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A Practical Toolbox for Calibrating 
Omnidirectional Cameras 

Davide Scaramuzza and Roland Siegwart 
Swiss Federal Institute of Technology, Zurich  

Switzerland 

1. Introduction  

An omnidirectional camera is a vision system providing a 360° panoramic view of the scene. 
Such an enhanced field of view can be achieved by either using catadioptric systems, which 
opportunely combine mirrors and conventional cameras, or employing purely dioptric fish-
eye lenses. Omnidirectional cameras can be classified into two classes, central and non-
central, depending on whether they satisfy the single effective viewpoint property or not 
(Baker & Nayar, 1998). As noted in (Svoboda & T. Pajdla, 1997), it is highly desirable that 
such imaging systems have a single effective viewpoint. When this property is verified, 
there exists a single center of projection, that is, every pixel in the sensed images measures 
the irradiance of the light passing through the same viewpoint in one particular direction. 
The reason a single viewpoint is so desirable is that it allows the user to generate 
geometrically correct perspective images from the pictures captured by an omnidirectional 
camera. Moreover, it allows applying the known theory of epipolar geometry, which easily 
allows the user to perform ego-motion estimation and structure from motion from image 
correspondences only.  
As shown in (Baker & Nayar, 1998), central catadioptric systems can be built by combining 
an orthographic camera with a parabolic mirror, or a perspective camera with a hyperbolic 
or elliptical mirror. Conversely, panoramic cameras using fish-eye lenses cannot in general 
be considered central systems, but the single viewpoint property holds approximately true 
for some camera models (Micusik & Pajdla, 2003). 
In this chapter, we focus on calibration of central omnidirectional cameras, both dioptric and 
catadioptric. After outlining previous works on omnidirectional camera calibration, we 
describe our novel procedure and provide a practical Matlab Toolbox, which allows any 
inexpert user to easily calibrate his own camera. 
Accurate calibration of a vision system is necessary for any computer vision task requiring 
extracting metric information of the environment from 2D images, like in ego-motion 
estimation and structure from motion. While a number of calibration methods has been 
developed for standard perspective cameras (Zhang, 2000), little work on omnidirectional 
cameras has been done. The first part of this chapter will present a short overview about 
previous methods for calibration of omnidirectional cameras. In particular, their limitations 
will be pointed out. The second part of this chapter will present our calibration technique 
whose performance is evaluated through calibration experiments. Then, we will present our 
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Matlab toolbox (that is freely available on-line), which implements the proposed calibration 
procedure. We will also describe features and use of our toolbox. 

2. Related Work 

Previous works on omnidirectional camera calibration can be classified into two different 
categories. The first one includes methods which exploit prior knowledge about the scene, 
such as the presence of calibration patterns (Cauchois et al., 2000; Bakstein & Pajdla, 2002) or 
plumb lines (Geyer & Daniilidis, 2002). The second group covers techniques that do not use 
this knowledge. The latter includes calibration methods from pure rotation or planar motion 
of the camera (Gluckman & Nayar, 1998), and self-calibration procedures, which are 
performed from point correspondences and epipolar constraint through minimizing an 
objective function (Kang, 2000; Micusik & Pajdla, 2003). 
All mentioned techniques allow obtaining accurate calibration results, but primarily focus 
on particular sensor types (e.g. hyperbolic and parabolic mirrors or fish-eye lenses). 
Moreover, some of them require special setting of the scene and expensive equipment 
(Bakstein & Pajdla, 2002; Gluckman & Nayar, 1998). For instance, in (Bakstein & Pajdla, 
2002), a fish-eye lens with a 183° field of view is used as an omnidirectional sensor. Then, 
the calibration is performed by using a half-cylindrical calibration pattern perpendicular to 
the camera sensor, which rotates on a turntable.  
In (Geyer & Daniilidis, 2002; Kang, 2000), the authors treat the case of a parabolic mirror. In 
(Geyer & Daniilidis, 2002), it is shown that vanishing points lie on a conic section which 
encodes the entire calibration information. Thus, the projections of two sets of parallel lines 
suffice for the intrinsic camera calibration. However, this property does not apply to non-
parabolic mirrors. Therefore, the proposed technique cannot be easily generalized to other 
kinds of sensors.  
In contrast with the techniques mentioned so far, the methods described in (Kang, 2000; 
Micusik & Pajdla, 2003; Micusik et al., 2004) fall in the self-calibration category. These 
methods require no calibration pattern, nor a priori knowledge about the scene. The only 
assumption is the capability to automatically find point correspondences in a set of 
panoramic images of the same scene. Then, calibration is directly performed by epipolar 
geometry by minimizing an objective function. In (Kang, 2000), this is done by employing a 
parabolic mirror, while in (Micusik & Pajdla, 2003; Micusik et al., 2004) a fish-eye lens with a 
view angle greater than 180° is used. However, besides focusing on particular sensor types, 
the mentioned self-calibration techniques may suffer in case of tracking difficulties and of a 
small number of features points (Bougnoux, 1998).  
The calibration methods described so far focus on particular sensor types, such as parabolic 
and hyperbolic mirrors or fish-eye lenses. In contrast with these methods, in the last years, 
novel calibration techniques have been developed, which apply to any central 
omnidirectional camera. For instance, in (Micusik & Pajdla, 2004), the authors extend the 
geometric distortion model and the self-calibration procedure described in (Micusik & 
Pajdla, 2003), including mirrors, fish-eye lenses, and non-central cameras. In (Ying & Hu, 
2004; Barreto & Araujo, 2005), the authors describe a method for central catadioptric 
cameras using geometric invariants. They show that any central catadioptric system can be 
fully calibrated from an image of three or more lines. 
The work described in this chapter also handles with calibration of any central 
omnidirectional camera but aims at providing a technique that is very easy to apply also for 
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the inexpert user. Indeed, our technique requires the use of a chessboard-like pattern that is 
shown by the user at a few different positions and orientations. Then, the user is only asked 
to click on the corner points of the images of the pattern. 
The strong point of our technique resides in the use of a new camera model that adapts 
according to the appearance of the pattern in the omnidirectional images. The peculiarity of 
this model is that it can also handle the cases where the single effective viewpoint property 
is not perfectly satisfied. Indeed, although several omnidirectional cameras exist directly 
manufactured to have this property, for a catadioptric system this requires to accurately 
align the camera and the mirror axes. In addition, the focus point of the mirror has to 
coincide with the optical center of the camera. Since it is very difficult to avoid camera-
mirror misalignments, an incorrectly aligned catadioptric sensor can lead to a quasi single 
viewpoint system (Swaminathan & Grossberg, 2001). 
The method described in this chapter was first introduced in (Scaramuzza et al., 2006). In 
that work, we proposed a generalized parametric model of the sensor, which is suitable to 
different kinds of omnidirectional vision systems, both catadioptric and dioptric. In that 
model, we assume that the imaging function, which manages the projection of a 3D real 
point onto a pixel of the image plane, can be described by a Taylor series expansion whose 
coefficients are the parameters to be calibrated. 
In this chapter, we will first summarize the generalized camera model (section 3) and the 
calibration method introduced in our previous work (section 4). Then, in section 5, we will 
introduce our Matlab Toolbox (named OcamCalib Toolbox). There, we will outline the 
features of the toolbox, with particular regard to the automatic detection of the center of the 
omnidirectional camera. Indeed, in previous works, the detection of the center is performed 
by exploiting the visibility of the circular external boundary of the mirror. In those works, 
the mirror boundary is first enhanced by using an edge detector, and then, a circle is fitted 
to the edge points to identify the location of the center. In our approach, we no longer need 
the visibility of the mirror boundary. The algorithm described in this chapter is based on an 
iterative procedure that uses only the points selected by the user.  
In section 6, the performance of our toolbox will be evaluated through calibration 
experiments.

3. Omnidirectional Camera Model 

In this section, we describe our omnidirectional camera model. In the general central camera 

model, we identify two distinct reference systems: the camera image plane )','( vu  and the 

sensor plane )'',''( vu . The camera image plane coincides with the camera CCD, where the 

points are expressed in pixel coordinates. The sensor plane is a hypothetical plane 
orthogonal to the mirror axis, with the origin located at the plane-axis intersection. 
In figure 1, the two reference planes are shown for the case of a catadioptric system. In the 
dioptric case, the sign of u’’ would be reversed because of the absence of a reflective surface. 
All coordinates will be expressed in the coordinate system placed in O, with the z-axis 
aligned with the sensor axis (see Figure 1.a). 

Let X  be a scene point. Then, assume T]'',''[ vu='u'  be the projection of X  onto the sensor 

plane, and T]','[ vu=u'  its image in the camera plane (Figure 1.b and 1.c). As observed in 

(Micusik & Pajdla, 2003), the two systems are related by an affine transformation, which 
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incorporates the digitizing process and small axes misalignments; thus tA += u''u' ,

where 22A xℜ∈ and 12t xℜ∈ .

At this point, we can introduce the imaging function g, which captures the relationship 

between a point 'u' , in the sensor plane, and the vector p emanating from the viewpoint O

to a scene point X (see figure 1.a). By doing so, the relation between a pixel point u’ and a 
scene point X is: 

( ) ( ) 0,  PtA >=+⋅=⋅=⋅ λλλλ Xu'g'u'gp ,  (1) 

where 4ℜ∈X is expressed in homogeneous coordinates and 3x4P ℜ∈ is the perspective 

projection matrix. By calibration of the omnidirectional camera we mean the estimation of 

the matrices A and t and the non linear function g, so that all vectors ( )tA +u'g  satisfy the 

projection equation (1). We assume for g the following expression 

( ) ( )( )T
, u'',v''fu'',v''u'',v'' =g   (2) 

Furthermore, we assume that function f depends on u’’ and v’’ only through 22 '''''' vu +=ρ .

This hypothesis corresponds to assume that function g is rotationally symmetric with 
respect to the sensor axis. 

(a) (b) (c) 

Figure 1. (a) Coordinate system in the catadioptric case. (b) Sensor plane, in metric 
coordinates. (c) Camera image plane, expressed in pixel coordinates. (b) and (c) are related 
by an affine transformation 

Function f  can have various forms depending on the mirror or the lens construction. These 

functions can be found in (Kumler & Bauer, 2000), (Micusik et al., 2004), and (Svoboda & 
Pajdla, 2002). Unlike using a specific model for the sensor in use, we choose to apply a 

generalized parametric model of f , which is suitable to different kinds of sensors. The 

reason for doing so, is that we want this model to compensate for any misalignment 
between the focus point of the mirror (or the fisheye lens) and the camera optical center. 
Furthermore, we desire our generalized function to approximately hold with those sensors 
where the single viewpoint property is not exactly verified (e.g. generic fisheye cameras). 

We propose the following polynomial form for f

( ) N

Naaaau'',v''f ,,2,,

2

,,

10 ... ρρρ ++++=   (3) 

where the coefficients ...N2,1,0,, =iai  and the polynomial degree N are the calibration 

parameters that we want to determine. This polynomial description of f  can be more 

simplified by considering that all previous definitions of f always satisfy the following: 
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0

0

=
=ρ

ρd

df
  (4) 

This property holds for hyperbolic and parabolic mirrors or fisheye cameras (see (Kumler & 
Bauer, 2000), (Micusik et al., 2004), and (Svoboda & Pajdla, 2002)). 

This simplification allows us to assume 01 =a , and thus (3) can be rewritten as: 

( ) N

Naaau'',v''f ,,2,,

20 ... ρρ +++=   (5) 

As a consequence, we reduced the number of parameters to be estimated. 
To resume, equation (1) can be rewritten as 

( )
( )

( )
0,P

'',''

tA
tA

''

''

''

>⋅=
+

⋅=+⋅=⋅ λλλλ X
u'

u'g
vuf

w

v

u

  (6) 

4. Camera Calibration 

4.1 Solving for intrinsic and extrinsic parameters 

According to what we told so far, to calibrate an omnidirectional camera, we have to 

estimate the parameters A, t, ,...,,
20
aa and Na .

In our approach, we decided to separate the estimation of these parameters into two stages. 
In one, we estimate the affine parameters A and t. In the other one, we estimate the 

coefficients ,...,,
20
aa  and Na .

The parameters A and t describe the affine transformation that relates the sensor plane to the 
camera plane (figures 1.b and 1.c). A is the stretch matrix and t is the translation vector 

ccOI (figure 1.c).  To estimate A and t we introduce a method, which, unlike other previous 

works, does not require the visibility of the circular external boundary of the mirror 
(sketched by the ellipse in figure 1.c). This method is based on an iterative procedure, which 
starts by setting A to the identity matrix Eye and t=0. This assumption means that the 
camera plane and the sensor plane initially coincide. The correct elements of A will be 
estimated afterwards by non linear refinement, while t will be estimated by an iterative 
search algorithm. This approach will be detailed in section 4.3. 

According to this, from now on we assume A=Eye and t=0, which means u''u' = . Thus, by 

substituting this relation in (6) and using (5), we have the following projection equation 

( )
( )

0,P

'...'

'

'

'

'

'

''

''

''

2

20

>⋅=

+++

⋅=⋅=⋅=⋅ λ

ρρ

λ

ρ

λλλ Xu'g

N

Naaa

v

u

f

v

u

w

v

u

  (7) 

where now 'u and 'v  are the pixel coordinates of an image point with respect to the image 

center, and 'ρ is the Euclidean distance. Also, observe that now only N parameters 

( Naaa ,...,, 20 ) need to be estimated. From now on, we will refer to these parameters as 

intrinsic parameters. 
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During the calibration procedure, a planar pattern of known geometry is shown at different 
unknown positions, which are related to the sensor coordinate system by a rotation 

matrix 33xR ℜ∈ and a translation 13xT ℜ∈ . R and T will be referred to as extrinsic parameters. 

Let iI be an observed image of the calibration pattern, ],,[ ijijijij ZYX=M the 3D coordinates of 

its points in the pattern coordinate system, and T],[ ijijij vu=m the correspondent pixel 

coordinates in the image plane. Since we assumed the pattern to be planar, without loss of 

generality we have 0=ijZ . Then, equation (7) becomes: 

[ ] [ ]⋅=⋅=⋅=

+++

⋅=⋅

1
1

0
P

'...'

232

i

2

20

ij

ij

ij

ij

N

N

ij

ij

ijij Y

X

T
Y

X

T

aaa

v

u

iii

1

iiii

1ij rrrrrXp

ρρ

λλ  (8) 

where 21 r,r and 3r are the column vectors of R.

Therefore, in order to solve for camera calibration, the extrinsic parameters have also to be 
determined for each pose of the calibration pattern. 

Observing equation (8), we can eliminate the dependence from the depth scale ijλ by

multiplying both sides of the equation vectorially by
ij
p . This implies that each point jp

contributes three homogeneous non linear equations 

0)()()(
2222133231

=++⋅−++⋅ tYrXrftYrXrv jjjjjj ρ (9.1)

0)()()(
3323111211

=++⋅−++⋅ tYrXrutYrXrf jjjjjjρ (9.2)

0)()(
1121122221

=++⋅−++⋅ tYrXrvtYrXru jjjjjj (9.3)

where the sub-index i has been removed to lighten the notation, and 21 , tt and 3t are the 

elements of T.

Observe that in (9), jj YX , and jZ are known, and so are jj vu , . Also, observe that only (9.3) 

is linear in the unknown 2122211211 ,,,,, ttrrrr .

From now on, the details for the resolution of equation (9) can be found in (Scaramuzza et 
al., 2006). The principle of the technique consists first in solving for the parameters 

,,,,, 122211211 trrrr and 2t  by linearly solving equation (9.3). Next, we use the solution of (9.3) as 

input to (9.1) and (9.2), and solve for the remaining parameters Naaa ,...,, 20 and 3t . In both 

steps, the solution is achieved by using linear least-square minimization. 
Up to now, we didn’t specify which polynomial degree N one should use. To compute the 
best N, we actually start from N=2. Then, we increase N by unitary steps and we compute 
the average value of the reprojection error of all calibration points. The procedure stops 
when a minimum error is found. Typical empirical values for N are usually N=3 or N=4.

4.2 Detection of the Image Center 

As stated in sections 1 and 2, a peculiarity of our calibration toolbox is that it requires the 
minimum user interaction. One of the tools that accomplish this task is its capability of 
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identifying the center of the omnidirectional image cO (figure 1.c) even when the external 

boundary of the sensor is not visible in the image. 
At the beginning of section 4.1, we made the following assumptions for A and t, namely 
A=Eye and t=0. Then, we derived the equations for solving for the intrinsic and extrinsic 
parameters that are valid only under those assumptions. 

X

Y

X

Y

O

(a) (b) 

Figure 2. When the position of the center is correct, the 3D points of the checker board do 
correctly project (green rounds) onto the calibration points (red crosses) (a). Conversely, 
when the position of the center is wrong, the points do not project onto the real calibration 
points (b) 

In figure 2.a, the reader can see what happens when the position of the center is correct. The 
red crosses are the input calibration points selected by the user. The green rounds are the 3D 
points reprojected onto the images according to the intrinsic and extrinsic parameters 
estimated by the calibration. As the reader can see, the 3D points perfectly overlay the input 
points, meaning that the calibration worked properly. Figure 2.b shows the result when the 
input position of the center is wrong, that is, the reprojection error is large. Motivated by 
this observation, we performed many trials of our calibration procedure for different center 
locations, and, for each trial, we computed the Sum of Squared Reprojection Errors (SSRE). 
As a result, we verified that the SSRE always has a global minimum at the correct center 
location. 

This result leads us to an exhaustive search of the center cO , which stops when the 

difference between two potential center locations is smaller than a certain  (we used =0.5 
pixels). The algorithm is the following: 
1. At each step of this iterative search, a fixed number of candidate center locations is 

uniformly selected from a given image region (see figure 3). 
2. For each of these points, calibration is performed by using that point as a potential 

center location and SSRE is computed.  
3. The point providing the minimum SSRE is taken as a potential center.  
4. The search proceeds by selecting other candidate locations in the region around that 

point, and steps 1, 2 and 3 are repeated until the stop-condition is satisfied. 
Observe that the computational cost of this iterative search is so low that it takes less than 3 
seconds to stop. 
At this point, the reader might be wondering how we do estimate the elements of matrix A.
In fact, at the beginning we assumed A=Eye. The iterative algorithm mentioned above 
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exhaustively searches the location of the center (namely cO ) by leaving A unchanged. The 

reason for doing so is that the eccentricity of the external boundary of an omnidirectional 
image is usually close to zero, which means A~Eye. Therefore, we chose to estimate A in a 
second stage by using a non linear minimization method, which is described in section 4.3.  

Figure 3. An omnidirectional image used for calibration with a chessboard used as a 
calibration pattern. The red points identify the candidate center locations taken during the 
first step of the algorithm. At each step, the candidate points occupy a smaller and smaller 
region around the final convergence point 

4.3 Non Linear Refinement 

The linear solution given in section 4.1 is obtained through minimizing an algebraic 
distance, which is not physically meaningful. To this end, we chose to refine the calibration 
parameters through maximum likelihood inference. 
Let us assume that we are given K images of a model plane, each one containing L corner
points. Next, let us assume that the image points are corrupted by independent and 
identically distributed noise. Then, the maximum likelihood estimate can be obtained by 
minimizing the following functional: 

( )
= =

−=
K

i

L

j

N20cij ,,...,a,aaO,ARmmE
1 1

2
^

,,, jii MT   (10) 

where ( )
jii

MT ,,...,a,aaO,ARm N20c ,,,
^

is the reprojection of the point 
j

M of the plane i

according to equation (1). iR and iT are the rotation and translation matrices of each plane 

pose. iR is parameterized by a vector of 3 parameters related to iR by the Rodrigues formula. 

Observe that now we incorporate into the functional both the stretch matrix A and the 

center of the omnidirectional image cO .

By minimizing the functional defined in (10), we actually find the calibration parameters 
which minimize the reprojection error. In order to speed up the convergence, we decided to 
split the non linear minimization into two steps. The first one refines the extrinsic 
parameters, ignoring the intrinsic ones. Then, the second step uses the extrinsic parameters 
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just estimated, and refines the intrinsic ones. By performing many simulations, we found 
that this splitting does not affect the final result with respect to a global minimization. 
To minimize (10), we used the Levenberg-Marquadt algorithm (Levenberg, 1944; 

Marquardt, 1963), as implemented in the Matlab function lsqnonlin. The algorithm 
requires an initial guess for the parameters. These initial parameters are the ones obtained 
using the linear technique described in section 4.1. As a first guess for A, we used the 

identity matrix, while for cO  we used the position estimated through the iterative 

procedure explained in subsection 4.2. 

5. Introduction to the OcamCalib Toolbox for Matlab 

The reason we implemented the OcamCalib Toolbox for Matlab is to allow any user to easily 
and quickly calibrate his own omnidirectional camera. The OcamCalib toolbox can be freely 
downloaded from the Internet (e.g. google for “ocamcalib”). The outstanding features of the 
toolbox are the following: 

• Capability of calibrating different kinds of central omnidirectional cameras without any 
knowledge about the parameters of the camera or about the shape of the mirror. 

• Automatic detection of the center. 

• Visual feedback about the quality of the calibration result by reprojecting the 3D points 
onto the input images. 

• Computer assisted selection of the input points. Indeed, the selection of the corner 
points on the calibration pattern is assisted by a corner detector. 

Figure 4. The graphical user interface of the OcamCalib Toolbox 

Figure 5. Some pictures with the checker board used as a calibration grid. In our 
experiments, we used at least 5 or more images with the grid shown all around the camera 

The user interface of the toolbox is depicted in figure 4. After having collected a few pictures 
of a chessboard shown all around the omnidirectional camera (see figure 5), the images can 
be loaded for calibration (i.e. use “Read names”). In the second step, the user can start 
selecting the corner points of the pattern using the “Extracting grid corners” tool. By this 
tool, the user is asked to click on all the corner points by following the left-right order. To 
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achieve high accuracy in the selection of the input points, the clicking is assisted by a Harris 
base corner detector (Harris & Stephens, 1988). 
In the third step, the calibration can be done by means of two tools. The “Calibration” tool 
will ask the user to specify the position of the center in case he knows, if not, the user can 
directly use the “Find center” tool, which automatically applies the iterative search 
algorithm described in 4.2. In both cases, the calibration is performed by using the linear 
estimation technique mentioned in 4.1. The optimal calibration parameters in the maximum 
likelihood sense can be estimated by the “Calibration Refinement” tool, which implements 
the non linear minimization described in 4.3. After the previous steps, the user can choose 
among several tools: 

• “Show Extrinsic” visualizes the reconstructed 3D poses of the grid in the camera 
reference frame (figure 6). 

• “Analyze error” visualizes the reprojection error of each calibration point along the x-y-
axes.

• “Reproject on images” reprojects all the 3D points onto the images according to the 
calibrated parameters. 

• “Recompute corners” attempts to automatically recompute the position of every corner 
point hand selected by the user. This is done by using the reprojected 3D points as 
initial guess locations for the corners. 

Figure 6. A picture of our simulator showing several calibration patterns and the virtual 
omnidirectional camera at the axis origin 

After the calibration, all the parameter can be accessed through the structure 
“ocam_model”. The calibrated camera model can then be used for other applications by 
means of the following two functions: 

• m = world2cam(M, ocam_model), which reprojects a 3D point (M) onto the image and 
returns its pixel coordinates (m).

• M = cam2world(m, ocam_model), which, for every image point m, returns the 3D 
coordinates of the correspondent vector (M) emanating from the single effective 
viewpoint. This function is the inverse of the previous one. 
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6. Results 

We evaluated the performance of our toolbox through calibration experiments both on 
synthetic and real images. In particular, we used synthetic images to study the robustness of 
our calibration technique in case of inaccuracy in detecting the calibration points. To this 
end, we generated several synthetic poses of a calibration pattern. Then, Gaussian noise 
with zero mean and standard deviation  was added to the projected image points. We 
varied the noise level from =0.1 to =3.0 pixels, and, for each noise level, we performed 100 
independent calibration trials and computed the mean reprojection error. Figure 7 shows the 
plot of the reprojection error as a function of . Observe that we separated the results 
obtained by using the linear minimization alone from the results of the non linear 
refinement. As the reader can see, in both cases the average error increases linearly with the 
noise level. Furthermore, the reprojection error of the non linear estimation keeps always 
smaller than the error computed by the linear method. Finally, notice that when =1.0,
which is larger than the normal noise in practical situations, the average reprojection error 
of the non linear method is lower than 0.4 pixels. 

0 0.5 1 1.5 2 2.5 3
0

0.5

1

1.5

2

Figure 7. The reprojection error versus . The dashed line represents the results obtained by 
using the linear minimization alone. The solid line shows the results after the non linear 
refinement. Both units are considered in pixels 

An indirect method to evaluate the quality of the calibration of a real camera consists in 
reconstructing the 3D structure of an object from its images and checking then the quality of 
the reconstruction. This problem is known by the computer vision community as structure 
from motion. The object we used in this experiment is a trihedron made up of three 
orthogonal chessboard-like patterns of known geometry (see figure 8.a). Our 
omnidirectional camera is KAIDAN 360° One VR with a hyperbolic mirror. 
After having calibrated the camera, we took two images of the trihedron from two different 
unknown positions (see figure 8.b). Next, several point matches were hand selected from 
both views of the object and the Eight Point algorithm was applied (Longuet-Higgins, 1981). 
In order to obtain good reconstruction results, more than eight points (we used 135 points) 
were used. The method mentioned so far gives a first good 3D reconstruction of the points. 
A better estimation of the 3D structure can be obtained by densely using all the pixels of the 
images. To accomplish this task, we used the first estimation along with normalized cross 
correlation to automatically match all the points of the image pair. Finally, all matches were 
used to compute the structure. The results of the reconstruction are shown in figure 8.c. 
As the reconstruction with one single camera can be done up to a scale factor, we recovered 
the scale factor by comparing the average size of a reconstructed checker with the real size 
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on the trihedron. In the end, we computed the angles between the three planes fitting the 
reconstructed points and we found the following values: 94.6°, 86.8° and 85.3°. Moreover, 
the average distances of these points from the fitted planes were respectively 0.05 cm, 0.75 
cm and 0.07 cm. Finally, being the size of each checker 6.0 cm x 6.0 cm, we also calculated 
the dimension of every reconstructed checker and we found an average error of 0.3 cm. 
These results comply with the expected orthogonality of the surfaces and the size of the 
checkers in the ground truth. 

Figure 8. (a) The object to be reconstructed. (b) Two omnidirectional pictures of the object 
taken from two unknown positions. (c) Dense 3D reconstruction of the object. The 
reconstruction is very good, meaning that the model of the camera was well estimated 

7. Conclusion 

In this chapter, we presented a method for calibrating any central omnidirectional camera 
both dioptric or catadioptric. The method relies on a generalized parametric function that 
describes the relation between a given pixel point and the correspondent 3D vector 
emanating from the single effective view point of the camera. We describe this function by 
means of a polynomial expansion whose coefficients are the parameters to be calibrated. 
Furthermore, we presented a toolbox for Matlab (named OcamCalib) that implements the 
mentioned calibration procedure. The toolbox is available on-line. We described the tools 
and the main features of our toolbox, one of which being the capability to automatically 
identify the center of the omnidirectional image. The toolbox relies on the use of a 
chessboard-like calibration pattern that is shown by the user at a few different positions and 
orientations. Then, the user is only asked to click on the corner points of the patterns. The 
performance of the toolbox was finally evaluated through experiments both on synthetic 
and real images. Because of its ease of use, the toolbox turns out to be very practical, and 
allows any inexpert user to calibrate his own omnidirectional camera.  
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