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1. Introduction 

Hepatic encephalopathy (HE) is a complex neuropsychiatric syndrome that appears as a 

consequence of acute or chronic liver dysfunction. Ammonia is considered central to its 

pathogenesis, but the factors contributing to the neurological dysfunction the disorder 

entails remain unclear (Butterworth et al., 2002). In humans with HE, it has been suggested 

that the basal ganglia may be selectively affected (Spahr et al., 2002), and lesions detected by 

magnetic resonance in the basal ganglia of such patients (Spahr et al., 2000; Burkhard et al., 

2003) have been associated with movement disorders (Layrargues, 2001; Spahr et al., 2002; 

Weissenborn & Kolbe, 1998). The mechanisms by which liver failure leads to abnormal 

motor function are not clear, but the symptoms described in HE patients (Spahr et al., 2002) 

are similar to those of Parkinson’s disease (PD).  

In patients with chronic HE, the neurological symptoms resemble those observed in chronic 

hyperammonaemia in the rat resulting from portacaval anastomosis (PCA) - PCA is used as 

an experimental model of HE since it induces chronic hyperammonaemia (Audet & 

Butterworth, 1998; Bodega et al., 1991). Rats exposed to PCA show motor deficits (Cauli et 

al., 2006; Martin, 1986; Steindl et al., 1996) which might be associated with degeneration 

and/or dysfunction of the dopaminergic system. Since it is well known that motor deficits 

in PD are due to the dysfunction of the nigrostriatal system, the aim of this chapter is to 

analyse whether its dysfunction occurs in the PCA model of chronic HE, and to discuss 

what its consequences might be.  

2. The nigrostriatal system  

The nigrostriatal pathway projects from the substantia nigra (SN) to the basal ganglia and is 
involved in motor control (Smith and Bolam, 1990). The SN is the brain region in which the 
main dopaminergic (DAergic) pathway supplies dopamine (DA) to the striatum. The 
DAergic neurons of the midbrain have traditionally been described as those nerve cells 
positioned in the mesencephalon that possess the ability to synthesise, package, release, and 
reuptake the neurotransmitter dopamine. In the normal brain, DAergic midbrain neurons in 
the SN pars compacta (SNc) synthesise dopamine, which is immediately taken up and 
stored in synaptic vesicles. Under normal conditions, the efficient sequestration of 
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dopamine by these vesicles provides a major means of protecting DAergic neurons from the 
harmful effects of dopamine oxidation. Striatal delivery of DA by midbrain DAergic SNc 
neurons is vital for motor control. Dysfunctional DAergic neurotransmission between the 
SNc and the dorsal striatum causes several prominent movement disorders, such as that 
seen in PD. In patients with this disease, the DAergic projections to the striatum deteriorate, 
and the decline in DAergic modulation of the basal ganglia leads to muscle control problems 
(Gauthier & Sourkes, 1982).  

Tyrosine hydroxylase (TH) is the rate-limiting enzyme in dopamine synthesis, making it a 
major marker of DAergic neurons. In the production of catecholamines, L-tyrosine is 
converted to L-dopamine by TH. TH expression is regulated by many factors, e.g., growth 
factors, hormones and ion-channels, which can induce changes in nigrostriatal DAergic 
neurotransmission. A positive relationship between the activity of adult SNc neurons and 
the expression of TH has recently been reported (Aumann et al., 2011). 

There is increasing evidence of functional diversity as well as plasticity within the 
population of DAergic midbrain neurons; indeed, this diversity may extend to the molecular 
level (Korotkova et al., 2004). Further, DAergic midbrain neurons are not homogeneously 
affected by neurodegenerative diseases, but rather show differences in their relative 
vulnerability, especially with respect to cell death. The DAergic neurons in the SNc 
deteriorate selectively in PD and those that project to the dorsolateral striatum are 
substantially more vulnerable (Damier et al., 1999). Often no symptoms appear until 
approximately 60% of the DAergic cells in the SNc have died (Gaig & Tolosa, 2009).  

To date, no studies have described the neurotoxic effects of hyperammonaemia on nigral 
DAergic cells in vivo, and it is unsure whether the down-regulation of TH expression leads 
to the disturbance of DAergic neurotransmission in chronic hyperammonaemia following 
PCA. Our group has shown that PCA leads to a reduction in the number of TH-
immunoreactive neurons in the SN (Fig. 1), as well as causing a reduction in TH expression 
in the TH-positive neurons of this area. The loss of TH-positive neurons might be 
attributable to their sensitivity to high circulating ammonia concentrations, which are 
induced by PCA (Bodega et al., 1991).  

 

Fig. 1. TH immunoreactivity in the substantia nigra of control (C) and PCA-exposed rats 
(PCA). Note the reduction in TH expression in PCA rats, as well as in the number of TH+ 
neurons. 

C PCA 
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It is well known that ammonia plays an important role in the pathophysiology of HE. 

Certainly, an increase in the ammonia concentration can affect numerous cellular processes 

that might contribute towards the neurological deficits associated with the disease, and it 

has been proposed that the ammonia levels in blood correlate with the severity of HE 

symptoms (Ong et al., 2003). Since PCA leads to a reduction in TH immunoreactivity in the 

SN and the dorsal striatum, a specific susceptibility of nigral DAergic neurons to 

hyperammonaemic conditions during PCA exposure might be inferred. There is a possible 

diversity of response within the DAergic SNc population since functionally and 

biochemically distinct sub-populations of SNc DAergic neurons have been described (Hajos 

& Greenfield, 1993; Korotkova et al., 2004; Liss & Roeper, 2008). This phenomenon of 

differential vulnerability of DA neurons towards degeneration is well documented in PD; 

some of the DA cell groups in the midbrain are particularly affected by neurodegenerative 

process while others are relatively spared of its effects (Damier et al., 1999). Since a 

relationship between TH expression and activity in adult SNc neurons has been described 

(Aumann et al., 2011), it seems reasonable to conclude that an increase in ammonia levels in 

PCA and/or hyperammonaemia can lead to reduced TH expression in SNc cells, and that 

this might contribute towards the vulnerability of DAergic cells - and therefore to their 

reduced activity. In fact, the presence of acid-sensitive ion channels has been described in 

DAergic neurons, which are also sensitive to ammonium ions (Pidoplichko & Dani, 2006). 

Recently, it has been shown that ammonium chloride treatment reduces the number of TH-

positive DAergic neurons in the medaka fish, causing the selective loss of DAergic neurons 

and the appearance of Lewy body-like inclusions (Matsui et al., 2010). Together, these 

observations suggest DAergic neurons to be particularly sensitive to increased levels of 

ammonia, as occurs following PCA.  

There is very good evidence that the loss of TH-immunoreactivity in the SN is a good 

marker for the death of nigral DAergic neurons in neurodegenerative diseases. Although it 

is generally assumed that neuronal cell death is minimal in liver failure, recent studies have 

shown severe neuronal dysfunction and neuronal cell death to occur in end-stage liver 

failure (Butterworth, 2007). To date, no selective loss of DAergic neurons has been described 

in PCA, although, as mentioned above, a reduced number of TH-positive neurons are seen 

in PCA exposed rats.  

In addition to the reduced number of TH-positive neurons in the SN, TH-positive nerve 

terminals within the striatum are significantly reduced in PCA-treated rats compared to 

controls; this might suggest dysfunctional neurotransmission. The smaller number of TH-

positive neurons might in turn affect the innervation of the striatum, which agrees with the 

fact that TH staining in the striatum shows lower expression in PCA-exposed rats than in 

controls. These differences suggest an imbalance in the proper functioning of the striatum 

and might underlie the behavioural deficits observed in long-term PCA-exposed rats.  

The presence of extrapyramidal signs and symptoms in patients with end-stage chronic liver 

failure might suggest dysfunctional DAergic neurotransmission between the SNc and the 

dorsal striatum (the nigrostriatal pathway). The striatal content of dopamine is reduced in 

encephalopathic animals after bile duct ligation, which is consistent with results observed in 

patients with cirrhosis (Galvez-Gastélum et al., 2011). This could be due to dopamine-

accelerated metabolism and/or a reduction in TH. 
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2.1 Dopamine and glutamate interactions in the nigrostriatal system 

There is evidence that the brain dopamine system is under glutamatergic regulatory 

influence. Nigral DAergic neurons possess glutamate receptors (Chatha et al., 2000; Testa et 

al., 1994) and receive glutamatergic input from the neurons of the subthalamic nucleus 

(Groenewegen & Berendse, 1990; Kita & Kitai, 1987). These DAergic neurons degenerate 

when exposed to excitotoxic glutamate (Alexi et al., 2000; Tapia et al., 1999). In vitro studies 

have shown that DAergic neurons are preferentially affected by glutamate toxicity. DAergic 

neurons exposed to glutamate for 24 h were more vulnerable than non-DAergic neurons 

exposed to chronic glutamate-induced toxicity (Izumi et al., 2009), leading to selective 

DAergic neuronal death. 

The glutamatergic modulation of DA release in SN DAergic neurons appears to be 

associated with increased DA release in the striatum (Morari et al., 1998). The rat dorsal 

striatum receives DAergic projections from the SN and glutamatergic projections from 

the cortex. Glutamatergic receptors are located on DAergic terminals and dopamine 

receptors on glutamatergic presynaptic endings. This anatomic arrangement implies that 

dopamine and glutamate may act in concert to regulate the activity of striatal neurons 

(Kulagina et al., 2001). Through the activation of ionotropic glutamate receptors, 

glutamate regulates the basal extracellular dopamine concentration in the striatum 

(Borland & Michael, 2004; Kulagina et al., 2001). In contrast, the inhibitory role of DA in 

the modulation of glutamate release is well established and in the striatum DA acts via 

the activation of dopamine D2 receptors. It would seem that the overstimulation of 

glutamate receptors on nigral DAergic neurons may be involved in the progression of 

neurodegenerative diseases. It is known that the balance between glutamate and 

dopamine is disturbed when DAergic nigrostriatal neurons degenerate in the course of 

PD (Starr, 1995). However, it is not clear to what extent dopamine and glutamate interact 

with each other in hyperammonaemic situations. The densities of postsynaptic dopamine 

D2 receptors are reduced in the pallidum of HE patients (Mousseau et al., 1993) and it 

has recently been described that the binding site densities of dopamine receptors (D1 and 

D2) are down-regulated in the putamen (Palomero-Gallagher et al., 2006). These 

alterations of dopamine D2 receptor sites are indicative of DAergic synaptic dysfunction 

(Watanabe et al., 2008). This suggests that the nature of the dopamine-glutamate 

interaction varies depending on the receptor subtype involved and the experimental 

conditions employed.  

Under hyperammonaemic conditions, high extracellular concentrations of glutamate can 

cause neurodegeneration by excessive stimulation of the post-synaptic glutamate receptors. 

Glutamate receptors are reduced in PCA-treated rats (Suárez et al., 1997). In addition, the 

increased extracellular brain concentrations of glutamate in experimental HE are due, in 

part, to the failure of astrocytic glutamate transporters (Knecht et al., 1997; Suárez et al., 

2000). Their down-regulation has important consequences on the amount of extracellular 

glutamate since astrocytes are the brain cells that metabolise ammonia and glutamate via 

glutamine synthetase (GS). Thus, the activity of the enzyme glutamine synthetase, the 

glutamine/glutamate cycle and the brain’s capacity to eliminate toxic substances, all 

influence the toxicity of increased ammonium levels. 
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3. Astrogliosis in the nigrostriatal system 

In response to almost any kind of CNS injury, astrocytes change their appearance (at 

different times post-injury) and undergo a characteristic hypertrophy of their processes, 

a condition known as astrogliosis. One of the hallmarks of this phenomenon is the  

up-regulation of the intermediate filament protein glial fibrillary acidic protein (GFAP). 

Increased GFAP expression is also seen in neurodegenerative diseases (Eng & 

Ghirnikar, 1994; Johansson et al., 2007). Both astrogliosis and increased GFAP in the SN 

in neurodegenerative diseases are associated with the reduction of TH and the 

progressive degeneration of DAergic neurons (McGeer & McGeer, 2008). In experimental 

models of PD, DAergic cells show reduced TH immunoreactivity, whereas reactive 

astrocytes show increased GFAP reactivity (Gomide et al., 2005; Reinhard et al., 1988). It 

has recently been postulated that glial cells are responsible for the progression of PD 

since more astrocytes are affected over the course of the disease (Halliday & Stevens, 

2011). 

The importance of astrocytes in neurodegenerative diseases, particularly HE, is well 

accepted (Butterworth, 2003; Norenberg, 1998). As mentioned above, astrocytes metabolise 

ammonia and glutamate through GS (review in Suárez et al., 2002). The principal 

neuropathological finding in HE is modified astrocyte morphology, which has been used as 

a marker of HE. Changes in astrocytes include nuclear enlargement, chromatin peripheral 

margination and prominent nucleoli; these changes are found mainly in the basal ganglia of 

patients dying of the disease (Norenberg, 1981). 

It is well known that astrocytes perform a number of important functions including the 

regulation of the extracellular concentration of neurotransmitters, the promotion of 

synapse formation, and the promotion of neuronal survival. GFAP expression in the 

brain has been studied in both experimental and human chronic liver failure, in which it 

is reported reduced or increased depending on the brain region in question (Norenberg, 

1987; Sobel et al., 1981; Suárez et al., 1998). The basis for these regional brain differences 

remains unknown. Although it is not known precisely why basal ganglia have a high 

affinity for ammonia, astrocytes show increased GFAP immunoreactivity in the 

striatum during the prolonged elevation of ammonia following PCA (Suárez et al., 

2009).  

Interactions have been reported between DAergic neurons and mesencephalic astrocytes 

in vitro, and it has been postulated that mesencephalic astrocytes may exert a 

morphogenetic effect on DAergic neurons (Denis-Donini et al., 1984). We showed 

astrocyte activation in the nigrostriatal pathway, which parallels the PCA-induced loss of 

DAergic neurons and terminals after PCA. The normal function of astrocytes was 

compromised following PCA, as evidenced by the increased GFAP expression in the SN, 

which was accompanied by neuronal dysfunction. Also, astrocytes in the striatum of 

PCA-exposed rats expressed increased GFAP immunoreactivity compared to controls 

(Fig. 2). These data reinforce the results of neuropathologic and molecular studies which 

indicate that HE in both acute and chronic liver failure is primarily a disorder of astroglial 

cells, and add support to the idea that HE is a classic example of a primary gliopathy 

(Butterworth, 2010; Norenberg, 1987).  
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Fig. 2. GFAP immunoreactivity in the striatum of control (C) and PCA-exposed rats (PCA). 
Note the increase in GFAP expression in PCA rats. 

4. α-synuclein in the nigrostriatal system 

α-synuclein is a normally soluble, neuronal protein found in the synaptic terminals 

(Maroteaux & Sheller, 1991; Sidhu et al., 2004). There is growing evidence that it is an 

important regulator of DAergic transmission; certainly, it participates in the life cycle of 

dopamine from its synthesis through to its storage, release and reuptake (Al-Wandi et al., 

2010; Chadchankar et al., 2011; Liu et al., 2008; Shidu et al., 2004; Yavich et al., 2004). 

However, very little is known about the mechanisms, signalling pathways or transcriptional 

elements that regulate α-synuclein expression. The overexpression of α-synuclein may, 

however, lead to degenerative processes (Goedert, 2001; Kirik et al., 2002; Lee & 

Trojanowski, 2006). It can inhibit TH expression (Lo Bianco et al., 2002; Niu et al., 2009; Yu 

et al., 2004) and TH activity (Luo et al., 2007; Peng et al., 2005; Perez et al., 2002) in 

DAergic cells, and impair dopamine release (Nemari et al., 2010; Pelkonen et al., 2010). 

Indeed, studies on transgenic animals and gene-transfected DAergic cells have shown that 

overexpression is accompanied by the degeneration and even death of these cells as well 

as the formation of α-synuclein-positive intracellular inclusions (Lo Bianco et al., 2002; 

Masliah et al., 2000; Xu et al., 2002; Yamada et al., 2004). In fact, the abnormal aggregation 

of α-synuclein is thought to cause neurodegeneration (Cookson, 2009; Dawson & Dawson, 

2003; Ma et al., 2003; Tofaris & Spillantini, 2005). Once aggregation begins the normal 

physiological functions regulated by this protein can be severely compromised (Shidu et 

al., 2004). α-synuclein has been shown to form aggregates or insoluble fibrils finally 

leading to pathological deposits such as those seen in PD, in dementia with Lewy bodies 

(DLB), and in MSA (Duda et al., 2000; Goedert, 2001; Spillantini et al., 1998; Trojanowski 

& Lee, 2001; Wakabayashi et al., 2007). Experimental PD models show increased α-

synuclein expression and aggregation as well as DAergic neuron degeneration/loss 

(Cannon & Greenamyre, 2010; Chesselet, 2008; Khodr et al., 2011), accompanied by motor 

deficit (Khodr et al., 2011). 

The pathological involvement of α-synuclein in HE has never before been investigated. In 

vitro studies have shown that cultured astrocytes exposed to ammonia produce α-synuclein 

mRNA (Bodega et al., 2006). Our group studied the modifications of α-synuclein 

C PCA 
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conformation in PCA-treated rats and found that PCA clearly affected α-synuclein 

expression in the cerebellum (Suárez et al., 2010). It has been postulated that the structure of 

α-synuclein is extremely sensitive to its environment, and studies with the SH-SY5Y human 

DAergic cell line have shown that ammonium chloride treatment can induce the formation 

of α-synuclein inclusions (Matsui et al., 2010). This is in agreement with our other 

observations that indicate that chronically high ammonia levels in PCA-exposed rats induce 

α-synuclein expression in the nigrostriatal pathway. Although the precise mechanisms of 

the upregulation of α-synuclein are unknown, previous evidence (Lo Bianco et al., 2002; 

Gomide et al., 2005; Luo et al., 2007; Niu et al., 2009; Peng et al., 2005; Perez et al., 2002) 

suggests that the overexpression of α-synuclein in the nigrostriatal system may contribute to 

the reduced TH expression in PCA-exposed rats and to the degeneration of DAergic 

neurons. DAergic neurons might be more vulnerable to chronic hyperammonaemia in the 

presence of α-synuclein, supporting the idea of the latter’s importance in the pathogenesis of 

HE. The vulnerability of SN neurons in which α-synuclein is overexpressed has been 

associated with the loss of DAergic neurons in a rat model of PD (Yamada et al., 2004).  

α-synuclein has been reported to accumulate in the neuronal cytoplasm and processes in the 

brains of patients with PD and DLB (Polymeropoulos et al., 1997; Zarranz et al., 2004), and 

recently it has been shown that most aggregates are located at the presynapses in the form 

of very small deposits (Schulz-Schaeffer, 2010). This would impair synaptic plasticity in the 

basal ganglia prior to neurodegeneration (Kurz et al., 2010).  

Although α-synuclein is not normally expressed by glial cells in the adult brain, α-

synuclein-immunoreactive inclusions have been reported in these cells in patients with PD, 

DLB and MSA (Duda et al., 2000; Piao et al., 2000; Spillantini et al., 1998; Wakabayashi et al., 

1998, 2000). Exposure to extracellular α-synuclein aggregates can lead to astroglial 

activation; studies in vitro have shown that α-synuclein treatment can directly cause GFAP 

reactivity in human astrocytes (Koob et al., 2010), and experimental in vivo studies with α-

synuclein mutant mice have indicated that the number of GFAP-positive astrocytes 

increases in the brainstem (Gu et al., 2010). 

Astrocytes, however, are not known to synthesize α-synuclein (Mori et al., 2002). It has been 

suggested that α-synuclein is released from neurons into the extracellular space (Borghi et 

al., 2000; Lee et al., 2005) and accumulates there – something seen in the brains of patients 

with PD (Lee, 2008). In PD, the altered α-synuclein molecule can, however, be taken up and 

accumulated by astrocytes (Braak et al., 2007; Lee et al., 2010), leading to the progression of 

the disease (Halliday & Stevens, 2011). In PCA-treated rats, the increase in α-synuclein 

expression is concomitant with the increase in GFAP expression in the striatum (Suárez et 

al., 2009). It is possible that astroglial activation is caused by increased α-synuclein 

production associated with the markedly elevated ammonia levels observed in PCA-treated 

animals.  

5. Nitric oxide in the nigrostriatal system 

Nitric oxide (NO) has been implicated in the pathogenesis of several CNS diseases. It is well 

known that increased extracellular glutamate leads to an increased inflow of Ca2+ into post-

synaptic neurons, the activation of nitric oxide synthases (NOS), and the formation of NO. 
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Nitric oxide is a key modulator of neuronal activity in the dorsal striatum and is thought to 
play an important role in different complex processes, including the control of motor 
function (West et al., 2002). In the striatum, NOS, the enzyme involved in the synthesis of 
NO, has been selectively found in a scattered population of interneurons (Vincent & 
Kimura, 1992). The level of neuronal NOS (nNOS) is increased in neurodegenerative 
diseases in which disorders of the basal ganglia have been described (Aguilera et al., 2007; 
Pérez-Severiano et al., 2002). Increased NO (via nNOS activity) can be harmful to 
surrounding cells in neurodegenerative processes mediated by glutamate. Striatal nNOS-
producing neurons are particularly vulnerable to glutamate (Calabresi et al., 2000; Mitchell 
et al., 1999); they receive asymmetric synapses from glutamatergic afferents (Vuillet et al., 
1989) and express glutamate receptors (Kawaguchi, 1997), which play a primary role in 
stimulating nNOS activity. The glutamate receptor activation of nNOS-producing neurons 
induces NO formation in the striatum (Bogdanov & Wurtman, 1997) and, in turn, NO 
increases glutamate release (Trabace & Kendrick, 2000). 

In addition to glutamatergic inputs, striatal nNOS-expressing interneurons are innervated 
by DAergic terminals (Fujiyama & Masuko, 1996; Hidaka & Totterdell, 2001). Striatal NOS 
interneurons express dopamine D1/5 receptors (Rivera et al., 2002), and dopamine D1 
receptor activation stimulates striatal NO synthesis. In addition, the glutamatergic activation 
of the NMDA receptors stimulates nNOS activity and NO production (Garthwaite, 2008) in 
a manner likely to be modulated by reciprocal dopamine D1-NMDA glutamate receptor 
interactions; the latter play a critical role in regulating striatal nNOS interneuron activity 
(Hoque et al., 2010). Further, in vitro and in vivo studies have shown that NO modulates 
dopamine and glutamate release in the striatum (Bogdanov & Wurtman, 1997; Hanbauer et 
al., 1992; Lin et al., 1995; Sandor et al., 1995; Shibata et al., 1996). These findings indicate that 
interactions between striatal DAergic, glutamatergic, and nitrergic systems play a significant 
role in the regulation of striatal function (Hoque et al., 2010; West et al., 2002). 

In recent years, it has been suggested that nitrosative stress is involved in the 

pathophysiological cascade in HE (Bemeur et al., 2010); nitrosative stress is potentially lethal 

to neurons and occurs in the brain in both acute and chronic liver failure (Larsen et al., 2001; 

Schliess et al., 2002). NOS activity is increased in the brains of portacaval shunted rats (Rao 

et al. 1995). The number of nNOS-positive neurons increases in the striatum of PCA-treated 

rats (Fig. 3), and the astrocytes of the striatum express nNOS as well as inducible NOS 

(iNOS) (Suárez et al., 2009). The induction of iNOS in astrocytes may contribute to neuronal 

damage in chronic neurodegenerative disorders since glial cells can synthesise large 

amounts of NO (Dawson & Dawson, 1998). Certainly, iNOS stimulates DAergic 

neurodegeneration in an animal model of PD (Liberatore et al., 1999). Thus, the induction of 

iNOS in reactive astrocytes may generate toxic levels of NO, contributing to the induction of 

neuronal damage associated with chronic hyperammonaemia in PCA-exposed rats/patients 

with HE. 

The NO produced by activated astrocytes can be harmful to neurons since it reacts with 
superoxide to generate peroxynitrite (Catania, 2001), a molecule that contributes to cell 
death. Nitrotyrosine (NT) is a relatively stable marker for peroxynitrite production (Gow et 
al., 1996) and has been proposed a valuable indicator of pathological levels of NO and 
peroxynitrite (Beckman, 1996). When our group analysed nitrotyrosine expression in PCA-
rats showing NT expression in the nigrostriatal pathway, a significant increase was 
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observed in NT immunoreactivity in some of the cell bodies in the SN. NT expression in the 
astroglial cells occurred in the upper part of the striatum and colocalised with GFAP (Suárez 
et al., 2009). Therefore, the DAergic system might be particularly susceptible to NO 
neurotoxicity, which may contribute to the dysfunction of DAergic neurons after PCA 
exposure. 

 

Fig. 3. nNOS immunoreactivity in the striatum. In controls (C), nNOS-immunoreactive 

neurons were homogeneously distributed in the striatum. In PCA exposed brains, the 

number of nNOS+ neurons was increased and immunolabeled neurons presented 

intensified immunoreactivity and thickened processes. 

Although NO plays a crucial role in the integration of glutamate and DA transmission, the 

role of NO in modulating neurotransmitter interaction in the striatum following PCA 

and/or hyperammonaemia remains somewhat unclear. The involvement of NO in HE 

pathogenesis is supported by the observations that nNOS and iNOS expressions are 

upregulated in experimental HE. This evidence strongly supports the hypothesis that the 

excessive production of NO in the DAergic pathway contributes towards the neuronal 

dysfunction observed after PCA. Experimental evidence for cerebral nitrosative stress in 

experimental models of HE involving acute or chronic liver failure suggests it is involved in 

the pathophysiological cascade responsible for the disease (Bemeur et al., 2010). In patients 

with HE, NO levels correlate with the presence and severity of HE (Papadopoulos et al., 

2010). 

6. Conclusions 

This work analyses whether chronic hyperammonaemia affects the activity of SN neurons 

and the regulation of TH expression following PCA. The neurones and astrocytes in the 

nigrostriatal system show different responses to PCA; neuronal TH decreases and astroglial 

GFAP increases in both the SN and the striatum. This may be related to different cellular 

susceptibilities to increased ammonia levels in both types of cell, which contributes to the 

progress of DAergic neurodegeneration. Since the DAergic neurons in the SN that project to 

the dorsolateral striatum are substantially more vulnerable to hyperammonaemic 

conditions, the dysfunction and/or loss of SN DAergic neurons following PCA might be 

attributed to the overexpression of α-synuclein as well as to the activation of nearby 

C PCA 
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astroglia. As in PD, dysfunctional DAergic neurotransmission between the SNc and the 

dorsal striatum (the nigrostriatal pathway) might be the cause of the movement disorders 

observed in PCA-exposed rats as well as in HE patients. Different elements can initiate a 

cascade of events in the cell body, inducing DAergic neuron degeneration and ultimately 

HE. These events may include α-synuclein overexpression, astroglial activation and 

nitrosative stress.  

In summary, chronic moderate hyperammonaemia, similar to that seen in HE patients, 

induces DAergic dysfunction in DA neurons via a reduction in TH immunoreactivity, 

astroglial activation via an increase in GFAP, the overexpression of α-synuclein in DAergic 

cells, and increased nNOS, iNOS and NT expression in the nigrostriatal system. These 

changes underlie the harmful effects of chronic hyperammonaemia on motor and cognitive 

function. 
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