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‘To grasp the full meaning of the obvious is a better basis for the  
understanding than the confused knowledge of the obscure.’  

(Engels) 

1. Introduction 

Schizophrenia is a common deleterious psychosis that begins typically in late adolescence or 
early adulthood (Gottesman, 1991; Jablensky, 1995). Although it has a strong genetic 
component in its etiology, no susceptibility genes conferring a large proportion of heritability 
have been identified (Allen et al., 2008; Need et al, 2009). Results of association studies 
including genome-wide scans have been inconsistent, and schizophrenia-associated genes 
including copy number variations differ across populations or even across individuals of a 
same ethnicity (Allen et al., 2008; Xu et al., 2008; Need et al, 2009). Thus, situation of molecular 
genetics of schizophrenia has become rather perplexing just contrary to our expectation. 

In this chapter, we describe the consistent major epidemiological findings of schizophrenia, and 
show how these evident macroscopic aspects shed light to the confused microscopic aspects of 
schizophrenia genetics today, proposing a new hypothesis for this puzzling disorder. 

2. Devil’s triangle of human genetics – Epidemiological facts of 
schizophrenia 

We describe here three epidemiological facts of schizophrenia – high prevalence, high 
heritability and low reproductive fitness. These properties form a Devil’s triangle; any 
combination of the two tends to exclude the third, and in this triangle most diseases vanish 
except for schizophrenia, suggesting that schizophrenia has a unique etiological basis 
among the many human diseases. 

2.1 Schizophrenia as a common disease 

Substantial evidence of epidemiology shows that schizophrenia crosses all cultures and 
tribes in different continents at a relatively high prevalence (approximately 0.7%; 95% 
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Confidence Interval 0.3% - 2.7%) (Saha et al., 2005); the prevalence of schizophrenia, at the 
macro-level, varies within narrow limits (Jablensky, 1995), and appears to be stable across 
generations in several countries (Harrison et al., 1991; Osby et al., 2001). This 
epidemiological fact suggests that schizophrenia has an ancient origin. 

2.2 Schizophrenia as a heritable disease 

It has long been known that schizophrenia runs in families (McGue & Gottesman, 1991). 
Adoption studies demonstrate an increased risk of schizophrenia in biological relatives  
of adoptees with schizophrenia, suggesting that genetic components play an important 
role in the etiology of schizophrenia (Kendler & Dichl, 1993). Now it has been established 
by twin studies that heritability of schizophrenia is ~0.85 (Cannon et al., 1998; Cardno  
et al., 1999). 

Although the mode of transmission of schizophrenia is still unknown, several reports 
suggest a higher maternal transmission of schizophrenia (Shimizu et al., 1987; Goldstein et 
al., 1990; Valero et al., 1998; Li et al., 2007). 

2.3 Schizophrenia as a low fitness disease 

It has been well documented that the fertility of patients with schizophrenia, particularly 
of males, is remarkably reduced compared to healthy individuals (Böök, 1953; Larson & 
Nyman, 1973; Ødegård, 1980; Nanko & Moridaira, 1993; Fãnanás & Bertranpetit, 1995; 
Nimgaonkar, 1998; McGrath et al., 1999; Haukka et al., 2003; Svensson et al., 2007).  
The latest meta-analysis (Bundy et al., 2011) shows that fertility ratio (patients/controls)  
is ~0.39 and that the reduction of fertility is more pronounced in males (male/female ratio 
is ~0.54). 

Because schizophrenia is an early onset disease (late adolescence ~ early adulthood), 
psychotic symptoms of the disease such as autistic way of life and abnormal behaviors may 
make mating unsuccessful. This tendency may be more pronounced in males because the 
age at onset is significantly lower in males than in females (Jablensky, 1995; Kulkarni & 
Fink, 2000). Thus, unsuccessful mating, coupled with an increased mortality (McGrath et al., 
2008), may remarkably reduce the fertility of patients with schizophrenia. 

2.4 Schizophrenia and the Devil’s triangle of human genetics 

The three epidemiological characteristics of schizophrenia - high prevalence, high 
heritability and low fitness - form a Devil’s triangle; any combination of the two tends to 
exclude the third, and in this triangle most diseases vanish except for schizophrenia (Fig. 1). 
Diseases with high prevalence and high heritability such as type 2 diabetes and adult 
cancers are late-onset diseases and exhibit almost normal reproductive fitness. Diseases with 
high heritability and low reproductive fitness such as most harmful Mendelian diseases in 
childhood are rare. Diseases with low reproductive fitness and high prevalence such as poor 
nutrition, severe injuries and infections in childhood or early adulthood are mainly due to 
the environmental factors. 

This may lead us to strongly suspect that schizophrenia has a unique etiological basis 
among the many human diseases. 
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Fig. 1. Devil’s triangle of human genetics (Doi et al., 2009) 

3. Persistence problem and mutation-selection balance in schizophrenia 

The three epidemiological characteristics of schizophrenia mentioned above give a paradox. 
How has a highly heritable disease associated with a remarkable biological disadvantage 
never been extinct in the long human history? And how can it persist at a relatively high 
prevalence? This ‘persistence problem of schizophrenia’ (or ‘schizophrenia paradox’) has 
puzzled scientists for long years (Huxley et al., 1964; Crow, 1995; Brüne, 2004; Keller & 
Miller, 2006). 

In this section, we discuss that the only plausible mechanism for the persistence is mutation-
selection balance with or without heterozygote advantage. Based on the consistent 
epidemiological findings on the fertility of patients with schizophrenia and their family 
members, we show that heterozygote advantage works in the mitochondrial genome model 
but not in the nuclear genome model. 

3.1 Mutation-selection balance is the only plausible mechanism for the persistence 

From an evolutionary viewpoint, four explanations are possible for the persistence: (i) 
ancestral neutrality, (ii) negative frequency-dependent selection, (iii) heterozygote 
advantage (balancing selection or pleiotropy), and (iv) mutation-selection balance. 

‘Ancestral neutrality’ assumes that reproductive fitness of affected individuals and/or their 
relatives was higher in ancient environments and that selection coefficients of pathogenic 
alleles were close to zero. Because the effective population size in ancient times might be 
much smaller than now, pathogenic but neutral or almost neutral alleles could be fixed by 
genetic drift. While this hypothesis explains that schizophrenia has not been extinct in the 
long human history, ancestral neutrality itself provides no explanation for the apparently 
stable prevalence of the disease across generations today; although ‘ancestral neutrality’ 
might be plausible, it needs another mechanism to account for the persistence in modern 
environments, where the effective population size has been expanded and the influence of 
negative selection pressure may be much stronger than ever before. 

www.intechopen.com



 
Epidemiology Insights 

 

116 

‘Negative frequency-dependent selection’ explains the persistence only when the fitness of 
the affected individuals increases as the prevalence in the general population decreases, 
which seems not to be the case with schizophrenia. 

Thus, the remaining possibility for persistence mechanism is mutation-selection balance 
with or without heterozygote advantage. 

3.2 Heterozygote advantage works in the mitochondrial genome model but not in the 
nuclear genome model for schizophrenia 

‘Heterozygote advantage’ assumes that the susceptibility alleles increase the fitness of the 
unaffected gene carriers, thereby sustaining the gene frequencies. This line of explanations 
may include: (i) physiological advantage (resistance to shock, infections, and poor nutrition 
etc.), (ii) a higher sexual activity and/or attractiveness, and (iii) creative intelligence or a 
higher trait creativity including ‘everyday creativity’. 

This hypothesis needs two lines of confirmation: (a) that unaffected gene carriers have such 
advantages, and (b) that such advantages really contribute to sufficiently increase their 
reproductive fitness. 

It seems to gain the confirmation (a). For example, Erlenmeyer-Kimling (1968) reported an 
increased survival rate of female children of parents with schizophrenia, proposing a 
possible physiological advantage associated with schizophrenia. Kinney et al. (2001), in a 
well-designed and methodologically sophisticated study, showed that an advantage of 
everyday creativity was linked to a subtle clinical picture (schizotypal signs) in a non-
psychotic sample of schizophrenia offspring. 

However, it lacks the confirmation (b) in the nuclear genome model. This hypothesis, 
although theoretically plausible and fascinating, has not been supported by most 
epidemiological studies, which show a decreased reproductive fitness of unaffected siblings 
of patients with schizophrenia. Although recent large-sampled epidemiological studies 
(Bassett et al., 1996; McGrath et al., 1999; Haukka et al., 2003; Svensson et al., 2007) have 
consistently shown that the reproductive fitness of unaffected female siblings of patients with 
schizophrenia is slightly but significantly increased (1.02-1.08), it is not large enough to 
compensate for the gene loss due to the decreased reproductive fitness of patients (0.2-0.3 in 
males and 0.4-0.5 in females) and their unaffected male siblings (0.9-1.0) in the nuclear 
genome model. On the other hand, the latest meta-analysis (Bundy et al., 2011) shows no 
significant difference between the fertility of parents of patients with schizophrenia and 
healthy controls, although there is a trend towards parents having more offspring. 
Therefore, heterozygote advantage seems not to work in the nuclear genome model. 

On the other hand, it works in the mitochondrial genome model because mitochondrial 
DNA (mtDNA) is transmitted to the next generation only through females. Indeed, we can 
see that this slightly elevated reproductive fitness of the unaffected female siblings, coupled 
with the less pronounced decreased reproductive fitness of female patients, is sufficient to 
compensate for the gene loss; when we calculate  , the cross-generational reduction of the 
frequency of females with a putative pathogenic mtDNA in the general population, using 
the data in the largest-sampled cohort study to date (Haukka et al., 2003), we have 

35.06 10   (Note). This figure implies that the gene loss can be balanced by de novo 
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mutation in the mtDNA which occurs at a rate of 4 28.8 10 ~ 1.3 10    per locus per 
generation ( 34.3 10 on average) (Sigurđardóttir et al., 2000). 

4. Persistence criterion for nuclear susceptibility genes for schizophrenia 

As is shown in the previous section, putative pathogenic genes, if located in the mtDNA, are 
sustained by mutation-selection balance with heterozygote advantage. On the other hand, if 
located in the ncDNA, they should be sustained by mutation-selection balance without 
heterozygote advantage. In this section, we introduce our previous work (Doi et al., 2009), in 
which we carefully re-examined the necessary conditions for putative nuclear susceptibility 
genes for schizophrenia and deduced a criterion (persistence criterion, or ‘P-criterion’) that 
every nuclear susceptibility gene should fulfill for persistence of the disease, and present its 
applications to association studies for schizophrenia. 

4.1 Three basic assumptions 

At first we describe our three basic assumptions. 

4.1.1 An ideal human population 

We assume here a random-mating human population with a sufficiently large effective 
population size at equilibrium, where negative selection pressures on the susceptibility 
alleles for schizophrenia are predominant and the effect of genetic drift is negligibly small. 
The prevalence p of schizophrenia in this ideal human population is assumed to be stable 
across generations by mutation-selection balance. Therefore, the gene frequency in the 
general population (mG) is given in terms of the gene frequencies in the affected population 
(mA) and in the unaffected population (mU): 

 
(1 )G A Um pm p m   , or 

(1 )A Gm m p d   .  A Ud m m  ) (1) 

4.1.2 Mutation-selection balance in each risk locus 

We assume here that the total of the population frequencies of the pathogenic alleles at each 
risk locus is preserved by mutation-selection balance. Therefore, Gm ,the cross-generational 
reduction of the frequency of a pathogenic allele should not be more than the rate of 
mutations that produce pathogenic variants at the locus. On the other hand, since mutations 
at the locus include mutations of two directions that produce pathogenic or non-pathogenic 
variants, the mutation rate at the locus (  ) should be greater than the rate of mutations that 
produce pathogenic variants at the locus. 

Thus we have: 

 Gm   . (2) 

4.1.3 Multifactorial threshold model 

We assume the multifactorial threshold model, in which quantitative traits such as liability 
to the disease are determined by multiple genetic and non-genetic factors including a 
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stochastic and/or an epigenetic effect. Under this assumption, the relative fitness as a 
quantitative trait in the affected population is determined by multiple factors and 
approximately follows a gamma distribution with a mean (1 )s . (s is the selection coefficient 
of schizophrenia; the mean relative fitness in the normal population is 1.)  

1

relative fitness

0
0

probability density

1-s1-sM

affected population

affected subpopulation

with a non-protective

allele M

 
Fig. 2. Distribution curve of the reproductive fitness in the affected population 

Distribution curve of the reproductive fitness in the affected subpopulation with a 
schizophrenia-associated allele M never shifts to the right unless M has a strong protective 
effect (i.e. an effect of elevating carrier’s reproductive fitness by reducing severity of and 
liability to the disease). Therefore, we can assume that Ms , the selection coefficient in the 
affected subpopulation with a schizophrenia-associated allele M, is not smaller than s 
( 1Ms s  ) for a susceptibility allele (Fig. 2). The inequality Ms s  implies that M is a 
resistance gene that reduces severity and risk of the disease. 

No special assumptions else are required on the allelic structure in each locus, penetrance of 
each susceptibility gene, and possible interactions among the loci. 

4.2 Deduction of the P-criterion 

Now we proceed to deduce the P-criterion. From the assumptions, 
G

m' , the population 
frequency of the schizophrenia-associated allele M in the next generation, is given by: 

(1 ) (1 ) 1
'

(1 ) (1 ) 1 1
A A U G M A

G
M M

p m s p m m s pm
m

p s p s p

       
 

     
.  

Therefore the reduction of the population frequency of the schizophrenia-associated allele M 
per generation is: 

 
( )

' (1 )
1 1

M A G M
G G G

M M

s p m m s
m m m p p d

s p s p


      

 
.  (3) 
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From (2) and (3) we have: 

 
(1 )

1
M

M

s
p p d

s p
   

 . 
(4)

 

Since 
1

M

M

s

s p
 is monotonically increasing for Ms ( 0 1Ms  ) and 1Ms s   holds for the 

susceptibility allele M, we have: 

 (1 )
1

s
p p d

sp
   


, or 

(1 )
(1 )

sp
d

p sp





.  (5) 

On the other hand, the principle of association studies demands: d0 . 

Thus we have the criterion for a susceptibility gene:  

 d0 ,  where ┥ is defined as (1 )
(1 )

sp

p sp








. (6) 

From the observation (5), we can see that d  implies 
M
ss   for any schizophrenia-

associated variant M which is sustained by mutation-selection balance. 

4.3 Parameter estimate for schizophrenia 

Mutation rates on autosomes and the X chromosome almost always fall within the range 
between 610  and 410  per locus per generation (usually < 510 ; one generation = 20 years) 
(Nachman & Crowell, 2000) and can be approximated by a linear function of the parental 
age at least under 30 years for maternal age and under 40 years for paternal age (Risch et al., 
1987). Large-sampled cohort studies in Israel, Sweden and Denmark show that the mean age 
of parents in the general population is ~ 28 years for mothers and ~31 years for fathers; the 
mean age of both parents is < 29.6 years (Malaspina et al., 2001; El-Saadi et al., 2004).  
Therefore we assume here:  

6 4 429.6
10 10 1.48 10

20
       . 

According to the epidemiological data by Haukka et al. (2003), the estimated values for p 
and s are 21.29 10p    and 16.54 10s   . Therefore, we have 31.76 10   for the average 
mutation rate ( 51.48 10 ), 21.76 10   for the highest mutation rate ( 41.48 10 ), and 

41.76 10    for a relatively low mutation rate ( 61.48 10 ). 

4.4 Implications for association studies of schizophrenia 

We present here some applications of the P-criterion to association studies of schizophrenia. 
The results suggest that common disease/common variant hypothesis is unlikely to fit 
schizophrenia and that an enormous sample size is required to detect a nuclear 
susceptibility gene for schizophrenia. 
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4.4.1 Calculation of an upper bound of the effect size of a putative susceptibility gene 
of a given frequency 

Using the P-criterion, we can calculate an upper bound of the effect size of a putative 
susceptibility gene of a given frequency. 

Effects size of a susceptibility gene M is expressed by odds ratio defined as 

(1 )
(1 )

A U

A U

m m
OR

m m




 , 

which is monotonically increasing for 
A
m  and monotonically decreasing for Um . Since the 

criterion demands U A Um m m    , we have 

 
(1 ) ( )(1 )

(1 ) (1 )
U U U U

U U U U

m m m m
OR

m m m m




  
 

  
, or 1 1

(1 )U U

OR
m m




  
 

 (7) 

for 0 1Um    . 

And since the criterion demands A Um m  , we have 

 
(1 )

1 1
(1 )( ) (1 )( )

A A

A A A A

m m
OR

m m m m

 
 

 
   

   
 (8) 

for 1 1Um   . 

Thus, we have an upper bound of the effect size for a given frequency. 

From the above we can easily see that the common disease/ common variant hypothesis, 
which proposes that common alleles at a handful of loci interact to cause a common disease, 
is unlikely to fit schizophrenia. No common alleles with population frequency between 0.05 
and 0.95 can have large effects for schizophrenia: the odds ratio of every common risk allele 
is less than 1.04 for the average mutation rate, less than 1.58 for the highest mutation rate, 
and less than 1.004 for a relatively low mutation rate (Table 1). 

4.4.2 Calculation of range of the frequency of a putative susceptibility gene of a  
given effect size 

By solving the inequality (7) or (8), we can estimate the range of gene frequency for a given 
effect size. Thus, we can see that susceptibility genes of the average mutation rate and a 
moderate effect that meet the criterion are limited to ‘very rare variants’ or ‘very common 
variants’. For example, suppose 51.48 10   and OR=5.0, then we have: 21.76 10    and 

4
(1 )U Um m





  .  

Solving this inequality, we get either 0 0.00044Um   (that is, 

0 0.00176 0.0022A Um m    ) or 0.9977Um  . 
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U
m  61048.1   51048.1   41048.1   

0.01 < 1.02 < 1.18 < 2.81 

0.02 < 1.009 < 1.09 < 1.92 

0.05 < 1.004 < 1.04 < 1.38 

0.1 < 1.002 < 1.02 < 1.20 

0.3 < 1.0009 < 1.009 < 1.09 

0.5 < 1.0008 < 1.008 < 1.08 

0.7 < 1.0009 < 1.009 < 1.09 

0.9 < 1.002 < 1.02 < 1.24 

0.95 < 1.004 < 1.04 < 1.58 

0.98 < 1.009 < 1.10 < 8.49 

Table 1. Upper bounds of odds ratio for given allele frequencies in the unaffected 
population 

4.4.3 Calculation of the required sample size and the power of an association study 

Using the P-criterion we can calculate a lower bound of sample size required in an 
association study of a given power as well as an upper bound of the power of an association 
study of a given sample size. 

Concerning the required sample size 2N (N case-control pairs) and the power 1   of an 
association study, we have the well-established formulae (Ohashi & Tokunaga, 2002): 

2
* 2 (1 )1

2

z x x z
N

d

   
 
 
 

,  

and 

2 * 2 (1 )
1

Nd z x x


  
   

 
.  

Here,  , *z  , and z  denote the cumulative distribution function of the standard normal 
curve, the two sided ┙ point (┙: a significant level) and the upper ┚ point of the standard 
normal curve, and x (population frequency of the allele) and 2 are defined as follows. 

1
( )

2 A Ux m m      2 21
(1 ) (1 ) 2 (1 )

2A A U Um m m m x x d       
 

For the average mutation rate 51.48 10   , we have 31.76 10   . Suppose 
0.0005 0.9995x  , then we have 32 (1 ) 0.9995 10x x    . From the P-criterion, we have: 

2 2 61 1
1.6 10 2 (1 ) 0.002

2 2
d x x       . 

Therefore, we have the following approximation with an error smaller than 0.2 %: 
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2 21
2 (1 ) 2 (1 )

2
x x d x x      , or 2 (1 )x x   . 

Thus, we have:  

2 2 2* 2 (1 ) * *1
(1 ) (1 )

2

z x x z z z z z
N x x x x

d d

     


       
              

  

2 * 2 (1 )
1 * *

(1 ) (1 )

Nd z x x N N
d z z

x x x x


  


      
                      

. 

Let us calculate the required sample size in a genome-wide association study 
( 72.5 10   , 1 0.95  ). Since we have 0.00000025 0.05* 6.79z z  ,  

2 2
6

3

* 6.79
(1 ) (1 ) 3.72 10

1.76 10

z z
N x x x x

 

 

             
  

for 5.0x . Therefore, more than 3.7 million case-control pairs are required in a genome-
wide association study with a power 0.95 to detect a susceptibility variant of the average 
mutation rate and a population frequency between 0.0005 and 0.9995. 

Similarly we can see that more than 37,000 case-control pairs are required in a genome-wide 
association study with a power 0.95 to detect a susceptibility variant of the highest mutation 
rate ( 41.48 10   ) and a population frequency between 0.005 and 0.995. 

Finally, let us consider the case with a relatively low mutation rate 61.48 10   , which 
corresponds to 41.76 10   . In this case, more than 370 million case-control pairs are 
required in a genome-wide association study with a power 0.95 to detect a susceptibility 
variant of a population frequency between 0.000005 and 0.999995. Therefore it would take 
more than several hundred years to gather the required number of samples even if all of the 
affected individuals in the world were to be recruited to the study. 

5. Mitochondrial DNA (mtDNA) hypothesis of schizophrenia 

In this final section, we discuss on the nature of those schizophrenia-associated genes that 
do not meet the P-criterion, suggesting that these genes should be resistance genes that 
reduce the morbid risk and severity of the disease. We show that the results of association 
studies to date is compatible with the mitochondrial genome model but not with the nuclear 
genome model and propose a new hypothesis which assumes that the risk loci are in the 
mtDNA. We present eight major predictions of this hypothesis, and discuss that these 
predictions seem to accord with the other epidemiological findings and the results of the 
genetic and the pathophysiological studies to date. 

5.1 Nature of schizophrenia-associated genes that do not meet the P-criterion 

Now, let us consider the nature of those schizophrenia-associated genes that do not meet the 
persistence criterion. The inequality d   implies Ms s , where sM and s denote the selection 
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coefficient in the affected subpopulation with an allele M and in the affected population 
respectively. Therefore, such genes, if sustained by mutation-selection balance, cannot be 
susceptibility genes but resistance genes that reduce severity and risk of the disease (see 4.2). 
If they were not resistance genes, their frequencies in the affected population must have 
been reduced to the same level in the unaffected population. 

5.2 The results of association studies to date accord with the mitochondrial genome 
model but not with the nuclear genome model 

Since a resistance gene in the nuclear genome model cannot be associated with the disease 
unless it is linked with a susceptibility gene, resistance genes in the nuclear model should be 
located in the vicinity of susceptibility genes, which disagrees with the results of association 
studies to date.  

For example, on the chromosome 1, all of the schizophrenia-associated genes that could 
meet the criterion (RGS4, PLXNA2, DISC1) are located on 1q, while four resistance genes 
(MHTFR, GRIK3, PDE4B, GSTM1) are on 1p (Table 2). Fifteen resistance genes are located 
on 2q, 5q, 7q, 10q, 11p, 12p, 12q, 13p, 13q, 16p, 17p, and 19q, where no schizophrenia-
associated variants that could meet the criterion are located (data: not shown). Therefore, the 
results of association studies to date argue against the nuclear genome model. 

A possible interpretation which accords with the nuclear genome model might be that many 
nuclear susceptibility genes of less than the highest mutation rates have not been detected 
by association studies to date due to lack of power. In this case, however, an enormous 
sample size (more than 3.7~370 million case-control pairs) would be required to identify 
them as was mentioned above. In other words, such an enormous sample size is required to 
prove the nuclear genome model. 

On the other hand, every resistance gene on any chromosome can be associated with 
schizophrenia in the mitochondrial genome model; since mtDNA is transmitted only via 
females and there is no link between the nuclear genome and the mitochondrial genome, 
every nuclear genome which interacts with a pathogenic mitochondrial genome to alter 
severity and risk of the disease is subject to natural selections in the predisposed maternal 
lineage that succeeds to a same pathogenic mitochondrial genome. Therefore, every 
resistance gene for schizophrenia in the mitochondrial genome model is to be subject to a 
positive selection in the predisposed maternal lineage, thereby associating with 
schizophrenia. 

Thus, the mitochondrial genome model is compatible with the results of the association 
studies to date. 

It should be noted that in the mitochondrial genome model every facilitating gene (a gene 
that increases the severity and morbid risk in the predisposed population) on any 
chromosome may diminish in the predisposed matrilineal pedigrees by negative selection, 
thereby negatively associating with the disease. 

Schizophrenia-associated variants listed in the top 45 in the SZGene Database (the version of 
10th December, 2010) were selected. Based on the genotype distributions in meta-analyses, 
allele frequencies and the case-control differences were calculated. 4 variants at the 3 loci 
(RGS4, PLXNA2, DISC1) could meet the criterion under the assumption that the mutation 
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rates at those loci are near the upper limit in the autosomes. All of them are located on 1q, 
while 4 resistance genes (MHTFR, GRIK3, PDE4B, GSTM1) are on 1p. * schizophrenia-
associated alleles; variants that could meet the criterion are shown in bold characters 
 

Genes and 
SNPs 

Location 
Allele 

(minor/major) 
mA mU OR d 

MHTFR 1p36.22      
rs1801133  T*/C 0.3532 0.3211 1.15 0.032 
GRIK3 1p34.3      

rs6691840  G*/T 0.2600 0.2226 1.25 0.037 
PDE4B 1p31.3      

rs910694  C/T* 0.5780 0.5477 1.30 0.030 
GSTM1 1p13.3      

GSTM1*0  
ins-allele/del-

allele* 
0.7546 0.7140 1.35 0.041 

RGS4 1q23.3      
rs2661319  A/G* 0.4920 0.4744 1.08 0.0176 

IL10 1q32.1      
rs1800896  G*/A 0.3056 0.2657 1.42 0.040 
PLXNA2 1q32.2 A/G     
rs841865  A/G* 0.8434 0.8001 1.32 0.043 

rs1327175  G/C* 0.92840 0.91243 1.32 0.016 

DISC1 1q42.3      
rs3737597  A*/G 0.03069 0.01735 1.80 0.013 

rs999710  A*/G 0.3989 0.3819 1.07 0.0170 

Table 2. Schizophrenia-associated genes on the chromosome 1 that could meet the criterion 

5.3 The mtDNA hypothesis for schizophrenia and its predictions 

Thus we propose here a new hypothesis which insists that the risk loci for schizophrenia are 
in the mtDNA.  

Mitochondria are involved in a variety of major cellular events such as oxidative 
phosphorylation, free radical production and Ca2+ buffering, and play an active role in 
apoptosis. They possess two classes of antioxidant defense system (non-enzymatic and 
enzymatic), and structurally and functionally intact mitochondria serve as a net sink rather 
than a net source of reactive oxygen species (ROS) (Andreyev et al., 2005). ROS-defenses are 
severely undermined in structurally compromised mitochondria (Andreyev et al., 2005). 
Thus, mitochondrial dysfunction, presumably through imbalance of ROS production and 
removal (Andreyev et al., 2005), raises ROS emission (Esposito et al., 1999; Senoo-Matsuda 
et al., 2001) and causes intracellular oxidative stress. 

Because abnormal mtDNA may cause mitochondrial dysfunction, the hypothesis predicts: 
(1) enhanced oxidative stress and disturbed energy metabolism in predisposed individuals, 
which may cause various pathogenic alterations such as genomic instability, aberrations in 
neurodevelopment, and the brain dysfunction. Furthermore, because mtDNA can be 
transmitted only through females and there is no link between the nuclear genome and the 
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mitochondrial genome, the mtDNA hypothesis predicts: (2) a higher maternal transmission 
of schizophrenia, and (3) positive associations between resistance genes and schizophrenia 
as well as negative associations between facilitating genes and schizophrenia (see 5.2). These 
predictions seem to be consistent with other major epidemiological findings and the results 
of the genetic and the pathophysiological studies to date. 

5.3.1 Mitochondrial dysfunction and enhanced oxidative stress in affected individuals 

The hypothesis predicts that patients with schizophrenia show mitochondrial dysfunction 
and enhanced oxidative stress. 

Indeed, in the past decade, mitochondrial dysfunction and oxidative stress in schizophrenia 
has been suggested by several independent lines of evidence (for review, see Marchbanks et 
al., 1995; Ben-Shaffer, 2002; Wood et al., 2009); those include mitochondrial hypoplasia, 
disturbed oxidative phosphorylation, and altered mitochondrial-related gene expression in 
several cell lines. 

The pioneering works in this field may be noteworthy (Utena & Niwa, 1992). As early as 
1950, Hayashi, in a longitudinal study on glucose metabolites in blood sampled from the 
superior bulb of the internal jugular vein of schizophrenics, observed a decreased 
carbonic dioxide production in the brain and a higher level of lactate and glutathione, the 
brain’s dominant free radical scavenger, in patients in an acute exacerbation of the illness. 
Utena and Ezoe (1951) reported a decreased glucose consumption in vitro in cortical brain 
tissues sampled from patients with schizophrenia who underwent prefrontal leukotomy. 
Takahashi (1953) confirmed this finding and emphasized the necessity of further 
investigations on oxidative phosphorylation in the brain tissue of schizophrenics. In line 
with those findings was the report by Stabenau et al. (1969), who observed, in a 
biochemical study of discordant monozygotic twin pairs, that lactate production and the 
lactate-pyruvate ratio were higher in the affected twins than the unaffected cotwins. More 
recently, Prabakaran et al. (2004), in a large-scale functional genomics study, suggested a 
state of intermittent or chronic hypoxic stress and mitochondrial dysfunction in the brain 
of patients with schizophrenia. 

5.3.2 The mode of transmission 

The hypothesis predicts a higher maternal transmission of schizophrenia. Although there 
has been no convincing evidence for maternal transmission of schizophrenia, several reports 
suggest a higher maternal transmission of schizophrenia (Shimizu et al., 1987; Goldstein et 
al., 1990; Valero et al., 1998; Li et al., 2007). 

Some researchers have proposed the hypothesis that schizophrenia is associated with de 

novo mutations arising in paternal germ cells (Malaspina et al., 2001; Zammit et al., 2003; 
Byrne et al., 2003; El-Saadi et al., 2004; Sipos et al., 2004). It is based on the observation 
(‘paternal age effect’) that the risk of schizophrenia in the offspring seems to increase as the 
paternal age advances from 20 years to over 50 years. 

However, the difference in the mean ages of fathers between affected and unaffected 
individuals are not very large (< 1.7 years) (Malaspina et al., 2001; El-Saadi et al., 2004). 
Furthermore, the risk of schizophrenia was also increased in the offspring of younger men 
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(< 21 years) (Malaspina et al., 2001; El-Saadi et al., 2004; Sipos et al., 2004) as well as in the 
offspring of younger women (< 20 years) (El-Saadi et al., 2004). Therefore, major roles of 
paternally derived mutations in schizophrenia seem to remain unsubstantiated. 

Indeed, no available data can exclude the possibility that the ‘paternal age effect’ has a 
‘maternal origin’; while women in many countries today may be usually supposed to bear 
children after the age of 20 years and not to marry much older men or too young men unless 
the men have special socio-economic benefits, a certain proportion of predisposed women 
might behave differently. 

It should be noted that in the famous twin study by Gottesman and Bertelsen (1989) which 
included almost equal number of male and female monozygotic twins, most schizophrenic 
twins whose offspring are affected are females (12 out of 14), implying that the transmission 
was mainly via females ( 14 14 14

14 12 14 13 14 140.5 0.5 0.5 0.007p C C C       ). While this 
gender effect might be due to non-genetic factors such as stronger psychological interactions 
between mother and child, we must also consider the possibility that it is due to the closer 
genetic relationship between mother and child, i.e. the mtDNA. 

5.3.3 Sex difference and a protective effect of estrogen in schizophrenia 

The hypothesis predicts that endogenous antioxidants exhibit a protective effect against 
schizophrenia, and may give a plausible explanation for sex difference of the disease. 

A consistent and specific finding for schizophrenia is that the age at onset is significantly 
lower in males than in females (Jablensky, 1995; Kulkarni & Fink, 2000); schizophrenia starts 
earlier on average in males and reaches its peak between 15 and 25 years of age, whereas in 
females it occurs almost between 20 and 30 years of age and shows a less steep curve after 
that age. It also appears that women are vulnerable to relapses or first episode of 
schizophrenia in the perimenoposal period (the second peak of onset for females) (Kulkarni 
& Fink, 2000), when estrogen production diminishes. A close association between 
premenstrual or menstruation phase and exacerbation of the illness in females has been well 
documented (Kulkarni & Fink, 2000). In addition, less negative symptoms, less brain 
morphological changes, and better response to neuroleptic medication are relatively 
consistent finding in female patients with schizophrenia (Jablensky, 1995; Goldstein & 
Lewine, 2000). 

These observations lead to the concept that estrogen protects predisposed females (Kulkarni 
& Fink, 2000), which seems to accord with the hypothesis; estrogen has been shown to have 
antioxidant activity due to its intrinsic antioxidant structure that lies in the phenolic moiety 
of the steroidal compound (Behl, 2002), to increase antioxidant enzyme activities (Strehlow 
et al., 2003; Pajović et al., 2003), and to have neuroprotective effect against oxidative stress 
(Behl, 2002; Brann et al., 2007). Furthermore, mitochondrion has estrogen binding sites 
(Monje & Boland, 2001; Chen et al., 2004) and estrogen increases mitochondrial efficiency 
and reduces intracellular oxidative stress (Stirone et al, 2005). 

5.3.4 Low comorbidity between schizophrenia and rheumatoid arthritis 

The hypothesis predicts that diseases predisposed by facilitating genes, if present, would be 
negatively associated with schizophrenia. Rheumatoid arthritis could be one of such 
candidates. 
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A role of oxidative stress in the pathogenesis of rheumatoid arthritis has been suggested by 
several lines of evidence (for review, see Hitchon et al, 2004). In addition, it has been shown 
that chronic oxidative stress in the synovial T lymphocytes is not secondary to exposure to 
environmental free radicals but originates from intracellularly produced reactive oxygen 
species (Remans et al, 2005). Therefore, a presumptive susceptibility gene for rheumatoid 
arthritis, which may cause intracellular oxidative stress in several cell lines, could be a 
facilitating gene for schizophrenia in this model and is likely to be subject to a negative 
selection in the predisposed matrilineal pedigrees. 

Indeed, robust evidence shows a negative association between schizophrenia and 
rheumatoid arthritis while the exact mechanism is still unknown (Vinogradov et al., 1991; 
Jablensky, 1995; Rubinstein, 1997; Oken 1999). According to the nuclear genome model, 
several hypotheses have been proposed such that pathogenic genes for schizophrenia may 
be protective genes for rheumatoid arthritis and vice versa. 

Thus the mitochondrial genome model may offer a new explanation for the low comorbidity 
between schizophrenia and rheumatoid arthritis and the additional prediction: most of 
patients with both of the diseases would be females because the survival rate of males in 
early life stage must be remarkably reduced due to lack of the antioxidant defense by 
estrogen, and show more negative symptoms, poorer response to neuroleptic medication, 
and/or more morphological changes in the brain. 

5.3.5 Prenatal risk factors for schizophrenia 

The hypothesis predicts that early-life exposure to environments which induce strong 
oxidative stress can increase the risk of later development of schizophrenia in the 
predisposed population. 

Indeed, prenatal environmental factors such as severe nutritional deficiency (Susser, et al., 
1996), exposure to increased homocysteine (Brown et al., 2007) or lead (Opler & Susser, 
2005), and infection of influenza virus (Limosin et al., 2003; Brown et al., 2004; Opler & 
Susser, 2005) and Toxoplasma gondii (Brown et al., 2005) have been suggested to increase 
the risk for schizophrenia. More recently, it has been suggested that central nervous system 
infections of cytomegalovirus or mumps virus in childhood may also increase the risk for 
schizophrenia (Dalman et al., 2008). All of these factors have been shown to affect 
mitochondria, inducing strong intracellular oxidative stress and/or apoptosis (Akaike et al., 
1990; Edlund et al., 1994; Speir et al., 1998; He et al., 2003; Berger et al., 2004; Zaki et al., 2005; 
Gupta et al., 2004; Kruman et al., 2006; Wang et al., 2006; Poncet et al., 2006; Chang et al., 
2007; Nishikawa et al., 2007). 

5.3.6 Increased obstetric complications in the birth of patients with schizophrenia 

It has been suggested that mitochondrial dysfunction may be involved in the etiology of 
preeclampsia (Shanklin et al., 1990; Barton et al., 1991; Furui et al., 1994). In addition, a high 
incidence of preeclampsia, eclampsia, and stillborn infants has been observed in a family 
with a known mitochondrial disorder (Torbergsen et al. 1989). Folgero et al. (1996) 
demonstrated two separate mtDNA point mutations in two families having a high incidence 
of preeclampsia and eclampsia. 
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Therefore, the hypothesis predicts that the risk of preeclampsia, eclampsia, or stillbirth may 
be increased in the birth of patients with schizophrenia as well as in the pregnancies of 
women with schizophrenia. Indeed, an excess of stillbirths and neonatal deaths among 
women with schizophrenia has been reported by several investigators (Sobel, 1961; Rieder et 
al., 1975; Modrzewska, 1980; Webb et al., 2005). 

Furthermore, there has been a body of evidence for an increased risk of obstetric 
complications in the birth of patients with schizophrenia (Dalman et al., 1999; Cannon et al., 
2002). A meta-analysis of population-based data (Cannon et al., 2002) found significant 
estimates for three main categories of obstetric complications: (1) complications of 
pregnancies, (2) abnormal fetal growth and development, and (3) complications in delivery. 
Among all, preeclampsia was the strongest individual risk factor detected in the largest 
single population-based cohort study to date (Dalman et al., 1999). 

Although obstetrical events in schizophrenia are often considered as having a direct 
causative effect, none of the available data can refute the hypothesis that they are merely 
markers of some other causal process (Rapoport et al., 2005), such as mitochondrial 
dysfunction which is implicated in this hypothesis. 

5.3.7 An apparent signature of positive selection in schizophrenia-associated  

genes 

Since the positive selection of the schizophrenia-associated alleles mentioned above occurs 
only in the predisposed matrilineal pedigrees, a ubiquitous subpopulation in humans, 
frequencies of those alleles may not be so high in the general population as if the selection 
had occurred recently in the general population.  

Thus, the hypothesis predicts that every schizophrenia-associated nuclear gene shows an 
apparent signature as if it had been subject to a positive selection in the recent evolutionary 
history of humans. Recent two reports (Lo et al, 2007; Crespi et al., 2007) seem to be in line 
with this prediction. 

On the other hand, the nuclear genome model predicts that every schizophrenia-associated 
nuclear gene shows an apparent signature of negative selection due to the strong negative 
selection pressure. 

5.3.8 Genomic instability 

It is generally thought that a major cause of DNA damage that leads to mutations is reactive 
oxygen species, which are generated as a normal part of oxygen metabolism but are also 
produced by ionising radiation, metabolism of exogenous compounds (Hussain et al., 2003; 
Finkel, 2003). It has been shown that endogenous mitochondrial oxidative stress can induce 
many types of DNA damage including double strand breaks, end-to-end fusions, base and 
sugar modifications, DNA-protein cross-links, and gross chromosomal rearrangements 
(Ragu et al., 2007; Samper et al., 2003). 

Therefore, the hypothesis predicts that the enhanced oxidative stress may cause genomic 
instability during meiosis and/or early phase of ontogeny, producing increased rates of 
random point mutations and/or structural variants of the nuclear genome in the 
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predisposed population. In addition, genomic instability may be more pronounced in males 
due to lack of antioxidant protection by estrogen. 

There have been numerous reports of associations between schizophrenia and chromosomal 
abnormalities including fragile sites, reciprocal translocations, inversions, insertions, 
deletions, disomy and trisomy in many autosomes, and sex chromosome aneuploidies 
(Macintyre et al, 2003). However, with an exception of 22q11 deletion, none of these have 
been consistently replicated, and with another exception of (1,11) (q42;q14.3) balanced 
translocation, none provides convincing evidence for the location of a ‘susceptibility’ gene 
(Kirov et al., 2005). 

A popular explanation in the nuclear genome model may be that most of these  
structural variants are coincidental findings of no clinical significance. Alternatively, those 
alterations may indicate genomic instability in schizophrenia. An increased risk of 
schizophrenia in individuals with 22q11 deletion (Pulver et al., 1994; Murphy et al.,  
1999) might be due to haplodeficiency of presumptive resistance genes of gain-of- 
function type and/or presumptive facilitating genes of loss-of-function type aggregated on 
22q11. 

More recently, it has been reported that rare structural variants such as microdeletions or 
microduplications of sizes ranging from 100kb to 15MB throughout the genome are more 
frequent among individuals with schizophrenia than unaffected individuals (Walsh et al., 
2008). While many of those structural variants duplicate or delete genes in 
neurodevelopmental pathways, one third of those do not disrupt genes, leaving their role in 
causation of the disease unwarranted. Another recent report (Xu et al., 2008) has shown that 
de novo copy number mutations are increased in sporadic schizophrenia. However, the 
cytobands of those copy number mutations are diverse among the affected individuals and 
their roles in the pathogenesis still remain unclear. Therefore, no available data can refute 
the possibility that those structural variants and copy number mutations are not the causes 
of schizophrenia but the results of the genomic instability in schizophrenia predicted by our 
hypothesis. 

Indeed, direct measure of the de novo mutation rates shows an increased mutation rate in 
schizophrenia (Awadalla et al., 2010), and genomic and epigenomic instability has been 
suggested in schizophrenia (Smith et al., 2010). Furthermore, it has been shown that blood 
cells from patients with schizophrenia present a higher rate of folate-sensitive fragile sites, 
and that male patients exhibit twice as many fragile sites as females while there are no age 
effects (Demirhan et al., 2006). This sex difference may indicate that increased fragile sites 
expression (genomic instability) is the results of enhanced oxidative stress in patients with 
schizophrenia. 

6. Conclusion 

Genetic research of schizophrenia based on the nuclear genome model has been one of the 
most active areas in psychiatry for the past two decades. Although this effort is ongoing, 
results of association studies have been inconsistent and the situation of molecular genetics 
of schizophrenia today has become much confused just contrary to our expectation. The 
consistent major epidemiological findings of schizophrenia, coupled with the results of 
association studies to date, argue against the nuclear genome model for schizophrenia. 
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Rather, they seem to argue in favor of the mitochondrial genome model, suggesting a 
necessity of paradigm shift from the nuclear genome model to the mitochondrial genome 
model in genetic research of schizophrenia in the coming years. 

Note: Cross-generational reduction of females with pathogenic genes in the 
mitochondrial genome model 

At first we define several notations. N1: the number of normal females in the first generation; 
N2: number of female offspring of normal females; S1: the number of unaffected female 
siblings of patients in the first generation; S2: the number of female offspring of unaffected 
female siblings of patients; P1: the number of female patients; P2: the number of female 
offspring of female patients; r (0 < r < 1): the proportion of gene carriers in normal females in 
the first generation. Then the number of female gene carriers in the first generation is 
(

111 PSrN  ) and the frequency of female gene carriers in the first generation is given by: 

1 1 1 1 1
1

1 1 1 1 1 1

(1 )
rN S P S P

f r r
N S P N S P

  
    

   
.  

And the frequency of female gene carriers in the second generation is given by: 

2 2 2 2 2
2

2 2 2 2 2 2

(1 )
rN S P S P

f r r
N S P N S P

  
    

   
. 

Thus we have (Table 3): 

31 1 2 2
1 2

1 1 1 2 2 2

(1 ) 5.06 10
S P S P

f f r
N S P N S P

  
         

    
. 

 

 N S P Total (S+P) / Total 

# of females 410,093 11,873 4,784 426,750 0.03903 

# of female 
children 

366,460 10,969 1,917 379,346 0.03397 

      31006.5)1(00506.0  r  

Table 3. Epidemiological data by Haukka et al. (2003) 

In this largest-sampled cohort study to date, Haukka et al. comprised all births in Finland 
during 1950-1959 (N=870,093) and followed up through the National Hospital Discharge 
Register for Hospitalizations between 1969 and 1992. N: normal females; S: unaffected 
female siblings of patients; P: female patients with schizophrenia 
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