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1. Introduction  

Knowledge of the anesthesia drug concentration in a patient during a surgical procedure has 

potential to improve patient monitoring and control of drug administration. High-fidelity 

estimates of anesthesia drug concentration would allow anesthesiologists to make relevant 

low-level dose adjustment as well as high-level clinical decisions. The estimated drug 

concentrations may also be useful for computerized anesthesia delivery, including, but not 

limited to, targeting/limiting the drug concentration itself (Van Poucke et al., 2004; Gentilini et 

al., 2002) as well as monitoring and maintaining hemodynamic stability (Rao et al., 2000). 

Currently, anesthesia drug concentration is estimated based primarily on a model-based 
open-loop prediction (Fig. 1(a)), in which the drug concentration is predicted by solving a 
population-based patient pharmacokinetics (PK) and pharmacodynamics (PD) described in 
terms of a multi-compartmental model. In the absence of any feedback correction capability, 
the discrepancy between the real PK of an individual patient and its population-based 
model counterpart is a major source of errors in drug concentration estimation. The open-
loop prediction has been widely used despite this apparent drawback, mainly due to the 
lack of alternative solutions. 

Recently, efforts have been made to improve the fidelity of drug concentration estimation 
over open-loop prediction. Sartori et al. (2005) proposed a method based on an extended 
Kalman filter to adapt PD parameters in real-time. Hahn et al. (2011) proposed a robust 
estimation strategy based on H∞ control theory. The results strongly suggest that the efficacy 
of drug concentration estimation can be improved by exploiting the measurements of the 
clinical effect. Motivated by these pioneering investigations, this chapter aims to study 
alternative observer design strategies for estimating anesthesia drug concentration. In 
contrast to open-loop prediction, observer-based approaches can be regarded as closed-loop 
estimation that exploits the clinical effect measurement for feedback correction (Fig. 1(b)), in 
order to suppress the adverse influence of patient variability and effectively deal with 
unknown surgical stimulation (shown as d in Fig. 1) that acts as a disturbance to distort the 
clinical effect measurement. The specific focus of this chapter is to examine the design and 
analysis of a robust linear observer (RLO), a robust nonlinear observer (RNO), and an H∞ 
observer (H∞O) in the context of estimating propofol concentrations at the plasma and the 
effect sites. A depth of hypnosis index called WAVCNS (Zikov et al., 2006) was used to 
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describe the clinical effect of interest for feedback correction. The observers were evaluated 
against the traditional open-loop prediction using a Monte-Carlo simulation of surgical 
procedures using a wide range of patient models. H∞O boasted the best overall performance 
with its capacity to deliver statistically significant reduction in plasma and effect site 
propofol concentration errors over open-loop prediction, regardless of the presence of a 
surgical stimulation disturbance. RNO was more effective than open-loop prediction in 
suppressing the effect site propofol concentration error, but its efficacy for plasma propofol 
concentration was susceptible to surgical stimulation disturbance. RLO was good at 
reducing the effect site propofol concentration error in the absence of surgical stimulation 
disturbance, but perfomed poorly in the presence of a surgical stimulation disturbance. 

 

Fig. 1. Open-loop prediction versus closed-loop estimation of anesthesia drug concentration. 

This chapter is organized as follows. Section II describes the patient model. Section III 
details the design of observers for anesthesia drug concentration estimation. Section IV 
details the Monte-Carlo simulation and statistical analysis to compare the performance of 
observer-based estimation and open-loop prediction strategies. The results are presented 
and discussed in Section V, followed by conclusions in Section VI.  

2. Patient model 

An anesthetized patient can be described by a series connection of a PK model, a PD model, 
and a monitor model, as shown in Fig. 2. The input to this process is the drug infusion rate 
(IH), while the output is the clinical effect measurement (WAVCNS). The surgical stimulation 
is modeled as an output disturbance, because it counteracts the effect of anesthesia drug in 
an unpredictable manner and thereby distorts the WAVCNS measurement. 
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Fig. 2. PK/PD and effect monitor models of anesthesia drug delivery process. 

2.1 PK and PD models 

A 3-compartment model of propofol developed by Schüttler and Ihmsen (2000) was used to 
describe the PK (Fig. 3). Denoting x1, x2, and x3 as drug concentrations in the plasma, fast 
peripheral, and slow peripheral compartments, the state-space representation of the PK is 
given by (1): 
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where xPK=[x1 x2 x3]T, u=IH, kij are the rate constants, and V1 is the volume of the plasma 
compartment. To account for the PD lag associated with the distribution of drug into the effect 
site (i.e. the brain), the following delay-plus-first-order model was used (Zikov et al., 2006): 

      4
dT s d

e p
d

k
x s C s e C s

s k

 


, (2) 

where Td and kd are respectively the transport delay and the rate of drug distribution from 
the plasma to the brain. Finally, the saturating Hill equation was used to describe the 
relation between Ce and the anesthesia effect: 

  
1

e
e

e

C
E C
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, (3) 

where 
50

e
e

C
C

EC
  is the effect site drug concentration normalized by the 50% effect 

concentration (EC50), and  is the cooperativity coefficient. 

 

Fig. 3. A 3-compartmental PK model. 
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2.2 WAVCNS monitor model 

The WAVCNS index reflects the combined effect of the anesthesia drug and the unknown 
surgical stimulation. It takes values ranging from 100 to 0, where WAVCNS=100 corresponds 
to fully awake state, WAVCNS=50 corresponds to adequate anesthesia, and WAVCNS=0 
corresponds to an isoelectric electroencephalogram (EEG). The WAVCNS monitor model 
derived by Zikov et al. (Zikov et al., 2006) was used:  

    
 

   2

1
100 1

8 1
CNSy s WAV s E s d s

s

          
  

, (4) 

where d is the unknown surgical stimulation. Note that maximum (=1) and minimum (=0) 
clinical effects correspond to WAVCNS=0 and WAVCNS=100, respectively. 

2.3 Observer design model 

The observer design model is obtained by locally linearizing the PD model in the 
neighborhood of the operating regime of E=0.5 during the maintenance phase of anesthesia, 
which yields 

      50
50

1 1
1

4 2 4 2
e e eE C C C EC

EC

 
      . (5) 

Combining (1), (2), (4), and (5) results in the following observer design model, where the 
state variables x5 and x6 are associated with the WAVCNS monitor model (4): 
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x x Ax B E

0 0

0

y x Cx


. (6) 

3. Observer design  

A patient undergoing anesthesia is subject to a significant amount of uncertainty arising 
from the inherent inter-patient physiologic variability and unknown surgical stimulation. 
The population-based PK and PD models have thus limited predictive accuracy (Schüttler & 
Ihmsen, 2000). Besides, the PK and PD model parameters may fluctuate in response to the 
individual patient’s physiologic condition. Furthermore, the clinical effect measurement is 
persistently corrupted by unpredictable surgical stimulation. The observer must be 
designed to be robust against these multiple confounding factors.  

3.1 Design strategies 

The following alternatives were considered as observers for drug concentration estimation: 
1) RLO: a linear observer with a robust feedback gain, 2) RNO: a nonlinear observer with a 
robust feedback and a nonlinear disturbance rejection gain, and 3) H∞O: a robust dynamic 
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observer designed based on  H∞ control theory. The RLO was intended to explore the limit 
of performance of a simple linear observer. The RNO was motivated by the effort to 
separate the tasks of robustness and disturbance rejection: the linear feedback was designed 
to achieve robustness against PK/PD model uncertainty, whereas the nonlinear feedback 
was designed to compensate for the unknown surgical stimulation. The requirements of 
disturbance rejection and the observer matching condition necessitates the use of WAVCNS 
and its derivative as measurements in the design of RNO. The purpose of the H∞O was to 
examine if its added complexity is worth exploiting in order to improve the fidelity of drug 
concentration estimation. 

3.2 Robust linear observer (RLO) design 

A standard linear observer assumes the following form: 

  ˆ ˆ ˆu   x Ax B L y Cx , (7) 

where the upper bar on a matrix denotes its nominal value. L is designed to satisfy the 
inequality (8) for a positive definite matrix P in order to place the closed-loop poles in the 
left-half plane: 

    T
   A LC P P A LC 0 . (8) 

Considering the patient model (6) and the observer (7), the propofol concentration estimates 
provided by the observer are susceptible to the model perturbations included in Ed that 
stem from the PK/PD uncertainty and unknown surgical stimulation. The observer gain 
matrix L must be designed so as to achieve robustness against these confounding factors. It 
is possible to determine L such that the state estimation error is bounded within a prescribed 
ellipsoid in the presence of model perturbations and/or disturbances by exploiting Theorem 
1 below: 

Theorem 1 (Set-Theoretic Robustness Condition) (Blanchini & Miani, 2008): Consider the 
system of the form 

 x Ax Fw  

which is subject to a persistent external disturbance w. Assume that the disturbance is 
bounded by wTw≤1. Then the ellipsoid {x: xTPx≤1} is invariant if Q=P-1 satisfies the 
condition 

T T1


   QA A Q Q FF 0  

for some >0.  

Rewrite (6) as follows where the matrices A and B are decomposed into their nominal and 
uncertain parts: 

    u d u d       x Ax B E A A x B B E  . (9) 

Subtracting (7) from (9) yields the following error dynamics: 
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    u d       e A LC e Ax B E A LC e Fw  . (10) 

where F specifies the uncertainty bound and is chosen such that wTw≤1. Then according to 
Theorem 1 the state estimation error e is bounded within the ellipsoid {e: eTPe≤1} if Q=P-1 

satisfies the following inequality for some >0: 

    T T1


     Q A LC A LC Q Q FF 0 . (11) 

Pre- and post-multiplying (11) by P results in (12): 

    T T1


     A LC P P A LC P PFF P 0 . (12) 

Noting that P and PFFTP in (12) are positive definite and positive semi-definite, respectively, 

the inequality (12) is stronger than (8) and the pair of matrices L and P satisfying (12) 

automatically satisfies (8). Also, the “size” of P is directly related to the size of the error 

ellipsoid within which the state estimation error is bounded. Therefore, the optimal observer 

gain L for (7) can be determined by finding the pair of matrices L and P which maximizes 

the size of P while satisfying the set-theoretic robustness condition (12). 

The optimal RLO gain design problem can be cast into a linear matrix inequality (LMI) 
problem by manipulating (12) as follows. The inequality (12) implies that, for any e≠0, 

 

T
T T T1 1 1

2 2
 



              
     

e A I LC P P A I LC e e PFF Pe 0 . (13) 

Define Y=PL. Using 

 T T T T T T T T T T1 1 1
2 2 

  
       w w e PFw w w e PFw e PFF Pe e PFF Pe e PFF Pe , (14) 

the inequality (13) can be converted to the following LMI: 

 

T
T

T

1 1

2 2
 



                 
  

A I P P A I C Y YC PF
0

F P I

. (15) 

Summarizing, the optimal RLO gain design is equivalent to solving the following LMI: 

  maxtr P  subject to 

T
T

T

1 1

2 2
 



                 
  

A I P P A I C Y YC PF
0

F P I

, (16) 

where the size of P is measured in terms of its trace norm, which is equal to the sum of its 
eigenvalues. 
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3.3 Robust nonlinear observer (RNO) design 

The RNO to be designed in this chapter assumes the following form: 

  ˆ ˆ ˆu    x Ax B L y Cx ┟ , (17) 

where L is the linear feedback designed to suppress the adverse effect of the PK/PD 

uncertainty, and  is the nonlinear feedback to compensate for the unknown surgical 

stimulation. The error dynamics is derived by subtracting (17) from (9): 

    u d d         e A LC e Ax B E A LC e Gw E ┟  , (18) 

where G specifies the uncertainty bound and is chosen such that wTw≤1. Note that 

 d Fw Gw E , (19) 

which suggests that within the RNO framework the PK/PD uncertainty Gw is taken care of 

by L, whereas the surgical stimulation is accounted for by , in contrast to the RLO where 

both of these confounding factors Fw=Gw+Ed must be dealt with by L. 

To exploit  to cancel out the effect of d, it is required that the following observer matching 

condition be satisfied for some function h(x,u): 

  1 T ,d uE P C h x , (20) 

where P satisfies (8). Note that (20) cannot be satisfied by the output matrix C in (6); it 
violates the positive definite requirement on P by imposing p66=0. In order to resolve this 
problem, we assume that WAVCNS and its time derivative are available as sensor 
measurements: 

  4 4 2 2  y 0 I x Dx . (21) 

With this choice of the output, the following constraints are imposed on P: 

 16 26 36 46 0p p p p    ,  56 164 ,p d h u x ,  66 264 ,p d h u x . (22) 

Then the linear feedback gain L of the RNO can be designed by solving the LMI (16) with F 

substituted by G, subject to (22). Once a feasible L and P are obtained from the LMI, the 

function h(x,u) is directly obtained from (22). 

Assuming that the linear feedback gain L and the positive matrix P are designed to satisfy 

(16) with F substituted by G and the observer matching condition (20), the nonlinear 

feedback  with  satisfying h(x,u) guarantees the boundedness of the observer error e: 

 
1 T





P D De┟

De
, (23) 

which can be shown by considerng the Lyapunov function V(e)=eTPe. Using the error 
dynamics (18), the time derivative of V(e) becomes: 
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. (24) 

Note that 1) the term (a) is strictly negative whenever e is outside of the ellipsoid defined by 
{e: eTPe≤1}, and 2) the term (b) is always strictly negative. Thus, the time derivative of V(e) is 
strictly negative if eTPe≤1 is violated. Therefore, the observer error is guaranteed to 
converge to and be bounded within the ellipsoid {e: eTPe≤1}. 

3.4 H∞ observer (H∞O) design 

The H∞O was designed as described in Hahn et al. (2011) and the detailed discussion on its 
design is therefore omitted here. Briefly, the H∞O assumes the same form as the RLO (6). 
However, in contrast to the RLO whose observer gain L is a constant matrix, the observer 
gain L of the H∞O is a transfer matrix: L=L(s), where s is the Laplace variable. Therefore, the 
state estimation is given by: 

 ˆ ˆ u  x Ax B υ , (25) 

where the feedback  is the output of a dynamic system with the clinical effect estimation 
error as its excitation signal: 

  ˆy  ξ ξξ A ξ B Cx ,  ˆy  ξ ξυ C ξ D Cx . (26) 

The transfer matrix between  and ˆy y Cx  becomes 

 
1

( )s s


    ξ ξ ξ ξL C I A B D . (27) 

The objective is to design a feedback gain L(s) of the H∞O that is robust against Fw. In the 
frequency domain, (6) and (25) are expressed as follows: 

 
     

       

1 1

1 1
ˆ

s s u s s s

s s u s s s y s

 

 

         

         

x I A B I A Fw

x I A B I A L 
. (28) 

where      ˆy s y s s Cx . Subtracting  ˆ sx  from x(s) yields the following error dynamics: 

           
11 1

s s s s s s s
 

          ewe T w I I A L C I A Fw . (29) 

Based on (29), the H∞O can be designed by minimizing the H∞ norm of the frequency-
weighted closed-loop disturbance-to-error transfer function Tew(s): 
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   min
j

j j


 
e ew

L
W T , (30) 

where We(s) is a weighting function specifying the desired error bound. The linear fractional 
transformation (LFT) (Skogestad & Postlethwaite, 1996) can be used to convert (30) to the 
standard H∞ optimization set-up (Skogestad & Postlethwaite, 1996) shown in Fig. 4, where 
P(s) is given by: 

 
 
     

 
     

 

1 1

1 1

s s s ss s s
s

y s s ss s

 

 

                                     

e eW I A F W I Az w w
P

υ υC I A F C I A


, (31) 

where z(s)= We(s)e(s). This chapter employed a simple first-order filter (32) as We(s), which 
aims at small errors in the low frequency region: 

    2
4 4 4 4 2

1 50

1 1

1 2

s
s k

s EC


  


  

eW I 0 , (32) 

where k specifies the error bound at steady state, 1 specifies the observer bandwidth, and 

2>1. Then the state-space representation (33) of P(s) is obtained: 
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. (33) 

 

Fig. 4. Standard H∞ optimization set-up for H∞O design. 

Based on (33), the optimal H∞O can be designed using the D-K iteration (Skogestad & 
Postlethwaite, 1996). Note that although (33) does not satisfy all the regularity assumptions 
required for H∞ optimization (Skogestad & Postlethwaite, 1996), the problem can be 
resolved by any standard regularization procedure (e.g. Pertew et al., 2006). 
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4. Methods  

4.1 Design of observers 

The demographic and PD data of 15 patients aged 18-30 (22+/-3.2) listed in Dumont et al. 
(2009) were used to obtain a nominal PK and PD model (1)-(4). Then 100 random Monte-
Carlo models were created for the nominal model by applying up to +/-15% perturbations 
to all the PK and PD parameters. The PK/PD variability was specified as follows: 

  iu d diag    Fw Ax B E w  , (34) 

where i, i=1,...,6 were chosen to encompass the resultant effect of up to +/-15% random 
PK/PD parametric perturbations as well as surgical stimulation of up to +/-20 WAVCNS 
units. 

Before designing the observers, the observability of the system was analyzed by evaluating 
the observability grammian matrix (35) with the nominal patient model: 

  T T

0
exp expo d  

    W A C C A , (35) 

using which the relationship between the dominant direction of each eigenvalue and the 

propofol concentration at each compartment was examined. The condition number of Wo 

was also calculated to assess the well-posedness of the observer design problem. 

Using the nominal patient model, the observer gain matrix L for RLO and RNO were 

designed by solving the LMI (8) and (16) with =1 and =10-5, respectively. In the RNO 

design, the constraint (22) was imposed on P. The H∞O was designed by applying the D-K 

iteration procedure to the standard set-up (33). The weighting function (32) was specified as 

k=5.0, 1-1=2.0×10-5Hz, and 2-1=1.0×109Hz, which requires the error to be bounded by 20% 

up to 2.0×10-5Hz, beyond which an increase in size of the error is permitted. 

4.2 Monte-Carlo simulation 

The 100 randomly created patient models were used for the Monte-Carlo simulation. TCI 

administration of propofol to target the effect site propofol concentration of 3mcg/ml was 

chosen as the simulation scenario (Fig. 5). The duration of the simulated procedure was 

2000s. The surgical stimulation shown in Dumont et al. (2009) was adopted and applied to 

the patient models from 1200s to 1700s (Fig. 5). The open-loop-predicted propofol 

concentrations were calculated by solving the PK and PD models (1) and (2). 

4.3 Statistical analysis 

From the simulation of each of the 100 random patient models, the following plasma and 
effect site percentage errors (PE) were calculated for both observer-based estimation (RLO, 
RNO, and H∞O) and open-loop prediction: 

 
   

 
ˆ

100 s ss
j

s

C j C j
PE

C j


  , (36) 
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where PEjs denotes the PE for the sample j at the site s (s=p for plasma and s=e for effect 

site), and Cs(j) and  ˆ
sC j  are the true versus open-loop predicted or closed-loop estimated 

drug concentrations for the sample j at the site s. The median absolute PE (MDAPE), mean 
absolute PE (MNAPE) and maximum absolute PE (MXAPE) were calculated as follows and 
were used to compare the performance of the observers and its potential over the open-loop 
prediction: MDAPEs=median{|PEjs|}, MNAPEs=mean{|PEjs|}, and MXAPEs=max{|PEjs|} 
(Varvel et al., 1992). The errors were calculated for the induction phase of anesthesia 
(t<600s) and the entire procedure (t<2000s) in order to examine the effectiveness of the 
observers against surgical stimulation. The reduction in errors by the observers over the 
open-loop prediction was assessed in terms of the median value of the 100 observer-
estimated MDAPE, MNAPE and MXAPE normalized by their open-loop-predicted 
counterparts. The statistical significance of the error reduction was determined by applying 
the two-sample t-test to the 100 pairs of observer-estimated and open-loop predicted 
MDAPE, MNAPE and MXAPE. 
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Fig. 5. Propofol effect site TCI scenario for Monte-Carlo simulation. 

5. Results and discussion  

5.1 Observability analysis and observer design 

The effect site propofol concentration x4 (which is the primary concentration of interest) was 
associated with the second smallest eigenvalue of Wo, whereas the peripheral 
compartmental concentrations x2 and x3 corresponded to its largest and second largest 
eigenvalues. This implies that the influence of x4 on the output (x5) is relatively weak 
compared to x2 and x3, because x2 and x3 can dominate x4 in terms of output energy through 
their slowly decaying dynamics (i.e. x2 and x3 decay much slower than x1 and x4). The 
condition number of Wo was very large (approximately 821), indicating that the degree of 
observability for propofol concentrations in different compartments can be significantly 
different. Essentially, the observability analysis clearly illustrates that estimating x4 is 
inherently a challenging task. 

RLO design resulted in L with optimal tr[P]=6.7×108. The real part of the closed-loop 
eigenvalues ranged from -4.5 to -0.4. RNO design resulted in L with optimal tr[P]=8.2×108. 
The real parts of the closed-loop eigenvalues range from -2.1×102 to -1.2×10-4. H∞O design 
resulted in L(s) that has robust stability margin of ∞ and robust performance margin of 1.1, 
indicating that the closed-loop system is always stable, and is robust against up to 1.1 times 
the uncertainty incorporated in the observer design (Balas et al., 2009). 
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5.2 Performance evaluation and statistical analysis 

The distributions of MDAPE, MNAPE, and MXAPE of the propofol concentration errors at 
the plasma and the effect site are shown in Fig. 6 and Fig. 7 for the induction phase of 
anesthesia and the entire procedure, respectively. Tables 1-3 summarize mean (SD) of these 
errors. 
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Fig. 6. Distributions of MDAPE, MNAPE, MXAPE during the induction phase of anesthesia. 
OL: open-loop prediction, RL: RLO, RN: RNO, RH: H∞O. 
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Fig. 7. Distributions of MDAPE, MNAPE, MXAPE during the entire procedure. OL: open-
loop prediction, RL: RLO, RN: RNO, RH: H∞O. 
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The RNO and the H∞O outperformed the RLO. Except for its benefit in reducing MXAPE of 

Ce during the induction phase of anesthesia (by 21%, p<10-5; Table 3), the RLO was no better 

than the open-loop prediction (Table 1 and Table 2). Compared with the open-loop 

prediction, the RNO was capable of reducing MXAPE of Ce (by 59%, p<10-5) and Cp (by 38%, 

p<10-5) during the induction phase of anesthesia (Table 3), and MXAPE of Ce (by 43%, p<10-

5) during the entire procedure (Table 3). Its MDAPE and MNAPE were as good as those of 

the open-loop prediction during the induction phase of anesthesia, but they deteriorated 

more than the open-loop prediction when evaluated for the entire procedure (Table 1 and 

Table 2). The degraded performance of the observers in the presence of surgical stimulation 

is expected because it distorts the clinical effect measurement, resulting in an inappropriate 

feedback correction, whereas the open-loop prediction is not affected by surgical stimulation 

(see Fig. 1). In contrast to RLO and RNO, the H∞O was able to deliver statistically significant 

reduction in all the PE metrics over the open-loop prediction, regardless of the presence of 

surgical stimulation (see Table 4). Moreover, the SD of all the metrics for the H∞O were 

significantly smaller than those of the open-loop prediction, indicating that the propofol 

concentrations provided by the H∞O are more reliable. This suggests that, in contrast to the 

open-loop prediction in which the PK/PD variability directly deteriorates the propofol 

concentration estimates, the observer’s feedback correction based on the clinical effect 

measurement is viable in suppressing the propagation of the adverse influences of the 

PK/PD variability into the propofol concentration errors. 

 

 Induction Phase Entire Procedure 

 OL RLO RNO H∞O OL RLO RNO H∞O 

Ce 8.08 (5.61) 14.6 (9.91) 9.70 (6.81) 7.07 (4.96) 8.67 (6.06) 15.1 (10.2) 11.6 (7.78) 6.82 (4.99) 

Cp 8.07 (5.65) 14.6 (9.95) 9.70 (6.83) 7.18 (5.06) 8.66 (6.07) 15.1 (10.1) 11.6 (7.77) 6.93 (5.07) 

Table 1. Distribution of MDAPE: mean (SD). 

 

 Induction Phase Entire Procedure 

 OL RLO RNO H∞O OL RLO RNO H∞O 

Ce 8.70 (5.06) 14.8 (9.47) 9.51 (6.44) 7.01 (4.80) 8.68 (5.71) 16.3 (8.94) 12.3 (7.60) 6.78 (4.84) 

Cp 8.24 (5.18) 14.9 (9.58) 9.48 (6.42) 7.11 (4.90) 8.55 (5.76) 16.6 (9.02) 12.3 (7.58) 6.89 (4.94) 

Table 2. Distribution of MNAPE: mean (SD). 

 

 Induction Phase Entire Procedure 

 OL RLO RNO H∞O OL RLO RNO H∞O 

Ce 29.7 (10.8) 22.1 (9.40) 13.9 (7.29) 9.44 (4.81) 29.8 (10.7) 38.1 (12.1) 20.1 (8.61) 10.1 (4.94) 

Cp 18.9 (7.11) 25.1 (9.09) 13.2 (7.28) 8.85 (4.83) 19.2 (6.98) 582. (53.7) 19.9 (8.70) 9.61 (4.93) 

Table 3. Distribution of MXAPE: mean (SD). 
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 Induction Phase Entire Procedure 

 MDAPE MNAPE MXAPE MDAPE MNAPE MXAPE 

Ce 13% (p<10-10) 21% (p<10-10) 73% (p<10-10) 24% (p<10-10) 25% (p<10-10) 72% (p<10-10) 

Cp 11% (p<10-10) 15% (p<10-10) 59% (p<10-10) 22% (p<10-10) 21% (p<10-10) 56% (p<10-10) 

Table 4. Reduction of PE metrics over open-loop prediction by H∞O. 

Several important observations can be made from the overall results. First, the observers 
were effective in reducing MXAPE (except for the RLO in the presence of surgical 
stimulation, i.e. during the maintenance phase). This is attributed to the philosophy behind 
the design of robust observers – the observers considered in this chapter were designed to 
improve the worst-case performance (Skogestad & Postlethwaite, 1996). Due to the design 
objective of guaranteeing performance and robustness even in extreme situations, the 
behaviour of these observers on patients whose dynamics are rather close to the nominal 
design model may not be optimal (this may partly explain why MDAPE and MNAPE 
metrics of RLO and RNO are not as good as the open-loop prediction). 

Second, in spite of its robustified feedback gain, the standard linear observer was not an 
attractive strategy for anesthesia drug concentration estimation, due to its limited 
performance in the presence of surgical stimulation. In our attempt to overcome this 
limitation, we presented an RNO and an H∞O as alternatives to the RLO. The RNO could 
provide a marginal improvement that was not sufficient to justify the cost of additional 
measurement (i.e. the time derivative of the clinical effect). The H∞O exhibited significantly 
superior performance to RLO and RNO without any extra measurement requirements, by 
virtue of the additional flexibility in its structure: the feedback gain L(s) is a dynamic system 
rather than a constant matrix as in RLO and RNO. Despite their limited performance in the 
presence of surgical stimulation, RLO and RNO can still be considered as valid options for 
applications in the induction phase of anesthesia and the operations involving minor 
surgical procedures, by virtue of their structural simplicity in implementation in comparison 
with H∞O. 

From the design perspective, one advantage of the observer-based strategies investigated in 
this chapter is the explicit specification of the amount of PK/PD uncertainty and surgical 
stimulation it must tolerate (see the matrix F in (16) for RLO and RNO and in (33) for H∞O) 
and its systematic use for optimizing the observer performance so that the observer is tuned 
to appropriately exploit the clinical effect measurement distorted by surgical stimulation, in 
order to better estimate the drug concentrations over the open-loop prediction in spite of the 
PK/PD uncertainty. 

6. Conclusion 

This chapter investigated alternative observer-based strategies for estimation of anesthesia 
drug concentrations. The design objective was dedicated to robustness of observers against 
the PK/PD model uncertainty and the unknown surgical stimulation. In this chapter, we 
considered linear (RLO), nonlinear (RNO), and  dynamic (H∞O) observers. The performance 
of the observers in comparison with traditional open-loop prediction was evaluated using a 
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Monte-Carlo simulation of a surgical procedure. Based on the PE-based metrics, it was 
concluded that the use of H∞O is optimal. However, RLO and RNO can be viable 
alternatives for the induction phase of anesthesia and/or minimally stimulating procedures.  
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