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1. Introduction 

In veterinary clinical practice the sensitivity of a given animal species to a certain drug can 
be attributed to pharmacodynamic and pharmacokinetic variations. In contrast to human 
medicine where individual differences are of primary importance, interspecies and also 
inter-breed distinctions are crucial in comparative veterinary medicine. Pharmacokinetics 
describes the behaviour of the drug in the body. Similarly to human nomenclature, the 
ADME process describes the absorption (other than IV adiministration), the distribution, the 
metabolism and the elimination of certain drugs. To produce a systemic effect, the drug 
must be absorbed and distributed to attain therapeutic concentration at the site of action. If 
the target site is the GI tract, then no absorption is needed after oral application. Significant 
variations can be seen in the extent of absorption and distribution, the rate and the manner 
of metabolism and elimination between animal species. Because of pronounced interspecies 
variations extrapolation of parameters from pharmacokinetic data of human or other animal 
origin is inappropriate and can be hazardous in case of several drugs. Lack of 
pharmacokinetic data however, necessitates the empiric application of extrapolated human 
dosages in many cases. This chapter concentrates on the variations in the ADME process 
between animals of different species, breed and age.  

2. Administration routes in veterinary practice 

Administration routes in the veterinary medicine are mainly similar to those in the human 
medicine with minor differences. Major application routes include intravenous (IV), 
intramuscular (IM), subcutaneous (SC), oral (PO), topical, intramammary and inhalational 
administration. Intravenous (IV) administration is frequent in all animal species. Drug action 
is the fastest when applied IV because no absorption is necessary. Drugs applied as an 
intravenous bolus achieve high plasma levels and produce a quick, immediate action and 
usually a pronounced effect. Drugs can also be applied IV as a continous infusion with 
which the surgeon can easily govern the effects of the substance as the concentration and the 
rate of infusion determines plasma steady state levels. It is a common way of applying 
intravenous anaesthetics like propofol. Although the IV route has many advantages, it is 
probably the most toxic way of administration. Drugs administered IV have to be applied 
slowly and observe the patient for potential side effects. Intramuscular (IM) and subcutaneous 
(SC) application is very frequent in the veterinary medicine. It is common in ruminants, 
swine, horse, dogs, cats and rabbits. Rate of absorption is determined principally by the 
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administration route, the vascularity and area of the region, the concentration and the 
ionization of the drug. There are also differences in the localization of the injection. For 
example, suprascapular IM injection is frequently applied in small animals, as it results in 
much faster absorption when compared to the gluteal muscles because of better vascularity 
and the proximity of the periosteum. Depending on the injection site, peak plasma 
concentrations are usually achieved 20-40 minutes after administration. There are several 
drugs that are formulated as sustained release preparations. Ampicillin and amoxicillin 
trihydrate, procaine and benzathine penicillin are antibiotics frequently formulated as depot 
injections resulting in prolonged absorption and effective plasma levels. These preparations 
are usually applied with 2-3 day intervals that is a great advantage in food producing 
animals where restraint is an important and avoidable stress factor. Bioavailability is 
generally higher or equal to oral administration and it is infrequently 100%. Inactivation or 
precipitation at the injection site and damage of the tissues are common contributing factors 
to low IM bioavailability values, like in case of diazepam. Oral administration is the most 
frequent mode of application in animals as food producing animals are primarily treated via 
this route. In poultry and swine drugs are commonly dissolved in the drinking water or 
mixed into the feedstuff to treat a large number of animals. Boluses, drenches, oral gels and 
oral pastes are common dosage forms for the oral treatment of ruminants and horses. 
Tablets, capsules, oral solutions and suspensions are the primary oral dosage forms in 
companion animals. Differences in oral bioavailability between animal species are 
conspicouos, detailed comparative aspects are discussed in the “Absorption of drugs” 
Chapter. Topical administration also raises several comparative pharmacokinetic issues that 
are discussed in the „Absorption of drugs” Chapter. Intramammary application is an 
important veterinary application route in the treatment and prevention of mastitis in cattle. 

3. Absorption of drugs 

Once the drug has been administered by any route other than IV it has to be absorbed into 
the bloodstream to exert its systemic effect. The extent of absorption is termed bioavailability, 
and defined as the ratio of AUC (area under the curve) after extravascular and intravenous 
administration.  

F (bioavailability) = AUCextravascular/AUCintravenous 

Depending on the administration route we can talk about oral, intramuscular, 
subcutaneous, topical etc. bioavailability. As the greatest interspecies differences occur after 
oral administration, this chapter concentrates on this application route. The extent and rate 
of absorption depends mainly on the lipophilicity, molecular weight and degree of 
ionization of the substance at the site of administration. Weak acids (like most of the 
NSAIDs) are mainly in nonionized form in the acidic environment of the stomach thus their 
absorption starts in the proximal regions of the GI tract resulting in lower Tmax values. Weak 
bases are mainly in ionized form in the stomach, thus their Tmax values are usually higher. 
Oral bioavailability can also be influenced via biotransformation by intestinal epithelial cells 
or by the liver. This is called the „first pass effect”. Many drugs are inactivated via this 
mechanism, examples include lidocaine, diazepam, xylazine, detomidine, medetomidine, 
morphine or cimetidine. In case of prodrugs, like codeine, cefuroxime-axetil or pivampicillin 
first pass metabolism is essential in activating the substance. To avoid first pass metabolism 
the drug can be applied parenterally or rectally as the rectum is not connected to the portal 
vein. Pharmaceutical formulations can also significantly alter the rate of absorption. 
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Modified release or coated tablets can delay dissolution of the substance in the 
gastrointestinal (GI) tract thereby protract absorption. Some examples for these preparations 
are retard tablets and capsules containing potassium, phenytoin, azythromycin, NSAIDs, 
sedatives and water soluble vitamins. Oily solutions, emulsions and suspensions can be 
used for the formulation of depot injections which - if injected subcutaneously or 
intramuscularly - can provide delayed absorption of the active substance. Chemical 
modifications are also used to prolong absorption. Ceftiofur is a veterinary third generation 
cephalosporin that has three different formulations for use in swine and ruminants. 
Ceftiofur sodium and ceftiofur hydrochloride are rapidly absorbed after intramuscular 
administration, while the free crystalline acid form have a protracted absorption resulting in 
approximately 150 hours effective plasma levels against certain respiratory pathogens, like 
Pasteurella multocida or P. haemolytica. Additional important factors that affect drug 
absorption include physical or chemical interaction with feed constituents, increased 
gastrointestinal motility or inflammation of the GI tract and disruption of GI epithelium. An 
example for the former phenomenon are the tetracyclines that are well known about their 
ability to form insoluble complexes with calcium and magnesium ions. Thus, feedstuff 
containing these ions in a high amount (e.g. milk products) should not be administered 
together with these antibiotics. Diseases with inherent increased GI motility will result in 
decreased absorption of the administered drugs. Inflammation of the GI mucosa and 
disruption of the GI epithelium (e.g. canine or feline parvovirosis) will result in increased 
absorption of the active substances. Aminoglycosides that are practically not absorbed from 
the intact GI tract can have much higher bioavailability and can exert systemic toxic effects 
(ototoxicity and nephrotoxicity) in animals with parvovirosis (Gemer et al., 1983, 
Riviere&Papich, 2009).  

3.1 Differences in oral and parenteral absorption in different animal species 

Discriminating monogastric and ruminant, herbivorous, omnivorous and carnivorous 
animal species is essential when defining comparative pharmacokinetics. Although there are 
notable differences in the whole ADME process, perhaps oral absorption and metabolism 
phases show the greatest distinctions. The length and volume of the GI tract in ruminants 
and horses is much more pronounced when compared to the other important domestic 
species (poultry, swine, dog and cat). This will result in longer passage time and usually 
delayed absorption after oral application of drugs. An example for this are the 
benzimidazole class of anthelminthics. A single oral dosage of these substances (e.g. 
albendazole, fenbendazole) can provide a protracted duration of action in horses, cattle, 
sheep and goats to eliminate the most important parasitic worms. In other animal species, 
multiple oral administration is usually necessary to eliminate the GI parasites. Dogs, cats 
and swine usually resemble in the rate and extent of oral absorption and these parameters 
are usually similar to humans. There are several exceptions however, that necessitate 
pharmacokinetic investigations in the certain species and need to arise precautions when 
extrapolating dosages or dosing intervals to humans or other species. Namely, oral 
bioavailability values show pronounced differences between animal species. The frequently 
applied broad spectrum aminopenicillin, amoxicillin shows an oral bioavailability of 5% in 
horses (Ensink et al., 1992), 28-33% in swine (Agerso&Friis, 1998), 59-68% in poultry (El 
Sooud et al., 2004, Jerzsele et al., 2009, Jerzsele et al., 2011) and 60-80% in dogs and cats 
(Küng et al., 1994). 
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In horses, oral bioavailability of a large number of drugs show great individual variations. 
Absorption of most antimicrobial agents is significantly hindered by feeding, thus 2-4 hours 
fasting is essential before applying these drugs. Even in these cases systemic availability can 
show wide variations between individuals, as in case of metronidazole between 60 and 90% 
(Baggot et al., 1998). Bioavailability of several drugs can be very low compared to other 
domestic species. Examples include several antibiotics, like ampicillin and amoxicillin that 
have 0-1% and 5% oral bioavailability, respectively (Ensink et al. 1992, Ensink et al. 1996). 
This phenomenon can result in severe dysbacteriosis because of the low extent of absorption 
and accumulation of the substance in the intestinal lumen. Pivampicillin, an ester of 
ampicillin can be used to overcome this problem, as the oral bioavailability of this drug is 
31-36% (Ensink et al. 1992). In foals per os absorption is usually more pronounced, oral 
bioavailability and age being frequently in a negative correlation. Cefadroxil shows 
approximately 100% oral bioavailability in neonatal foals that decreases to 15% until 5 
months of age (Duffee et al. 1997). Metformin, an antidiabetic substance has also very low 
oral absorption compared to humans (Hustace et al., 2009). Absorption of drugs from the 
oral mucosa can be quite significant. Detomidine, a frequently applied veterinary ┙2-agonist 
has significant first pass metabolism resulting in low oral bioavailability if ingested. If 
applied sublingually however, absorption form the oral mucosa eventuates 22% 
bioavailability (Kaukinen et al., 2010) which is clinically useful. In horses, subcutaneous 
injection of drugs is infrequent, intramuscular application is more common. Bioavailability 
values are similar after these administration routes, although IM administration usually 
produce lower Tmax values indicating faster absorption. As IM injections can cause sterile 
abscesses, IV administration is prevalent, in this case no absorption of the drug is necessary. 

In ruminants the presence of the reticulorumen has some important clinical consequences.  
Large volume of the ruminal fluid (60-70L in cattle) dilutes the drugs and decreases their 
rate of absorption delaying the effect of orally applied medicines. Ruminal microbial flora 
restricts the oral usage of most antibacterial agents in adult individuals. As calves do not 
possess a mature ruminal microflora, antibiotics can also be applied orally. The bacterial 
flora plays an important role in the biotransformation of certain substances, like the already 
banned chloramphenicol. In several cases, however, ruminal microflora can transform a less 
active substance to a more active/toxic one. For instance, urea is almost nontoxic to 
monogastric animals, while highly toxic to ruminants as urea is rapidly transformed to 
ammonia by the bacterial urease enzyme. Netobimine, an inactive prodrug of the 
anthelminthic molecule albendazole is converted to its active form, albendazole and 
albendazole sulfoxide in the rumen (Capece et al., 2001). Anthelmintics as one of the most 
commonly used medications in ruminants can be administered orally to young and adult 
ruminants alike. In ruminants, sustained release boluses represent an important group of 
formulations. These preparations often contain anthelminthics which are released slowly 
and/or intermittently from the product resulting in excellent activity against 
gastrointestinal endoparasites. These formulations are retained in the reticulorumen and 
release the substance for months resulting in a very long withdrawal period. 

In swine oral administration of drugs via feedstuff or drinking water is a common practice. 
Pharmacokinetic investigations are frequently conducted, especially in case of antibiotics 
and anthelminthics. In infectious diseases where bacteria are localized mainly in the GI tract 
antibiotics with no or very low oral bioavailability have an important role. Colistin and the 
aminoglycosides are frequently applied in these cases as they have excellent activity against 
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In dogs, Phase II acetylation reactions are absent, but this has much less importance in 
veterinary medicine compared to the deficiencies in the cat. These reactions occur when 
conjugating aromatic amino groups (Williams, 1967), for instance in case of most 
sulfonamides (Figure 4.). This defect in dogs has an advantage however, as acetylated 
sulfonamides are less water soluble than the parent compounds and are precipitated in 
kidney tubules causing renal damage in humans and several animal species. In dogs, 
however, this side effect is less frequent according to the lack of acetylated metabolites. 

 

 
Fig. 4. Sulfametoxazole, an antibacterial agent with an aromatic amino group 

In pigs, sulphate conjugation is present only in a low extent, but as this pathway is primarily 
an alternative to glucuronidation, the latter mechanism overcomes this deficiency, resulting 
in no known clinical importance in the veterinary practice. 

5.2 Induction and inhibition of enzymes involved in metabolism  

Enzyme induction and enzyme inhibiton are the most important factors affecting drug 
metabolism. Additional factors include decrease in plasma protein binding or decrease in 
hepatic blood flow. 

Enzyme induction in humans has been experienced for instance in case phenobarbital, 
phenytoin or rifampin. In animals, inducive capabilities are different. In rats, for instance 
phenobarbital has much lower while rifampin has negligible effect on CYP3A enzymes (Lu 
et al, 2001). The most thoroughly studied inducer of CYP450 enzymes is phenobarbital, a 
frequently applied antiepileptic sedative in dogs and cats. In humans it is a potent inducer 
of CYP3A4, CYP2B6 and CYP2C19. As this medication is given long term (usually lifelong) 
to veterinary patients, the phenomenon has significant clinical consequences. Phenobarbital 
accelerates metabolism and thus decreases duration of action of drugs given in conjunction 
with the barbiturate and metabolised on inducible CYP450 enzymes. Examples include 
amitriptyline, benzodiazepines, phenothiazines, tramadol or fentanyl. As phenobarbital also 
induces CYP2C19, the enzyme responsible for its own metabolism, the half-life of 
phenobarbital is subsequently decreased. Therefore, in animals receiving phenobarbital, 
plasma phenobarbital levels should regularly be checked and dosage adjusted to attain 
therapeutic levels. Phenytoin is another antiepileptic, that has pronounced enzyme inducer 
activity. Clinically it is useless in dogs, as it is a strong inducer of microsomal enzymes and 
therapeutic concentrations can only be achieved in the first days of treatment, after that 
autoinduction decreases plasma levels rapidly (Frey et al., 1980).  
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Enzyme inhibition is peculiar to several drugs, like cimetidine, omeprazole, macrolide 
antibiotics (erythromycin, clarithromycin), ketoconazole, certain fluoroquinolones or 
chloramphenicol. Omeprazole and lansoprazole are known inhibitors of the human CYP1A 
subfamily, while pantoprazole has the lowest inhibitory action among the proton pump 
inhibitors (Masubuchi et al., 1997). These drugs increase half-life of numerous drugs leading 
to potential side effects. Erythromycin and clarithromycin increases risk of toxicity in case of 
terfenadine or theophylline. Azithromycin seems to have little potential of CYP450 induction. 
Cimetidine and some fluoroquinolones also increase theophyllin plasma levels by inhibiting 
CYP1A2 in dogs (Fink-Gremmels, 2008). Ketoconazole increases midazolam plasma levels 
by interacting with CYP3A4 (Kuroha et al., 2002). One of the most significant metabolic 
interaction is observed in case of macrolides or pleuromutilins and the ionophore 
antibiotics. Namely, administration of erythromycin, tiamulin and valnemulin 
concomittantly with anticoccidial ionophores (monensin, salinomycin, narasin) causes 
significant increase in mortality, mainly because of decreased elimination of the latter 
substances. The most frequently investigated interaction is between monensin and tiamulin. 
According to these data it can be pronounced that tiamulin inhibits biotransformation of 
monensin on CYP3A subfamily, and very low margin of safety associated with monensin 
can increase mortality (Nebbia et al.,1999, Szucs et al., 2004). 

6. Drug excretion 

In the course of metabolism the primary purpose of biotransformation is to increase water 
solubility of drugs making them capable of elimination. Certain drugs are polar and 
hydrophilic enough to be excreted unchanged. Examples include the penicillins or the 
aminoglycosides, that are excreted with the urine in an active form. In point of fact 
elimination consists of metabolism and excretion, but polar drugs are eliminated mainly by 
excretion only. Excretion of xenobiotics follows usually first order kinetics, a certain ratio of 
a drug is eliminated in a certain amount of time. In some cases however, elimination follows 
zero order kinetics, and only a certain amount of drug is eliminated in a certain amount of 
time. This happens, when the excretion mechanisms become saturated, for instance in 
severe renal insufficiency. 

Renal excretion is the most important route of elimination. Polar, hydrophilic drugs can be 
eliminated via the urine and this includes several unchanged (not metabolised) substances. 
In case of antibiotics it is of great importance, whether the drug is excreted in an active or 
inactive form when treating urinary tract infections. Antibacterial agents, like penicillins, 
most of the cephalosporins and aminoglycosides are practically not metabolised, short 
acting tetracyclines and fluoroquinolones are metabolized in a low extent, but eliminated 
mainly with the urine. All of the before mentioned substances are effective in the treatment 
of urinary tract infections, but certainly pharmacodynamic considerations must also be 
considered. Renal excretion involves passive glomerular filtration and active tubular 
secretion, mainly in the proximal tubule. The latter requires energy and carrier molecules 
(„organic anion transporters”), and the process can be saturated. As active secretion plays 
an important role in the excretion of several substances, like most of the beta lactams, 
inhibiting the process significantly reduces elimination, thus increases half-life of these 
medicines. Probenecid, a substance inhibiting these carrier mediated transport mechanisms 
played an important role in prolonging the effect of penicillin (Kampmann et al., 1972). 
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Probenecid is still used concurrently with several medicines (carbapenems, antiviral agents) 
to increase their half-life.  

Glomerular filtration is a passive process and is significantly hindered by extensive (>80%) 
plasma protein binding. For instance, cefovecin, a third generation veterinary cephalosporin 
has over 95% protein binding in dogs and cats, therefore half-lives in these species are very 
long, 133 h and 166 h, respectively. 

Reabsorption in the distal tubule plays an important role in prolonging half-life of drugs. 
Nonionized, lipophilic substances can diffuse passively from the tubular fluid back to 
plasma. As several drugs are weak acids or bases, pH of the urine has top priority when 
predicting tubular reabsorption of these substances. Acidification of the urine increases 
ionization of weak alkaline substances, while alkalinization increases ionization of weak 
acids, and these polar molecules are ion trapped in the tubular fluid. This fact helps to 
govern the elimination of some potentially toxic substances via urine. Excretion of alkaloids, 
like atropine or caffeine can be enhanced by urine acidifiers. Elimination of acidic 
substances, like most of the NSAIDs or the barbiturates can be accelerated by alkalizing the 
urine. 

Biliary excretion of xenobiotics is less decisive, than renal excretion and mainly depends on 
molecular weight. Molecules larger than 500D are usually excreted with the bile in all 
animal species and humans. Dogs, rats and chickens are „better” biliary eliminators, in these 
animal species smaller (300-400D) molecules are also excreted via this route. The nature of 
the xenobiotic largely influences the route of excretion. Certain drugs, like erythromycin, 
lincomycin, clindamycin, chloramphenicol, ketoconazole, griseofulvin or the 
methylxanthines are primarily excreted with the bile. Conjugated forms of these substances 
can be deconjugated in the small intestine by bacterial ┚-glucuronidase enzymes and can be 
reabsorbed. This enterohepatic circulation (Figure 5.) can significantly increase half-life of 
certain drugs, like the xanthine derivatives. Thus, administration of activated charcoal in 
theophylline or theobromine (chocolate) toxicosis in dogs and cats is highly effective in 
reducing half-life by binding to intestinal portions of the substance and hindering its 
reabsorption. 

 
Fig. 5. Enterohepatic circulation of drugs 

Elimination via milk and eggs is also important in the veterinary medicine. Several lipophilic 
drugs are excreted partly with the milk. As an example, 3.8% and 6.8% of the dosage of 
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erythromycin and spiramycin, two lipophilic macrolide antibiotics is excreted via the milk, 
respectively (Giguere et al., 2006). Penethamat can also attain high concentrations in the 
milk after intramuscular administration. Relatively high drug concentrations in the milk 
necessitate caution when determining and observing withdrawal time for these substances. 
Elimination via the eggs is of high practical importance in laying hens. For instance, several 
anticoccidials, like robenidine must not be applied to egg producing animals, as drug 
reaches high concentrations and gives an unpleasant taste to the egg. 

6.1 Half-life of drugs 

Elimination half-life (t1/2) is the time when plasma levels of the drug decline to half and is an 
essential parameter when comparing elimination of drugs between species. The half-life is 
usually independent from the dosage, as elimination generally follows first order kinetics, 
and a certain ratio is eliminated from the body in a certain amount of time. As the dosage is 
increased and excretion capacity becomes saturated, the elimination will show zero order 
kinetics, and half-lives will be significantly longer. An example for this is acetyl-salycilic 
acid (aspirin) in cats. Because of this phenomenon, aspirin is usually administered with 48-
72 hour intervals to cats if less toxic drugs are not available or not appropriate for the 
disease condition. As half-life of drugs show pronounced differences, it is crucial in 
determining dosage and dosing interval and to predict toxic effects in animals. Theobromine 
for instance that has approx. 7 hours half-life in humans is very slowly eliminated in dogs 
and cats (dog t1/2 is 17.5 h), and frequently causes posioning when chocolate is given to 
these species. Sulfonamides and trimethoprim are good examples to demonstrate 
differences in half-lives among species. Trimethoprim for instance has 1.25 h half-life in 
cattle, 3.2 h in horses, 4.6 h in dogs and 10.6 h in humans. Its partner sulfamethoxasole has 
2.3 h half-life in cattle, 4.8 h in horses and 10.1 h in humans. Differences in these parameters 
necessitate the adaptation in drug dosing in the different species. Similar half-life of 
sulfonamides and trimethoprim in humans makes it an excellent combination 
pharmacodynamically and pharmacokinetically. In animals, however, half-life of the 
sulfonamides and trimethoprim is infrequently similar, thus efficacy of the combination is 
less pronounced and needs correction in the ratio of the  substances in veterinary products. 
An other important group with pregnant differences are the NSAIDs. Aspirin for instance 
has 7.5 h elimination half-life in dogs and 37.6 h in cats. This necessitates the prolongation of 
the dosage interval in cats, as described above. In conclusion it can be stated that half-life of 
drugs is essential when determining dosage and dosage intervals in each animal species, 
and prolonged half-lives of certain drugs play a crucial part in evoking toxicoses in animals, 
especially in those with defects in elimination, like cats. 
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