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1. Introduction 

Localized inflammation and the associated influx of leukocytes is a hallmark of the 
pathogenesis of many diseases. The ability to target the recruitment of leukocytes holds vast 
therapeutic potential in inflammatory diseases where there is excessive cell recruitment due 
to an overactive immune response, or the improper resolution of the initial response 
resulting in chronic leukocyte infiltration. 

1.1 The neutrophil 

Polymorphonuclear leukocytes, or neutrophils, are a critical component of the innate immune 
system, participating in host defence against bacterial and fungal infections. Not surprisingly, 
neutropenias can lead to severe infections and sepsis. During an inflammatory response, 
neutrophils are recruited to the sites of infection and/or injury by chemoattractants, including 
the chemokine family of proteins. Once in the tissue, neutrophils fight infections by ingesting 
microorganisms and producing reactive oxygen intermediates (ROI) as well as other anti-
microbial substances, such as defensins (Ganz, T., 2003). Neutrophils can also produce and/or 
exacerbate inflammatory disease states as a result of the potent systems that have evolved in 
these cells for microbial killing. Inappropriate or excessive activation of these systems results 
in tissue damage (Fujishima et al., 1995). To better understand the role of the neutrophil in the 
fine balance between host defence and tissue injury, the mechanisms underlying neutrophil 
recruitment will be discussed. 

1.2 Neutrophils and tissue injury 

Neutrophils have been implicated in the pathogenesis of several inflammatory conditions, 
including: ischemia reperfusion injury (following coronary artery occlusion) (Frangogiannis 
et al., 2002), idiopathic pulmonary fibrosis (Haslam et al., 1980), arthritis (Weissmann et al., 
1984), asthma (Lemanske et al., 1983), vasculitis (Fauci et al., 1978), glomerulonephritis 
(Holdsworth et al., 1984) and acute respiratory distress syndrome (ARDS) (Wieland et al., 
1999). Neutrophil-mediated tissue injury results from the release of neutrophil anti-
microbial factors such as ROI and proteases, and other mediators that amplify cell 
recruitment into the extracellular milieu (Frangogiannis et al., 2001). This can occur in two 
ways: 1) activation of neutrophils leads to fusion of antimicrobial granules to the plasma 
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membrane and subsequent release of granule contents, and 2) attempts to ingest large 
particles result in a large open vacuole, and subsequent granule fusion and release of 
granule contents into the extracellular space (Weissmann et al., 1971).  

ROI are strong oxidizing and reducing agents that damage the integrity of cell membranes 
by lipid peroxidation (Li et al., 2002). ROI also promote arachidonic acid synthesis by 
activating phospholipase A2. Arachidonic acid is an important precursor of eicosanoids and 
prostaglandins, including thromboxane A2 and leukotriene B4 (Toyokuni et al., 1999). 
Increased production of these pro-inflammatory molecules enhances recruitment of 
leukocytes. ROI also induce activation of transcription factors such as nuclear factor κB (NF-
κB) and activator protein1 (AP1) (Toyokuni et al., 1999), leading to increased expression of 
adhesion molecules, including P-selectin, and chemokines (such as IL-8) thereby facilitating 
leukocyte arrest and recruitment from the circulation (Eltzschig et al., 2004). 

Activated neutrophils also secrete matrix metalloproteases (MMPs), including collagenase 
and gelatinase. These enzymes are structurally specialized to digest basement membranes and 
interstitial structural proteins to facilitate neutrophil extravasation and subsequent migration 
through the interstitium (Kang et al., 2001). MMPs degrade several major structural 
components of the extracellular matrix (ECM), including collagen, fibronectin, proteoglycans, 
laminin and gelatin. MMPs are antagonized by tissue inhibitors of metalloproteases (TIMPs; 
Own et al., 1999). It has been shown that the imbalance between TIMPs and neutrophil-
derived MMPs is a key feature of inflammatory conditions, including ARDS and asthma 
(Cederqvist et al., 2001). Neutrophil derived elastase is another bactericidal protease that is 
also associated with tissue damage. Like the MMPs, elastase displays proteolytic activity 
against structural components of the ECM. Elevated levels of neutrophil derived elastase and 
collagenase have been detected in patients with chronic inflammatory conditions, such as 
rheumatoid arthritis (Garcia et al., 1987). Increased neutrophil-derived protease activity has 
also been linked to cartilage destruction (Mohr et al., 1981). In ARDS, elastase activity has been 
associated with degradation of surfactant proteins in the lung (Hirche et al., 2004; Rubio et al., 
2004). These proteins increase bacterial opsonization and clearance of apoptotic neutrophils 
(Vandivier et al., 2002). Therefore, increased elastase activity could indirectly increase 
susceptibility to infection and delay resolution of inflammation in the lung. 

Commonly prescribed anti-inflammatory drugs, such as aspirin and glucocorticoids, have 
shown some success in reducing neutrophil-mediated tissue damage. However, these drugs 
generally attenuate activation of transcription factors such as NF-κB, thereby non-
specifically reducing expression of cytokines and leukocyte adhesion molecules (Panes et al., 
1999). One alternative method to prevent neutrophil-mediated tissue injury is to selectively 
block neutrophil recruitment to inflammatory foci. However, the redundancy in 
chemoattractant pathways means that interruption of a particular chemoattractant pathway 
may result in another pathway assuming its function. In principle, localized general 
chemoattractant blockade could be a useful strategy. Unique strategies to achieve this may 
be gained from studying central nervous system (CNS) development, in which positive and 
negative guidance cues for neuronal migration and axonal pathfinding have been defined. 

1.3 Leukocyte trafficking and the adhesion cascade 

The purpose of the inflammatory response is to selectively recruit the appropriate subsets of 
leukocytes to a site of inflammation. Inflammatory cytokines, such as interleukin 1 (IL-1) 
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and tumour necrosis factor ǂ (TNF-ǂ), and soluble chemoattractants, are released within the 
local inflammatory environment. This results in local vasodilation, increased volume of 
blood perfusing the inflamed area, and a simultaneous decrease in the flow velocity within 
the vessel, facilitating extravasation of circulating leukocytes. Leukocytes are recruited to 
sites of inflammation in a series of coordinated interactions with endothelial cells lining the 
vascular wall. The classical leukocyte adhesion cascade involves these main steps: i) 
leukocyte capture and rolling, ii) activation and arrest, and iii) transendothelial migration 
(Fig. 1). Failure in any one of these steps can result in severe immunodeficiencies (Beutler, 
B., 2004). However, there exists a substantial therapeutic potential for the localized blockade 
of leukocyte adhesion and diapedesis.  

 

 

Fig. 1. Endothelial–leukocyte interactions leading to transmigration across the vascular wall. 
(i) Capture and (ii)rolling: The initial tethering of leukocytes to the endothelial cells lining 
the vessel wall is mediated by the selectins. These structural interactions enable the 
leukocyte to roll along the venular wall and to ‘sample’ the endothelial surface for activating 
factors (iii) Arrest: These interactions lead to leukocyte integrin activation. Firm adhesion of 
the leukocyte is mediated through binding of integrins to members of the immunoglobulin 
superfamily expressed in stimulated endothelial cells.(iv) Diapedesis: Following firm 
adhesion, the cell changes shape in response to local chemoattractant gradients and 
transmigrates across the endothelial barrier.  

Selectins are a family of adhesion molecules that are structurally specialized for the initial 

capture of circulating leukocytes. Rolling is mediated by E-selectin and P-selectin, expressed 

by endothelial cells, and by L-selectin expressed on the majority of circulating neutrophils, 

monocytes, eosinophils, and T and B lymphocytes (Kansas, G., 1996). The broad expression 

pattern of L-selectin allows for nonspecific recruitment of all leukocyte lineages. P-selectin is 

constitutively found in Weibel-Palade bodies of endothelial cells, and mobilized to the cell 

surface within minutes following activation by inflammatory mediators (Frangogiannis et 

al., 2002). All of the selectins interact with P-selectin glycoprotein ligand 1 (PSGL1), 

although other glycoprotein ligands exist, such as CD34 and MadCAM-1 (McEver et al., 

1997; Puri et al., 1995). Following initial leukocyte capture, the binding of leukocyte L-

selectin to PSGL1 facilitates secondary leukocyte capture, where adherent leukocytes assist 
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in the recruitment of additional cells (Eriksson et al., 2001). Interactions of selectins with 

their ligands allow leukocytes to roll on inflamed endothelium under the rapid flow of the 

bloodstream (Alon et al., 1995). In fact, shear stress is required to support L-selectin and P-

selectin dependent adhesion, and rolling cells detach when flow is stopped (Finger et al., 

1996; Lawrence et al., 1997). This selectin-mediated slow rolling allows the leukocyte to 

‘sample’ the repertoire of chemokines and other activation signals presented on the luminal 

surface of endothelial cells. 

In addition to selectins, various integrins participate in rolling. Integrins bind members of the 
immunoglobulin superfamily, including vascular cell-adhesion molecule 1 (VCAM-1) and 
intercellular adhesion molecule 1 (ICAM-1). Neutrophils roll on immobilized VCAM-1 by 
engaging the leukocyte integrin receptor, very late antigen 4 (VLA-4; ǂ4ǃ1-integrin). ǃ2-
integrins also support rolling (Sigal et al., 2000). Resting mouse neutrophils roll on surfaces 
coated with E-selectin ligand and ICAM-1. Ligation of endothelial E-selectin induces a 
structural conformational change in leukocyte lymphocyte function-associated antigen 1 (LFA-
1; ǂLǃ2-integrin) allowing it to bind to its endothelial ligand, ICAM-1 (Salas et al., 2004). In 
addition, it has recently been demonstrated that the mechanochemical design of LFA-1 allows 
shear stress to induce and maintain a state of high ligand-binding affinity (Astrof et al., 2006). 
Rolling in vivo requires E-selectin (Kunkel et al., 1996), engagement of the ǃ2-integrins (Jung et 
al., 1998), LFA-1 and macrophage antigen-1 (MAC1; Dunne et al., 2002).  

Although leukocytes (particularly neutrophils) roll under normal conditions, during 
inflammation leukocytes undergo integrin-dependent arrest. Arrest of leukocytes on 
endothelial cells is rapidly triggered by the binding of chemokines and other chemoattractants 
(Campbell et al., 1998). These chemoattractants are secreted by activated endothelial cells and 
platelets. In fact, platelets can deposit chemokines, such as CC-chemokine ligand 5 (CCL5), 
CXC-chemokine ligand 4 (CXCL4), and CXCL5 onto the inflamed endothelial lumen to trigger 
leukocyte arrest (von Hundelshausen et al., 2001; Huo et al., 2003).  

Following firm arrest, leukocytes migrate, by a process called diapedesis, across the 
endothelial cell barrier, its associated basement membrane, and the pericyte sheath. 
Leukocyte diapedesis and chemotaxis is triggered by chemokines (such as IL-8) presented to 
rolling leukocytes on the luminal surface of endothelial cells. Leukocytes can cross the 
endothelium between adjacent endothelial cells (paracellular route) or directly through an 
endothelial cell (transcellular route). Transcellular migration generally occurs in 'thin' parts 
of the endothelium where there is less distance for the leukocyte to migrate (Ley et al., 2007). 
In addition, caveolae containing ICAM-1 link together to form vesiculo-vacuolar organelles 
(VVOs), providing shortcuts for transcellular leukocyte diapedesis (Dvorak et al., 2001). This 
creates a channel inside the cell through which leukocytes can migrate. During paracellular 
migration, ligation of endothelial-cell adhesion molecules results in reduced interendothelial 
contacts, facilitating the migration of leukocytes through endothelial cell junctions (Ley et 
al., 2007). Transendothelial migration requires an increase in intracellular endothelial 
calcium, which promotes opening of endothelial cell junctions via the activation of myosin 
light chain kinase and endothelial cell contraction. The route of leukocyte migration is 
determined by both the surface density of ICAM-1 and the shape of endothelial cells (Yang 
et al., 2005). Both a high density of ICAM-1 and endothelial cells with a polygonal 
morphology promote transcellular migration (Yang et al., 2005). Many endothelial junctional 
molecules, such as platelet/endothelial-cell adhesion molecule 1 (PECAM-1), ICAM -1, 
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ICAM-2, junctional adhesion molecule A (JAM-A), (JAM-B), (JAM-C), endothelial cell-
selective adhesion molecule (ESAM), and CD99, play a role in leukocyte transmigration. 
Although the leukocyte adhesion cascade has been divided into several steps, these are not 
temporally exclusive, but instead synergistically promote leukocyte arrest and diapedesis. 
Leukocyte diapedesis was described almost 200 years ago, but its molecular mechanisms are 
only now beginning to be more fully understood (Imhof et al., 2004). In the past decade, new 
insights have been gained into the signaling events that underlie integrin activation, post-
adhesion strengthening of leukocyte attachment and the structural significance of molecules 
involved in diapedesis (Muller, W., 2003). 

1.4 Chemotaxis 

Following extravasation, leukocytes migrate through the interstitial ECM, following a 
chemoattractant gradient, to reach the site of inflammation. Chemotaxis, directed cell 
migration towards external chemical gradients, occurs in many eukaryotic cells including: 
free-living organisms, leukocytes (during inflammation), endothelial cells (angiogenesis), 
spermatocytes (fertilization) and neurons (neurogenesis) (Singer et al., 1986). Upon exposure 
to a chemoattractant the cell orients itself in the direction of locomotion along the 
chemoattractant gradient. Polarization results from preferential pseudopod extension towards 
areas of higher chemoattractant concentration (Zigmond, S., 1974). Efficient chemotaxis 
requires coordination between pseudopod formation at the leading edge of the cell, and 
uropod retraction at the trailing edge. During chemotaxis, neutrophils extend short surface 
protrusions called filopodia, or microspikes, which are membrane extensions of approximately 
0.1-0.2 μm in diameter and up to 20 μm in length. These structures act as cellular tentacles and 
are supported by a core bundle of actin microfilaments (Mattila et al., 2008). In neutrophils, 
filopodia support thin sheets of membrane-enclosed cytoplasm, called lamellipodia. 
Lamellipodia contain actin filaments and a meshwork of myosin II-associated microfilaments. 
In neutrophils, the actin network within the lamellipodia, together with other structural and 
regulatory proteins, comprises the molecular motor which drives cell locomotion (Jones et al., 
1998). This locomotory apparatus works against cell-to-substratum adhesions called focal 
contacts or focal adhesions. Focal adhesions are molecular structures that utilize integrins to 
link the myosin II-containing bundles of cytoplasmic microfilaments (called stress fibers) to 
proteins in the extracellular matrix (ECM) (Critchley et al., 1999). In neutrophils, integrin-
mediated contacts to the ECM take two forms: focal complexes and podosomes. Focal 
complexes are structurally similar to focal adhesions but lack stress fibers (Allen et al., 1997), 
while podosomes are distinct circular structures that are only observed in cells of the myeloid 
lineage (DeFife et al., 1999; Correia et al., 1999; Linder et al., 2003). In this way, cytoskeletal 
rearrangement permits leukocytes to migrate toward chemoattractant gradients.  

1.5 Chemoattractants 

Many types of chemoattractant recruit leukocytes to inflammatory foci. These include 
bacterial components, leukotrienes, complement factors and chemokines. C5a, the first 
chemoattractant identified, is a cleaved product derived from complement component C5 
(Shin et al., 1968). Bacterial products such as fMLP (N-formyl-methionyl-leucyl-
phenylalanine) and other N-formylpeptides also act as chemoattractants that non-
specifically recruit leukocyte subsets to inflammatory foci. An important family of 
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chemoattractants involved in leukocyte recruitment to inflammatory foci is a family of 
chemoattractant cytokines called chemokines. Chemokines constitute a large family of small 
peptides that are structurally similar and that bind to a family of seven transmembrane G-
protein coupled receptors (Rossi et al., 2000). The specific expression, regulation, and 
receptor binding patterns of each chemokine determine their functional diversity. Most 
chemokines are structurally conserved to bind to glycosaminoglycans (GAGs) on the 
luminal surface of endothelial cells. This binding is required for leukocyte recruitment in 
vivo. Indeed, chemokines with mutations in their GAG binding domains can induce in vitro 
chemotaxis, but are unable to recruit leukocytes to the peritoneal cavity in vivo (Johnson et 
al., 2005).  

The binding of chemoattractants to their receptors activates leukocyte integrins 
instantaneously by inside-out signalling mechanisms (Shamri et al., 2005). They rapidly 
regulate integrin avidity by increasing both integrin affinity (by a conformational change 
that results in increased ligand binding energy and a decreased ligand dissociation rate), 
and valency (the density of integrins per area of plasma membrane involved in adhesion, 
determined by expression levels and lateral mobility) (Laudanna et al., 2002; Constantin et 
al., 2000). Through these signaling mechanisms, chemokines work as powerful activators of 
integrin-mediated adhesion and leukocyte recruitment. 

1.6 Intracellular signaling of chemoattractant receptors 

Several neutrophil chemoattractants, particularly chemokines, interact with specific 

receptors on the plasma membrane, transducing signals by coupling to heterotrimeric G 

proteins. Heterotrimeric G proteins are composed of an ǂ, ǃ, and Ǆ subunit. The ǂ subunit is 

the GDP/GTP binding element. When bound to GDP, the ǂ subunit interacts with the ǃ and 

Ǆ subunits to form an inactive heterotrimer complex. Chemoattractant binding induces a 

conformational change in the receptor, exchanging GDP for GTP on the ǂ subunit. The ǂ 

subunit then dissociates from the receptor, releasing the GǃǄ complex. The free Gǂ and GǃǄ 

subunits are then available to bind and activate target enzymes such as phosphatidylinositol 

3-kinase (PI3K), phospholipase C (PLC), or adenyl cyclase (Fig. 2). These enzymes generate 

secondary intracellular messengers that initiate a cascade of signaling events that ultimately 

culminate in cytoskeletal rearrangement and leukocyte migration.  

Ligation of chemoattractant receptors leads to the activation of four major signaling 

pathways (Fig. 2): PLC, PI3K, mitogen-activated protein kinases (MAPKs) and Rho 

guanosine triphosphatases (GTPases). Once the Gǂ subunit dissociates, the GǃǄ complex 

activates PLC, which cleaves phosphatidylinositol (4,5)-bisphosphate (PI(4,5)P2) to generate 

inositol (1,4,5)-triphosphate (IP3) and diacylglycerol (DAG). Generation of IP3 leads to the 

mobilization of intracellular calcium stores from the endoplasmic reticulum, and together 

with DAG, activates protein kinase C (PKC) (Li et al., 2000). The activation and recruitment 

of PKC to the plasma membrane promotes changes in the actin cytoskeleton that facilitate 

and/or drive cell spreading and migration (Fig. 2).  

A convincing role for PI3K in chemoattractant receptor signaling and chemotaxis has been 
established (Li et al., 2000; Sasaki et al., 2000; Hirsch et al., 2000; Servant et al., 2000; Jin et al., 
2000). Although there are at least four Class I PI3K isoforms in mammalian cells 
(Vanhaesebroeck et al., 1999), only a single Class IB variant has been shown to interact with 
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chemoattractant receptors in leukocytes. The outcome of Class I PI3K activation is 
phosphorylation of membrane PI(4,5)P2 by activated PI3K, generating PI(3,4,5)P3 at the 
plasmalemma. The GǃǄ complex also activates PI3KǄ, activating Src-family kinases and 
generating PI(3,4,5)P3 from membrane PI(4,5)P2 (Krugmann et al., 1999), resulting in the 
recruitment of Ras GTPases and subsequent activation of MAPK pathways (Fig. 2) 
(Kintscher et al., 2000). Although MAPK signaling pathways are involved in chemotaxis and 
adhesion, the most important biochemical events for cell polarization are the production of 
PIP3 and activation of Rho GTPases at the leading edge of the cell.  

 

Fig. 2. Intracellular signaling cascade upon ligation of chemoattractant receptors. 
Chemoattractant binding to GPCRs induces a conformational change that results in the 
dissociation of Gǂ subunits from the GǃǄ complex. This leads to rapid outside-in signaling 
resulting in the activation of four major signaling pathways that contribute to the generation 
of cell polarity and chemotaxis: Rho GTPases, PI3K, PLC, and MAPKs. 

The PI3K dependent production of PIP3 at the cell membrane allows for the recruitment of 

the Rho-family GTPases, Rac and Cdc42, to the cell membrane. The localization of PIP3, Rac 

and Cdc42 then stimulate polymerization of actin, a process necessary for the formation of 
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filopodia and lamellipodia at the front of the cell. At the back of the cell, Rho-kinase 

phosphorylation results in inactivation of myosin light chain phosphatase, leading to 

increased myosin light-chain kinase (MLK) dependent activation of myosin (Nguyen et al., 

1999). These biochemical conditions favour the formation of actomyosin bundles, 

contraction, de-adhesion from the substratum and tail retraction (Ridley, A., 2001; Bokoch, 

G., 2005). Interestingly, signals at the leading edge inhibit signals at the trailing edge, 

allowing for the maintenance of cell polarity (Fenteany et al., 2004). To prevent the 

accumulation of PIP3 at the trailing edge, PTEN dephosphorylates PI(3,4,5)P3 to PI(4,5)P2. 

The lack of PIP3 in the back of the cell prevents activation and recruitment of Rho GTPases 

and subsequent actin polymerization, allowing the formation of actomyosin bundles and 

tail retraction (Worthylake et al., 2001). Actin polymerization at the leading edge coupled 

with tail retraction in the back allows for directed leukocyte chemotaxis. 

1.7 Rho-family GTPases: Rac, Cdc42, and Rho 

Small GTPases of the Rho family are a part of the Ras superfamily of small GTP-binding 

proteins. They are pivotal regulators of many signaling networks that are activated by a 

diverse variety of receptor types. To date, over 20 mammalian Rho GTPases have been 

characterized, and these can be grouped into 6 different classes: Rac (Rac1, Rac2, Rac3, 

RhoG), Rho (RhoA, RhoB, RhoC), Cdc42 (Cdc42Hs, G25K, TC10), Rnd (Rnd3/RhoE, 

Rnd1/Rho6, Rnd2/Rho7), RhoD, and RhoH/translocation three four (TTF) (Aspenström, P., 

1999; Kjoller et al., 1999). When activated, Rho GTPases regulate many important processes 

in all eukaryotic cells, including actin cytoskeleton dynamics, transcription, cell cycle 

progression, and membrane trafficking. The activity of Rho GTPases is regulated by outside-

in signals from a variety of receptor types, including GPCR, tyrosine kinase receptors, 

cytokine receptors and adhesion receptors. Rho-family GTPases play a critical role in 

regulating leukocyte chemotaxis, adhesion and phagocytosis. 

1.7.1 Rho GTPases: Structure and regulation  

All Rho GTPases contain two main structural domains, the C-terminal 'CAAX' motif and a 

catalytic GTP domain. The 'CAAX' motif undergoes post-translational processing, involving 

carboxy-terminal proteolysis of the AAX residues followed by carboxyl-methylation. The 

modified C-terminal domain can then attach to membrane lipids and facilitates membrane 

association and subcellular localization of Rho GTPases (Gutierrez et al., 1989; Casey et al., 

1989; Fujiyama et al., 1990). The catalytic domain contains two regions, switch I and switch 

II. These domains correspond to different structural conformations in the GTP-bound and 

GDP-bound forms. Rho GTPases function as molecular switches by cycling between GDP-

bound and GTP-bound forms. When bound to GDP, Rho GTPases are inactive. Binding of 

ligands to cell surface receptors, results in exchange of GDP for GTP, switching the protein 

to an active state. The active form interacts with downstream effector molecules. The 

intrinsic GTPase activity of Rho GTPases completes this cycle by hydrolyzing GTP, 

returning the GTPase to its inactive GDP-bound state.  

Three classes of molecules interact with Rho GTPases and regulate their activation state: 

guanine nucleotide exchange factors (GEFs), GTPase-activating proteins (GAPs), and 
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guanine nucleotide dissociation inhibitors (GDIs). GEFs catalyze the exchange of GDP for 

GTP, leading to the activation of Rho GTPases. To date, over 69 mammalian GEFs for Rho 

GTPases have been identified (Rossman et al., 2005). They are characterized by the presence 

of a Dbl homology domain (DH), which interacts with both the switch I and switch II 

regions and catalyses the exchange of GDP for GTP. In addition, many of these DH-domain 

containing proteins, such as Vav, contain a Pleckstrin homology (PH) domain which allows 

GEFs to bind phosphoinositides, such as PIP3. This localizes GEFs to the plasma membrane 

where they can bind other Rho-family GTPase-interacting proteins. GAPs enhance the 

intrinsic GTPase activity of Rho GTPases, and thus suppress their activity. Although 

GTPases possess intrinsic GTPase activity, the actual rate of GTP hydrolysis is relatively 

slow. Therefore, the interaction with a GAP is required for efficient GTP hydrolysis, as this 

accelerates the cleavage step by several orders of magnitude (Vetter et al., 2001). To date, 

more than 70 eukaryotic RhoGAPs have been discovered, of which 35 are found in humans 

(Tcherkezian et al., 2007). There exists a large diversity in the primary sequences of the 

various GAPs. However, each one contains a Rho GAP domain with a conserved tertiary 

structure composed of ǂ helices and a catalytically critical 'arginine finger' which stabilizes 

the formation of the transition state during GTP hydrolysis (Nassar et al., 1998). In addition, 

the Rho GAP domain interacts with both the switch I and switch II regions on the GTPase 

domain (Gamblin et al., 1998), allowing GAPs to facilitate the intrinsic hydrolysis of GTP, 

resulting in the inactivation of Rho GTPases. 

Finally, GDIs associate with Rho GTPases in their inactive GDP-bound state and inhibit 

their activation by GEFs. GDIs also bind to GTP-bound GTPases, and suppress their activity 

(Oloffson, B., 1999). There is evidence that GDIs can bind to isoprenyl moieties on the C-

terminus of GTPases in order to sequester them in the cytosol (Keep et al., 1997). The role of 

GDIs in partitioning GTPases between the membrane and cytosol may be physiologically 

more important than the inhibition of their activation, as this may provide a storage pool of 

Rho GTPases that is readily utilized upon cell activation. Overall, GDIs prevent the 

activation of Rho GTPases, prevent their interaction with membranes, and inhibit 

downstream signaling networks. 

1.7.2 Rho GTPases and the actin cytoskeleton 

The movement of eukaryotic cells relies on the coordinated extension of actin-rich 
lamellipodia in the leading edge and retraction of the uropod at the rear of the cell. The 
extension of lamellae in the leading edge involves rapid turnover of actin filaments (Symons 
et al., 1991; Wang, Y., 1985). More stable actin-myosin cables can be found in more 
established protrusions and in the middle and rear of the cell (DeBiasio et al., 1988). 
Recycling of the plasma membrane and integrin-mediated adhesion to the substratum 
and/or ECM are also important for cell motility (Bretscher, M., 1996; Martenson et al., 1993; 
Yamada et al., 1995; Mitra et al., 2005). Coordinated mobilization of the actin cytoskeleton is 
regulated by deployment of actin-binding proteins by activated Rho-family GTPases. Rho-
family GTPases control cell motility and morphological changes in response to extracellular 
chemoattractants. Activation of Rho in fibroblasts results in the assembly of stress fibers and 
focal adhesions (Ridley et al., 1992). The activation of Rac causes extension of lamellipodia 
and assembly of small focal complexes (Nobes et al., 1995; Ridley et al., 1992). In contrast, 
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activation of the Cdc42 Rho-family GTPase leads to the formation of filopodial extensions 
(Nobes et al., 1995).  

As discussed above, the influx of neutrophils and other leukocytes to inflammatory foci 
relies on activation of Rho-family GTPases and dynamic actin turnover. In principle, one 
method to prevent neutrophil-mediated tissue injury would involve blocking neutrophil 
recruitment. However, the redundancy in chemoattractant pathways means that 
interruption of a particular chemoattractant may result in another assuming its function. 
Thus, a localized general chemoattractant blockade could be a useful strategy. Unique 
strategies to target neutrophil recruitment may be gained from studying central nervous 
system (CNS) development, in which structurally distinct positive and negative guidance 
cues for migration and axonal pathfinding have been defined. 

2. Slit2: A guidance cue for cell migration 

During the development of the CNS, neurons must migrate and project axons over long 

distances. Most axons emanating from the CNS must cross the midline and then project 

longitudinally towards their synaptic targets. The molecular mechanisms that guide this 

pathfinding include contact attraction, chemoattraction, contact repulsion and 

chemorepulsion. Guidance cues selectively promote or repress migration of neurons and 

axonal projection. For example, netrins are diffusible chemotropic factors that attract 

commissural axons to the midline (Kennedy et al., 1994). The Slit family of secreted proteins, 

together with their cell-surface receptor Roundabout (Robo), repel neurons during CNS 

development. Once commissural axons have crossed the midline, midline glial cells express 

Slit to prevent axons from re-crossing the midline. Mutant Drosophila lacking Slit proteins 

exhibit midline defects, such as collapse of the regular scaffold of commissural and 

longitudinal axon tracts in the embryonic CNS (Rothberg et al., 1988; Rothberg et al., 1990). 

A similar defect is observed in mutant Drosophila lacking Robo, where projecting axon 

tracts cross the midline repeatedly (Kidd et al., 1998). 

2.1 Slit and robo: Structure 

The Slit family of proteins contain an N-terminal signal peptide, four leucine-rich repeats 

(LRRs), nine epidermal growth factor (EGF) repeats and a C-terminal cysteine knot (Fig. 3) 

(Rothberg et al., 1988; Rothberg et al., 1990; Rothberg et al., 1992). The EGF repeats and LRR 

allow Slit proteins to interact with ECM components, such as glypican-1, enabling them to 

act as localized, non-diffusible, signaling molecules (Ronca et al., 2001). Furthermore, Slit2 

can be proteolytically cleaved after the fifth EGF repeat to form N-terminal (Slit2-N) and C-

terminal (Slit2-C) fragments (Brose et al., 1999; Wang et al., 1999). Slit2-N includes the first 

1118 amino acids and contains the four LRRs and the first five EGF repeats, while Slit2-C 

contains the remaining residues (Brose et al., 1999). Importantly, only the second LRR of 

human Slit2 is required to bind with the first Ig domain of Robo and initiate downstream 

signaling (Morlot et al., 2007). Therefore, both full length Slit2 and Slit2-N bind Robo 

receptors to repel migrating cells and projecting axons (Nguyen Ba-Charvet et al., 2001). 

Although the cleavage of Slit2 does not eliminate its activity, it may play a role in its 

diffusion since Slit-N appears to be more tightly associated with the cell membrane. In rat 

neural tissue both Slit2-N and Slit2-C were shown to bind heparan sulfate proteoglycan 
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glypican-1 (Liang et al., 1999), although Slit2-C bound with higher affinity, suggesting a 

possible regulatory mechanism for its diffusion.  

Robo, a member of the immunoglobulin superfamily, is a single-pass type-1 receptor for 

the Slit proteins. The extracellular region of human Robo-1 contains five immunoglobulin 

(Ig) repeats and three fibronectin type III domains. The cytoplasmic region of Robo-1 

contains four conserved cytoplasmic signaling motifs, CC0, CC1, CC2 and CC3 (Kidd et 

al., 1998; Zallen et al., 1998). Only the first Ig domain of Robo is required to bind to the 

second LRR domain in Slit2 and Slit2-N (Battye et al., 2001; Chen et al., 2001; Nguyen Ba-

Charvet et al., 2001). The cytoplasmic CC motifs of Robo are required for response to Slit 

(Bashaw et al., 2000). 

 

Fig. 3. Primary Protein Structure of Mammalian Slit2 and Robo-1 Proteins. Mammalian Slit2 
contains four leucine rich repeats (LRRs), nine epidermal growth factor (EGF) repeats, a 
laminin G (G) domain, and a cysteine rich C terminus. The Robo-1 receptor contains five 
immunoglobulin (Ig) repeats, three fibronectin (FN) type III, a transmembrane Domain (TM) 
and four conserved cytoplasmic (CC) signaling motifs. 

The detection of an amino-terminal fragment of Robo-1 (Robo-1-NTF) in the conditioned 

medium of cancer cell lines and in the serum of patients with hepatocellular carcinoma 

suggests that Robo-1 may undergo proteolytic cleavage (Ito et al., 2006). The cleavage site 

was recently shown to be between Glu852 and Glu853, only 10 residues away from the 

plane of the plasma membrane (Seki et al., 2010). Following cleavage of transmembrane 

Robo-1 by MMPs, a soluble Robo-1-NTF is generated. The remaining carboxy-terminal 

fragment (Robo-1-CTF1) is subsequently cleaved by Ǆ-secretase to form Robo-1-CTF2 (Fig. 

4). Robo-1-CTF2 translocates to the nucleus, although its function is unknown (Seki et al., 

2010).  
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Fig. 4. Successive cleavage of the Robo-1 receptor. Full-length Robo-1 is first cleaved by 
MMPs to form Robo-1-NTF and Robo-1-CTF1. The second cleavage, mediated by Ǆ-
secretase, releases Robo-1-CTF2 which translocates to the nucleus. The function of Robo-1-
CTF2 at this location is unknown. 

2.2 Slit and robo: Expression 

Expression of the Slit genes has been demonstrated in many organisms, including 
Drosophila (Battye et al., 1999), Caenorhabditis elegans (Hao et al., 2001), Xenopus (Chen et al., 
2000), Gallus gallus domesticus (Holmes et al., 2001; Vargesson et al., 2001), mice (Holmes et 
al., 1998; Piper et al., 2000), rats (Marillat et al., 2002) and humans (Itoh et al., 1998). In 
mammals there are three members of the Slit family. Although Slit1 is predominantly 
expressed in the developing CNS (Yuan et al., 1999), Slit2 and Slit3 are expressed outside the 
CNS, particularly in lung, kidney, and heart (Wu et al., 2001). Importantly, Slit expression 
persists in the adult organism, suggesting a role for Slit proteins beyond embryogenesis.  

Expression of Robo has been demonstrated in Drosophila (Kidd et al., 1998), mice (Yuan et 
al., 1999) and humans (Kidd et al., 1998). There are four isoforms of Robo in mammals. 
Robo-1 is most highly expressed in tissues outside the CNS, including human leukocytes 
(Wu et al., 2001). Robo-2 is expressed during vertebrate limb development (Vargesson et al., 
2001). Robo-3 is expressed following cerebellar and spinal cord lesions (Wehrle et al., 2005). 
Robo-4 is expressed in the adult organism by primary human endothelial cells, including 
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umbilical vein endothelial cells and microvascular endothelial cells (Suchting et al., 2005). 
Interestingly, the tissue expression of Slit and Robo is relatively complementary, suggesting 
a synergistic relationship (Yuan et al., 1999). 

2.3 Slit and robo: Function 

Recent studies demonstrate a role for Slit and Robo as repellents outside the CNS. For 

example, in mesoderm migration in Drosophila, myocyte precursors migrate away from the 

midline towards peripheral target sites where they fuse to form muscle fibers. In Slit and 

Robo mutants, these cells do not migrate away from the midline and instead fuse across it 

(Rothberg et al., 1990). Interestingly, this defect can be reversed by expressing Slit protein in 

midline cells (Kramer et al., 2001). Slit and Robo signaling also plays a role in nephrogenesis. 

During renal development, formation of a ureteric bud requires secretion of glial cell 

derived neurotrophic factor (GDNF) by nearby mesenchymal cells. Slit2 and Robo-2 

knockout mice display abnormal patterns of GDNF secretion and develop multiple ureteric 

buds and multiple urinary collecting systems (Ray, L., 2004). Furthermore, polymorphisms 

in the human Robo2 gene are associated with familial vesicoureteral reflux (Bertoli-Avella et 

al., 2008), a condition involving improper insertion of ureters into the bladder resulting in 

retrograde flow of urine from the bladder to the kidney. Slit2 also acts as a repellent in the 

mature organism. A recent study demonstrated that Slit2 inhibits vascular smooth muscle 

cell migration toward a gradient of platelet-derived growth factor (PDGF) (Liu et al., 2006). 

This inhibition occurred by suppression of activation of the small GTPase, Rac1. Slit2 has 

been shown to prevent cancer cell metastasis. The chemokine receptor, CXCR4, is expressed 

by some human breast cancer cells, allowing them to migrate towards gradients of the 

CXCR4 ligand, stromal cell-derived factor-1 (SDF-1ǂ), and promoting their metastasis to the 

lung. Slit2 inhibited chemotaxis, adhesion and chemoinvasion of these breast cancer cells 

(Prasad et al., 2004). Several other studies have demonstrated a role for Slit2 as a tumor 

suppressor. Slit2 was shown to inhibit colony formation in lung, colorectal and breast cancer 

cell lines (Dallol et al., 2002). Slit2 has also been shown to be epigenetically silenced in more 

aggressive forms of these and other cancers (Dallol et al., 2003; Dallol et al., 2003; Dickinson 

et al., 2004). Collectively, these studies demonstrate a repellent role for Slit and Robo in the 

adult organism and in cancer biology.  

The role of Robo-4 signaling in endothelial cells is controversial. Kaur et al. (2006) showed 

that Robo-4 signaling mediates attractive guidance mechanisms by activating Cdc42 and 

Rac1 in endothelial cells and inducing actin-mediated cell protrusions, including filopodia 

and lamellipodia. In fact, Robo-4-induced phenotypic effects in endothelial cells are rescued 

by dominant negative constructs of Cdc42. Thus, Robo-4 may mediate attractive signaling 

via activation of Rho-family GTPases, Cdc42 and Rac1. However, in 2008, Jones et al. 

showed that Slit inhibits endothelial cell migration and angiogenesis. In fact, Robo-4 

signaling was shown to stabilize endothelial cell barriers (Jones et al., 2009). Thus, the 

precise role of Slit/Robo signaling in endothelial cells is yet to be determined.  

2.4 Slit2/Robo-1 intracellular signal transduction  

Studies of neuronal tissue have demonstrated that Robo-1 signals through two pathways 
that lead to remodeling of the cytoskeleton: Enabled (Ena) protein and Rho GTPases. Both of 
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these pathways require the CC motifs in the cytoplasmic domain of Robo. Ena and its 
mammalian homologue (Mena) are members of a family of proteins that link signal 
transduction to localized remodeling of the actin cytoskeleton by binding to profilin, an 
actin binding protein which regulates actin polymerization (Lanier et al., 1999; Wills et al., 
1999). Ena is a substrate for Abelson kinase (Gertler et al., 1989). Ena and Abelson both bind 
to Robo. Ena binds to the CC1 motifs while Abelson binds to the CC3 motif (Fig. 5) (Bashaw 
et al., 2000). Impairing Ena binding reduces Robo function, while mutations in Abelson 
result in Robo hyperactivity (Bashaw et al., 2000).  

  

Fig. 5. Intracellular signaling downstream of the Robo-1 receptor. Enabled protein bind to 
Robo-1 and may contribute to Slit-mediated repulsion. Abelson kinase phosphorylates 
intracellular domains of Robo and antagonizes Robo function. Ligation of Robo-1 by Slit2 
results in the recruitment of srGAPs to the plasma membrane. srGAPs convert active GTP-
bound forms of Cdc42 and Rac to their inactive, GDP-bound counterparts, thereby 
inhibiting the dynamic actin polymerization required for chemotaxis and preventing cell 
migration.  
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Slit/Robo also mediate cell repulsion through modulation of Rho GTPase activity. A family 
of GTPase activating proteins, Slit Robo GTPase activating proteins (srGAPs), were shown 
to bind Robo (Fig. 5) (Wong et al., 2001). The SH3 domain of srGAP binds the CC3 motif of 
Robo, while the GAP domain has activity for the Rho GTPases, Rac, Cdc42 and Rho (Wong 
et al., 2001). Ligation of Robo by Slit induces the recruitment of srGAP, thereby inactivating 
Rho-family GTPases and inhibiting actin remodeling and cell motility (Wong et al., 2001). 

2.5 Slit/Robo in cell trafficking 

Both neuronal and leukocyte chemotaxis require recognition of guidance cues, polarization of 
the cell, and mobilization of the actin cytoskeleton. In addition to repelling developing axons, 
Slit2 also inhibits chemotaxis of other cell types including vascular smooth muscle cells (Liu et 
al., 2006). However, the first study to demonstrate that Slit2 inhibits leukocyte chemotaxis, in 
2001, utilized transwell migration assays to show that Slit2 inhibits chemotaxis of rat lymph 
node cells and neutrophil-like HL-60 cells towards MCP-1 and fMLP respectively (Wu et al., 
2001). Subsequently, Kanellis et al. (2004) demonstrated that Slit2 inhibits chemotaxis of rat-
derived macrophages towards MCP-1 and fMLP. Another study showed that Slit2 inhibited 
migration of dendritic cells (DCs) (Guan et al., 2003). In 2007, Prasad et al. demonstrated that 
Slit2 inhibits chemotaxis and transendothelial migration of primary CD4+ T lymphocytes 
toward SDF-1. Recently, Slit2 was shown to promote chemotaxis of eosinophils towards the 
chemokine, eotaxin, and to exacerbate allergic airway inflammation (Ye et al., 2010). Thus, Slit2 
can negatively or positively regulate directional migration of individual leukocyte subsets. 

3. Slit2/Robo-1 signaling inhibits neutrophil migration 

Using immunoblotting, we previously demonstrated Robo-1 protein in human and mouse 
neutrophils (Tole et al., 2009). Immunofluorescence microscopy and flow cytometry 
revealed that Robo-1 was on the surface of cells. 

We used Transwell migration assays to study the effects of Slit2 on chemotaxis of primary 

human neutrophils. In the presence of Slit2, fMLP-induced migration of neutrophils was 

inhibited in a dose-dependent manner. In fact, we observed that Slit2 is a potent inhibitor of 

neutrophil migration toward diverse types of chemotactic cues, including IL-8 and C5a (Tole 

et al., 2009). 

Neutrophil exposure to chemoattractants results in the activation of the Rho GTPases, Rac 

and Cdc42 and the subsequent reorganization of actin filaments. (Sun et al., 2004; Srinivasan 

et al., 2003). Since the predominant isoform of Rac in human neutrophils is Rac2, not Rac1, 

the activation of Rac2 was studied. Following stimulation with fMLP, levels of activated 

Cdc42 and Rac2 in the presence of Slit2 were less than half of those observed in untreated 

control cells.. We found that Slit2 inhibits neutrophil chemotaxis and actin polymerization 

by preventing cell polarization and disrupting generation and recruitment of activated Rac2 

and Cdc42. 

We examined the effects of Slit2 on the activation of kinase signaling pathways associated 
with neutrophil chemotaxis, namely, PI3K, Akt, Erk, and p38 MAPK. Stimulation of 
neutrophils with fMLP resulted in levels of activated Akt that were comparable in the 
presence or absence of Slit2, indicating that Slit2 does not impair the ability of neutrophils to 
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generate membrane PIP3. Similarly, Slit2 treatment had no effect on fMLP-induced 
phosphorylation of Erk and p38 MAPK. Thus, Slit2 inhibits neutrophil chemotaxis by 
specifically preventing activation of Cdc42 and Rac2 but not activation of Akt, Erk, or p38 
MAPK (Tole et al., 2009). 

We studied the effect of Slit2 on neutrophil recruitment in vivo using a mouse model of 
chemical irritant peritonitis (Glogauer et al., 2003). The administration of Slit2 prior to 
induction of peritonitis with sodium periodate, resulted in a significant decrease in 
neutrophil recruitment to the peritioneum.. Slit2 also prevented neutrophil recruitment to 
the peritoneal cavity in response to other chemoattractant factors tested, including C5a and 
MIP-2. These data demonstrate that Slit2 acts as a potent inhibitor of chemotaxis for 
circulating neutrophils toward diverse inflammatory stimuli. Slit2 also inhibited infiltration 
of other leukocyte subsets, especially monocytes/macrophages (Tole et al., 2009). 

 

Fig. 6. Slit2/Robo-1 signaling inhibits actin remodelling required for chemotaxis. 
Chemoattractant signaling induces the activation of Rho GTPases Cdc42 and Rac, allowing 
for actin remodeling and chemotaxis. The binding of the LRRs on Slit2 to Robo-1 recruits 
srGAPs to the membrane, converting active Rho GTPases to their inactive, GDP-bound, 
forms. Inactivation of Rho GTPases abolishes actin remodeling and prevents cell 
chemotaxis.  

4. Conclusion and discussion 

The LRRs contained in Slit proteins can inhibit the migration of diverse cells, including 
neuronal cells and vascular smooth muscle cells. The conserved structure of Slit proteins 

www.intechopen.com



 
Slit/Robo Signaling: Inhibition of Directional Leukocyte Migration 

 

325 

also allows them to inhibit the migration of several subsets of leukocytes, including DCs and 
lymphocytes (Guan et al., 2003; Kanellis et al., 2004; Prasad et al., 2007). We have recently 
shown that Slit2 inhibits migration of neutrophils to diverse inflammatory attractants, in 
vitro and in vivo. Furthermore, we have demonstrated that this inhibition is mediated by 
inactivation of Rho-family GTPases, Rac and Cdc42 (Fig. 5). Excessive infiltration of 
leukocytes, particularly neutrophils, is associated with local tissue damage seen in 
inflammatory conditions such as rheumatoid arthritis and ischemia reperfusion injury 
(Weissmann et al., 1984; Kaminski et al., 2002). Thus, the protein structure of the conserved 
LRR regions contained in Slit proteins may be utilized as a novel therapeutic strategy to 
locally inhibit leukocyte recruitment.  

Extensive glycosylation makes Slit2 a large and relatively "sticky" protein, potentially 
allowing it to maintain a high local concentration through adherence to extracellular matrix 
proteins such as glypican-1 (Ronca et al., 2001). Thus, after regional administration, Slit2 
may be retained at sites of inflammation, such as joints and transplanted organs, thereby 
alleviating neutrophil-inflicted tissue injury associated with rheumatoid arthritis and 
ischemia reperfusion injury. As Slit2 blocks migration of several types of inflammatory cells, 
including neutrophils, T lymphocytes, macrophages, and dendritic cells, toward diverse 
chemoattractant signals, it could act as a highly effective anti-inflammatory agent (Guan et 
al., 2003; Kanellis et al., 2004; Prasad et al., 2007; Wu et al., 2001). Further studies are 
required to explore the therapeutic use of Slit2, or of a Slit-like compound containing the 
structurally critical LRRs, for prevention and treatment of localized inflammation. 
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