. 3C). Since SRO family members do not appear to have any DNA binding 
domains, they must be recruited to chromosomes via other proteins. These SRO-containing 
complexes may act directly to induce or repress transcription or act via epigenetic 
modification of chromatin structure to influence gene expression. The RST domain binds to 
transcription factors and could recruit these proteins (Fig. 3B, C). In full length SRO family 
members that contain WWE domains, such as RCD1, this region could be available to 
recruit addtional factors to the complex, such as chromatin remodeling factors (Fig. 3B, C). 

Although we have been discussing the role of SRO family members in abiotic stress 
response, it is likely that they may also function to control gene expression in other 
pathways. For example, RCD1 may have a role in control of phase change in Arabidopsis. In 
short days, rcd1-3 plants cannot maintain reproductive fate; rather they bolt and then revert 
to vegetative fate, making aerial rosettes (Fig. 2B; (Teotia & Lamb, 2009)). The formation of 
the aerial rossettes is accompanied by ectopic expression of the floral repressor FLOWERING 
LOCUS C (FLC) in the bolt, where it should not be expressed. The expression of FLC is 
controlled at several levels, including epigenetic marking of histones (reviewed in (Y. He, 
2009)) and by transcriptional activators (Yun et al., 2011). Therefore, the SRO family may 
help control gene expression beyond that involved in abiotic stress response. 

5. Conclusions 

The SRO family is a plant specific subfamily of PARP-like proteins that have roles in 
response to a number of abiotic stresses. It is interesting to note that the emergence of this 
family at the base of the land plants coincides with the need for protection from new stresses 
such as drought and increased light. Although the SRO proteins do not appear to have 
enzymatic activity, a possible mechanism by which they function is as part of multiprotein 
complexes that regulate gene expression. We hypothesize that the SRO family functions to 
prevent inappropriate gene expression in the absence of stress and, in their absence, ROS 
and other defence molecules accumulate at the expense of proper growth and development. 
Much work remains to test these hypotheses and clarify the contributions of individual SRO 
family members to stress responses as well as to move research of this important family into 
plants other than Arabidopsis, particularly crop plants. 
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