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1. Introduction 

The growing worldwide epidemic of metabolic syndrome and other chronic degenerative 
diseases continues to expand, with a rapid decrease in the age at which they are being 
diagnosed (Guarnieri et al.; 2010; Hsueh & Wyne, 2011). Metabolic syndrome is a multi-
factorial disorder, strongly influenced by several lifestyle factors, with symptoms clustering 
on abnormalities that include obesity, hypertension, dyslipidemia, glucose intolerance and 
insulin resistance (Guarnieri et al.; 2010; Tanaka et al.; 2006). The syndrome is also referred 
to as “Diabesity” highlighting the incidence of diabetes mellitus (DM) in combination with 
obesity as a result of changes in human behavior (Astrup & Finer, 2000; Farag & Gaballa, 
2011; Hu, 2011). 

Obesity is considered an independent predictor of the development of hypertension and it 
has been estimated that about half of individuals with essential hypertension are considered 
insulin resistant (Hall et al.; 2010; Kotsis et al.; 2010). Likewise, insulin resistance and 
hyperinsulinemia increase the risk of hypertension, and it usually accompanies DM, early in 
type 2 (DM2) and delayed in type 1 (DM1). Moreover, among patients being treated for 
hypertension, the risk of new-onset diabetes is doubled in those with uncontrolled blood 
pressure (BP) (Gress et al.; 2000; Gupta et al.; 2008; Izzo et al.; 2009). Although effective 
antihypertensive agents are available, achieving adequate BP control remains difficult in 
hypertensive patients, particularly in the context of concomitant diabetes. 

It is widely known that individuals with DM and/or hypertension are prone to develop a 
broad range of long term complications, including cardiovascular disease and nephropathy 
(Farag & Gaballa, 2011; Guarnieri et al.; 2010; Houston et al.; 2005; Handelsman, 2011; 
Tanaka et al.; 2006), and it has already been shown that several modifiable risk factors are 
associated with poor renal and cardiovascular outcome, including BP, plasma glucose and 
lipid concentrations, smoking, and body weight (Miao et al.; 2011). It is important to 
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highlight that both DM and hypertension exacerbate each other in terms of subsequent 
complications (Cooper & Johnston, 2000) increasing the burden of social dysfunction and 
high risk of premature death.  

DM is a chronic metabolic disorder characterized by hyperglycemia and insufficiency of 
secretion or action of endogenous insulin. Nowadays, diabetes afflicts around 6.6% of the 
global adult population, or approximately 285 million individuals, and this is projected to 
increase by more than 50% to a 7.8% worldwide prevalence in 20 years. Considering that 
DM is an important health problem and it has been recognized as a major risk factor for the 
development of complications in target organs, including retinopathy, neuropathy, 
nephropathy and cardiovascular disease, the comprehension of the mechanisms involved in 
the association among diabetes is the subject of many research groups (International 
Diabetes Federation, 2009). 

Of these complications, diabetic nephropathy (DN), the most common etiology of chronic 
kidney disease (CKD) and common cause of end-stage renal disease (ESRD) in adults in the 
Western world (Choudhury et al.; 2010; Cooper, 1998;  National Institute of Diabetes and 
Digestive and Kidney Diseases, 2010), is associated with the highest mortality (Cooper, 1998; 
Giacchetti et al.; 2005) making early diagnosis critical in preventing long term kidney loss. 
Approximately 30% of patients with either DM1 or DM2 develop DN (Dalla Vestra et al.; 
2000), and in these patients, lowering of BP and of urinary albumin excretion significantly 
decrease the risk of progression to ESRD, myocardial infarction and stroke (Choudhury et 
al.; 2010; Cooper et al.; 2000; Gupta et al.; 2008; Handelsman, 2011; Keller et al.; 1996).  

Approximately 80% of individuals with diabetic ESRD are affected by hypertension, which 
accelerates the progression rate of renal disease (Jandeleit-Dahm & Cooper, 2002). In DM1 
the onset of hypertension appears to occur primarily as a consequence rather than as a 
primary cause of renal disease (Poulsen et al.; 1994). The link between glycemic control and 
the development of hypertension has been demonstrated in the follow-up of the landmark 
Diabetes Control and Complications Trial (DCCT), the Epidemiology of Diabetes 
Interventions and Complications (EDIC) study (Writing Team for the Diabetes Control and 
Complications Trial/Epidemiology of Diabetes Interventions and Complications Research 
Group [EDIC], 2003). It demonstrated that hypertension was developed in 40% of the 
patients in the conventionally treated group compared with 30% in the group treated with 
an intensified insulin regimen in year 8 of the EDIC follow-up. These beneficial effects were 
seen in the context of reduced renal disease consistent with the view that hypertension in 
DM1 is primarily a manifestation of DN in these subjects. Therefore, it appears likely that 
hyperglycemia or insulin plays a role in influencing BP in DM1 (Elliott et al.; 2001). 
Regarding DM2, the combination with hypertension appears to cluster clinically as part of a 
syndrome involving not only these two conditions but also insulin resistance, dyslipidemia, 
central obesity, hyperuricemia, and accelerated atherosclerosis (Eckel et al.; 2005; Sowers et 
al.; 2001; Williams, 1994). The underlying explanation for this cluster of clinical features 
remains unexplained but insulin resistance has been postulated by many investigators as 
playing a pivotal role (Isomaa et al.; 2001; Sowers et al.; 2001; Williams, 1994). 

Clinical progression of DN can be characterized into 5 phases: 1) hyperfiltration with 
renal hypertrophy, increased renal plasma flow and glomerular filtration; 2) 
normoalbuminuria with early renal parenchymal changes of basement membrane 
thickening and mesangial expansion; 3) microalbuminuria with early hypertension; 4) 
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overt proteinuria; and 5) ESRD (Mogensen, 1976). These factors collectively result in cell 
injury and apoptosis of podocytes, and an accumulation of extracellular matrix proteins in 
the glomerulus and in the tubule interstitium (Calcutt et al.; 2009; D’Agati & Schmidt, 
2010; Decleves & Sharma, 2010; Ruggenenti et al.; 2010). In this process, the increasing 
severity of DN is rapid when there is progression from normoalbuminuria to 
macroalbuminuria, a transition which takes about ten years. 

Pathogenesis of DN is strongly related to uncontrolled or chronic hyperglycemia, and 
various mechanisms that lead to pathological changes in the kidney, proteinuria, and 
decline in renal function seen in DN have been proposed (Calcutt et al.; 2009; Decleves & 
Sharma, 2010). Hyperglycemia can lead to the activation of oxidative stress and increased 
production of reactive oxygen species (ROS), increased formation of advanced glycation 
endproducts (AGEs), activation of the proinflammatory transcription factor NF-κB, 
activation of protein kinase C (PKC), transforming growth factor-β (TGF-β), and the renin 
angiotensin system (RAS) (Calcutt et al.; 2009; D’Agati & Schmidt, 2010; Decleves & Sharma, 
2010; Ruggenenti et al.; 2010). 

Apart from its importance in the regulation of arterial BP, salt balance and cardiovascular 
homeostasis, RAS is also involved in the control of almost every organ system and cell 
function. Recent advances in cellular and molecular biology, as well as cardiovascular and 
renal physiology, have provided a larger understanding of RAS involvement in many 
physiologic and pathophysiologic mechanisms and attesting to its importance in regulating 
the internal environment is the fact that overactivity of RAS can lead to arterial 
hypertension, congestive heart failure, and renal insufficiency (Kobori et al.; 2007; Navar et 
al.; 2011a; Navar et al.; 2011b; Ferrario, 2011; Unger et al.; 1998). 

The RAS in diabetes has been studied in detail, including an assessment of the various 

components of this pathway in the kidney (Ferrario et al.; 2004; Ferrario & Varagic, 2010; 

Navar et al.; 2011a; Wehbi et al.; 2001; Zipelmann et al.; 2000). The system has been strongly 

implicated in the pathophysiology of diabetic renal disease on the basis of its ability to 

promote tissue remodeling (proliferation, hypertrophy and differentiation) and extracellular 

matrix remodeling repair and/or fibrosis (Hayden et al.; 2011) and of the therapeutic ability 

of angiotensin I-converting enzyme inhibitors (ACEi) and AT1 receptor blockers (ARB) to 

decrease microalbuminuria and the progression of DN to ESRD (Brenner et al.; 2001; Chan 

et al.; 2000; Heart Outcomes Prevention Evaluation [HOPE] Study Investigators; Lewis et al.; 

2001; Parving et al.; 2001). Furthermore, it has been postulated that in diabetes there is a role 

for the RAS in mediating many of the functional effects, such as changes in intraglomerular 

hemodynamics as well as structural changes in the diabetic kidney at both glomerular and 

tubulointerstitial levels (Gilbert et al.; 1998). Based on these findings, pharmacologic 

interventions that inhibit production of angiotensin II (Ang II) or block angiotensin type-1 

receptors (AT1R) that target the RAS are considered a cornerstone in the treatment of 

hypertension in patients with DN (Van Buren & Toto, 2011). 

2. Circulanting and tissue renin-angiotensin systems 

The RAS is a coordinated hormonal cascade initiated through biosynthesis of 
angiotensinogen (AGT), produced in the liver, that is cleaved by renin released from renal 
juxtaglomerular cells of the afferent arteriole. By this enzymatic cleavage, angiotensin I (Ang I) 
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Fig. 1. (A) Secondary structure and consensus sequence of the mammalian angiotensin AT1 

receptor. The amino acid residues that are highly conserved among G protein-coupled 

receptors are indicated in bold letters. The positions of the three extracellular carbohydrate 

chains, and of the two extracellular disulfide bonds, are also indicated (Adapted from de 

Gasparo et al.; 2000). (B)  Comparison of the AT1 and AT2 receptors, sharing 33- 34% 

sequence homology. Grey circles indicate matching pairs of aminoacids. (TMD: 

transmembrane domain) (Adapted from de Gasparo & Siragy, 1999). 

A 

B 
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is generated, which, in turn is hydrolyzed by angiotensin I-converting enzyme (ACE) to 

produce Ang II. Over the last years, it has been established that most of the effects of Ang II 

are mediated through two distinct receptors, angiotensin type-1 receptors (AT1R) and 

angiotensin type-2 receptors (AT2R), acting antagonistically. AT2R shows only about 33–

34% similarity to AT1R at the amino acid level (Figure 1A and 1B), which suggests that the 

two receptors derive from different ancestors (Mukoyama et al.; 1993; Kambayashi et al.; 

1993; de Gasparo & Siragy, 1999; Unger & Sandmann, 2000; de Gasparo et al.; 2000). 

Angiotensin actions via AT1R promotes vasoconstriction, inflammation, salt and water 

reabsorption and oxidative stress (Carey & Siragy, 2003). AT2R is generally associated with 

opposite actions to the AT1R, and it has already been shown that its activation induces 

bradykinin (BK) and nitric oxide formation, leading to natriuresis and vasodilatation. The 

AT2R is abundant in fetal tissue, decreasing after birth, with low amounts expressed in 

adult tissue such as kidney, adrenal and brain (Touys & Schiffrin, 2000; Carey & Padia, 2008; 

Rosivall, 2009) (Table 1A and 1B).  

 

 Always expressed (Unger & Sandmann, 2000) 

 Increased arterial pressure (Navar et al.; 2002) 

 Aldosterone synthesis and secretion (Allen et al.; 2000; Navar et al.; 2002) 

 Release of vasopressine (Unger & Sandmann, 2000) 

 Decreased renal blood flow (Navar et al.; 2002) 

 Renin secretion (Navar et al.; 2002) 

 Cardiac contractility and hypertrophy (Allen et al.; 2000) 

 Vascular smooth muscle cells proliferation (Touyz & Schiffrin, 2000) 

 Mediates vasoconstriction, modulation of central sympathetic nervous system 
activity (Allen et al.; 2000; Unger & Sandmann, 2000) 

 Mediates cell growth (Unger & Sandmann, 2000) 

 Extracellular matrix formation (Touyz & Schiffrin, 2000) 

Table 1A. Functions of AT1R 

 Expressed during stress or injury (Unger & Sandmann, 2000) 

 Fetal tissue development (Nakajima et al.; 1995; Stoll & Unger, 2001)  

 Left ventricular hypertrophy (Senbonmatsu et al.; 2003) 

 Mediates vasodilation (Unger & Sandmann, 2000) 

 Neuronal regeneration (Stoll & Unger, 2001) 

 Mediates cell differentiation (Unger & Sandmann, 2000) 

 Inhibits cell growth (antiproliferation) (Unger & Sandmann, 2000) 

 Cellular differentiation (Yamada et al.; 1999) 

 Mediates tissue regeneration, apoptosis (Matsubara, 1998; Stoll & Unger, 2001; Unger 
& Sandmann, 2000) 

 Modulation of extracellular matrix (Matsubara, 1998) 

Table 1B. Functions of AT2R 

The classical view of RAS cascade has been increasingly challenged with the discovery of new 
components such as the angiotensin converting enzyme 2 (ACE2). This enzyme with 
homology to ACE, is expressed in several tissues, including heart and kidney consistent with a 
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role for this enzyme in renal and cardiovascular physiology (Burrell et al.; 2004; Crackower et 
al.; 2002; Danilczyk et al.; 2003; Donoghue et al.; 2000; Harmer et al.; 2002; Tipnis et al.; 2000). 
Both isoforms of ACE are type-I transmembrane glycoproteins with an extracellular amino-
terminal ectodomain and short intracellular cytoplasmic tail (Figure 2). This membrane 
localization is ideally positioned it to hydrolyse peptides in the extracellular milieu. 

 

Fig. 2. Membrane topology and homology between ACE and ACE2. The ACE isoforms 
somatic ACE (sACE) and germinal ACE (gACE) and ACE2, are type I transmembrane 
proteins with an intracellular C-terminal domain and an extracellular N-terminal domain. In 
the case of the ACE isoforms and ACE2, the N-terminal extracellular domains contain 
HEMGH zinc-dependent catalytic domains (denoted as ‘Pacman’ symbols); two in ACE and 
one in both gACE and ACE2. Germinal ACE is entirely homologous to the C-terminal 
domain of sACE. ACE2 shares homology in its ectodomain with the N-terminal domain of 
sACE but has no homology with its C-terminal cytoplasmic domain (Adaptated from 
Lambert et al.; 2010). 

ACE2 presents a single catalytic site and catalyzes the cleavage of Ang I to Ang 1-9, which 
can be further cleaved by ACE to Ang 1-7 (Burrell et al.; 2004; Donoghue et al.; 2000). 
Furthermore, Ang II can be converted directly by ACE2 to Ang 1-7. Ang 1-7 has been shown 
to exert vasodilatory properties and to antagonize the vasoconstriction mediated by Ang II, 
thereby contributing to the balance of vasodilators and vasoconstrictors generated by the 
various components of the RAS (Almeida et al.; 2000; Moriguchi et al.; 1995; Ferrario, 2006; 
Santos & Ferreira, 2007). 
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Another relevant change in our understanding of the classical endocrine RAS was the 

description of all components of the system in several tissues, including kidney, heart, brain, 

pancreas, adrenal, reproductive aparatus, retina, liver, gastrointestinal tract, lung and 

adipocytes, leading to the identification of new roles for angiotensins as paracrine and 

autocrine/intracrine function (Bataller et al.; 2003; Danser & Schalekamp, 1996; Lavoie & 

Sigmund, 2003; Navar et al.; 1994; Paul et al.; 2006; Ribeiro-Oliveira Jr et al.; 2008; 

Senanayake et al.; 2007; Tikellis et al.; 2003). RAS tissue appears to be regulated 

independently of the systemic one, and has been shown to contribute to a great number of 

homeostatic pathways, including cellular growth, vascular proliferation, extracellular 

formation and apoptosis (Paul et al.; 2006), via its specific receptors, such as AT1R, AT2R, 

prorenin/renin [(P)RR], Mas and also Ang III and IV receptors (Figure 3) (Nguyen et al. 

2002; Santos et al.; 2003). 

 

Fig. 3. Schematic representation of RAS. ACE, ACE 2, Neutral endopeptidase (NEP),  

N-domain ACE (ACEn). 

3. The intrarenal RAS 

3.1 Angiotensinogen 

AGT is a glycoprotein produced in the liver, kidney, heart, vessels and adipose tissue, which 

circulates as an inactive protein. AGT is hydrolyzed by renin to generate Ang I, and both the 

peptide and renin are considered the rate-limiting steps in the formation of Ang II. Studies 

with mice harboring the gene for human AGT fused to the kidney-specific androgen 

regulated protein promoter demonstrated that AGT mRNA and the protein were localized 

in the proximal tubule cells, and urinary AGT was described as a product secreted by the 
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proximal tubules and excreted in urine (Ding et al.; 1997; Kobori et al.; 2003). AGT synthesis 

is stimulated by inflammation, insulin, estrogen, glucorticoids (Kobori et al.; 2007; Prieto-

Carrasquero et al.; 2004), and Kobori et al. (2001) described that Ang II can stimulate renal 

AGT mRNA and AGT protein synthesis, amplifying the activity of the intrarenal RAS 

(Kobori et al.; 2001). 

3.2 Renin and prorenin 

Renin is an aspartyl protease produced by the juxtaglomerular apparatus of the kidney. Its 
active form contains 339 amino acid residues after proteolytic cleavage at the N-terminus of 
prorenin, and in the circulation prorenin concentration is higher than that of renin. The 
activation of prorenin may occur by proteolytic or non proteolytic pathtways, both being 
able to generate Ang I from AGT. Circulating active renin and prorenin are originated 
mainly from the kidney, but other tissues are able to secrete both enzymes into the 
circulation, and therefore renin was also detected in urine suggesting its tubular formation, 
especially in the collecting duct (Prescott et al.; 2002; Prieto-Carrasquero et al.; 2004). As 
renin was also described in the collecting ducts, authors observed that Ang II is unable to 
inhibit renin secretion in this segment, the opposite to that which has been described in the 
juxtaglomerular apparatus (Kang et al.; 2008; Prieto-Carrasquero et al.; 2004; Rosivall, 2009).  

 

Fig. 4. Principal characteristics of the two receptors for renin and prorenin, the mannose-6-
phosphate receptor and the (pro)renin receptor ((P)RR) (Adapted from Nguyen & 
Contrepas, 2008). 
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The specific receptor for renin and for its inactive proenzyme form, prorenin, was cloned in 

2002 and called (P)RR for (pro)renin receptor. The PRR gene is named ATP6ap2/PRR 

because a truncated form of (P)RR was previously described to coprecipitate with the 

vacuolar H+-proton adenosine triphosphatase (V-ATPase) (Nguyen et al.; 2002). The (P)RR 

is a single trans-membrane domain receptor that acts as co-factor for renin and prorenin by 

increasing their enzymatic activity on the cell-surface and mediating an intracellular 

signaling. It activates the mitogen activated protein kinases ERK1/2 cascade leading to cell 

proliferation and to up-regulation of profibrotic gene expression (Nguyen, 2011).  

Two (P)RRs have been characterized to date, the functional receptor specific for renin and 

prorenin (Nguyen et al.; 2002) and the ubiquitous mannose-6-phosphate receptor (M6P-R) 

which is admitted to be a clearance receptor (Saris et al.; 2001) (Figure 4). It is known that 

the binding of renin with (P)RR increases its catalytic efficiency upon its substrate, a 

phenomena that may be implicated in target-organ lesion in the kidney and the 

development of DN (Ichihara et al.; 2006; Nguyen et al.; 2002). On the other hand, increases 

in prorenin concentration may decrease the (P)RR expression that can act as a negative 

feedback (Ichihara et al.; 2006; Nguyen et al.; 2002; Staessen et al.; 2006). Moreover, studies 

in genetically modified animals overexpressing (P)RR a role for (P)RR cardiovascular and 

renal pathologies since rats overexpressing (P)RR in vascular smooth-muscle cells develop 

high BP and those with an ubiquitous overexpression of (P)RR have glomerulosclerosis and 

proteinuria (Nguyen & Contrepas, 2008). 

3.3 Angiotensin I-converting enzyme (ACE) 

ACE is an ectoenzyme located in many vascular beds and also on cell surface of mesangial, 

proximal and collecting duct cells in the kidney and was described as a dipeptidyl 

carboxypeptidase (Camargo de Andrade et al.; 2006; Redublo Quinto et al.; 2008). It 

catalyzes the conversion of the decapeptide Ang I to the octapeptide Ang II, which is a 

potent vasoconstrictor, and in addition inactivates the vasodilator BK (Erdos, 1976). 

The ACE gene encodes two enzymes: a somatic isozyme (150–180 kDa) and a germinal or 

testicular isozyme isozyme (90–100 kDa) identical to the C-terminal portion of endothelial 

ACE, only expressed in sperm (Hall, 2003; Lattion et al.; 1989). A soluble isoform of ACE, 

which is derived from the membrane bound isoform by the action of secretases, is also 

present in serum and other body fluids such as urine (Casarini et al.; 1995; Casarini et al.; 

2001; Xiao et al.; 2004). ACE homologs have also been found in other animal species, 

including chimpanzee, cow, rabbit, mouse, chicken, goldfish, electric eel, house fly, 

mosquito, horn fly, silk worm, Drosophila melanogaster and Caenorhabditis elegans, and in 

the bacteria Xanthomonas spp. and Shewanella oneidensis (Corvol & Williams, 1998; 

Riordan, 2003). The cDNA of one form of D. melanogaster ACE (termed AnCE) encodes a 

protein of 615 amino acids that have a high degree of similarity to both domains of human 

sACE, indicating that the D. melanogaster protein is a single-domain enzyme (Williams et 

al.; 1996; Riordan, 2003) (Figure 5A). It contains a signal peptide but no carboxy-terminal 

membrane-anchoring hydrophobic sequence. A second ACE-related gene product, termed 

Acer, has also been identified in D. melanogaster. Selective inhibition by phosphinic 

peptides (containing -PO2-CH2- links instead of -CO-NH- links) indicates that Acer has 

active site features characteristic of the N - domain of sACE (Riordan, 2003). 
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ACE presents two distinct catalytic domains, called N- and C-terminus (Wei et al.; 1991) 
(Figure 5 A and B), and both sites hydrolyze Ang I. However, the N-domain has two specific 
physiological substratum, Ang 1-7 and N-acetyl-Seryl-Aspartyl-Lysyl-Proline, a 
hematopoietic peptide (Jaspard et al.; 1993; Rousseau et al.; 1995). ACE is distributed along 
human and rat kidney, and has already been described in glomeruli, mesangial cells and 
also in proximal and collecting duct cells (Camargo de Andrade et al.; 2006; Redublo Quinto 
et al.; 2008). Casarini et al. (1995 and 2001) observed two N-domain ACE isoforms (nACE)  

 

Fig. 5. Schematic representation of primary structure of several members of the ACE protein 
family. (A) Location of the active-site-zinc-binding motifs are indicated by HEXXH; 
transmembrane domains are in black. The sequence of testicular ACE (tACE) is identical to 
that of the C-domain of the sACE, except for its first 36 amino acids. Human tACE and 
sACE have the same carboxyl-terminal transmembrane and cytosolic sequence. Drosophila 
ACEs, cDNA of one form of D. melanogaster ACE (termed AnCE) and a second ACE-
related gene product (termed Acer) lack a membrane-anchoring sequence. Dimensions are 
not to scale. N, amino terminus; C, carboxyl terminus (Adapted from Riordan, 2003). (B) The 
C-terminal alignment of 65 kDa nACE with rat ACE ended at Ser482. The same analysis for 
90 kDa nACE evidenciated that the enzyme finished at Pro629 amino acid after their 
alignment with rat ACE. Both structures are similar for urine, tissue and mesangial cells 
(Adapted from de Andrade et al.; 2010). 

www.intechopen.com



Up-Regulation of Renin-Angiotensin System in  
Diabetes and Hypertension: Implications on the Development of Diabetic Nephropathy 

 

13 

with molecular weight of 190 and 65 kDa in the urine of healthy subjects, and two isoforms of 
90 and 65  kDa, both nACE, in the urine of hypertensive patients (Casarini et al.; 1995, 2001). 
The same nACE enzymes were obtained by Marques et al. (2003) in the urine of Wistar–Kyoto 
and Spontaneously Hypertensive rats (SHR), and by Ronchi et al. (2005) in different tissues of 
SHR, suggesting that the 90/80 kDa ACE could be a possible biological marker of 
hypertension (Marques et al.; 2003; Ronchi et al.; 2005). Moreover, Deddish et al. (1994) 
described an active soluble form of nACE in human ileal fluid, with a molecular mass of 108 
kDa, thereby differing from the enzymes described in human urine (Deddish et al.; 1994). 

Apart from the classic actions of ACE, several groups have recently demonstrated that ACE 
presents novel actions, mainly related to cell signaling. As demonstrated by Kolstedt et al 
(2004), ACE also functions as a signal transduction molecule and binding of ACE substrates 
or inhibitors to the enzyme initiates a cascade of events, including the phosphorylation of its 
Ser1270 residue, increasing ACE and COX2 synthesis. Moreover, using in vitro models such 
as Chinese hamster ovary and melanoma cells, it was demonstrated that Ang II can also 
interact with ACE evoking calcium signaling and promoting an increase in the generation of  
ROS (Guimaraes et al.; 2011; Kohlstedt et al.; 2004).  

3.4 ACE2 

ACE2 is a new member of RAS, homologue of ACE, which acts as a monocarboxipeptidase. 

The enzyme consists of 805 amino acids and is a type I transmembrane glycoprotein with a 

single extracellular catalytic domain (Donoghue et al.; 2000;  Tipnis et al.; 2000). Unlike 

somatic ACE, ACE2 removes a single C-terminal Leu residue from Ang I to generate Ang 1-

9, a peptide with unknown function. Although ACE2 was described originally for its ability 

to generate Ang 1-9 from Ang I (Donoghue et al.; 2000), it also degrades Ang II to the 

biologically active peptide Ang 1-7 (Burrell L et al, ,2004; Vickers et al.;  2002). In vitro 

studies showed that the catalytic efficiency of ACE2 for Ang II is 400-fold greater than for 

Ang I (Vickers et al.; 2002), indicating that the major role for ACE2 is the convertion of 

Ang II to Ang 1-7.  

The human ACE2 gene has been cloned and mapped to the X chromosome (Crackower et al.; 
2002). This enzyme exists as a membrane-bound protein in the lungs, stomach, spleen, 
intestine, bone-marrow, kidney, liver, brain (Gembardt et al.; 2005) and the heart and is not 
inhibited by ACE inhibitors (Ribeiro-Oliveira Jr et al.; 2008). ACE2 is abundantly expressed in 
renal epithelial cells including proximal tubular cells (Danilczyk & Penninger, 2006; Donoghue 
et al.; 2000; Shaltout, et al.; 2007), and in the pancreas, ACE2 was found to be localized to acini 
and islets following a similar distribution to that of ACE (Tikellis et al.; 2004). 

Several studies support a counter-regulatory role for Ang 1-7 by opposing many AT1R-

mediated actions, especially regarding vasoconstriction and cellular proliferation (Ferrario, 

2006, Santos et al.; 2005). Thus, Ang 1-7 has become a key component of the RAS system due to 

its beneficial effects in the cardiovascular system. Although the pathophysiological 

significance of ACE2 in renal injury remains to be established, emerging evidence suggests 

that ACE2 deficiency leads to increases in intrarenal Ang II levels (Ribeiro Oliveira Jr et al.; 

2008; Ferrario, 2006; Oudit et al.;  2010; Wolf & Ritz, 2005; Ye et al.; 2006). Thus, recently ACE2 

has also been proposed as an acute biomarker of renal disease, considering that upregulation 

of ACE2, and the subsequent increase in Ang 1-7 levels, may be a compensatory response to 
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protect against tissue injury. In fact, in response to chronic injury, ACE2 protein levels are 

significantly downregulated in the kidneys of hypertensive (Crackower et al.; 2002), diabetic 

(Tikellis et al.; 2003) and pregnant rats (Brosnihan et al.; 2004; Brosnihan et al.; 2003) suggesting 

the potential role of the enzyme as a kidney disease biomarker. 

3.5 Angiotensins and receptors 

BP is modulated by changes in plasma concentrations of Ang II, due to an increase in total 
peripheral resistance to maintain arterial BP in face of an acute hypontesive modification as 
blood loss and/or vasodilation. Ang II causes a slow pressor response to stabilize the 
arterial BP mediated by a renal response, through mechanisms that include a direct effect to 
increase sodium reabsortion in proximal tubules, release of aldosterone from adrenal and 
altered renal hemodynamics (Carey et al.; 2000), including increased capillary glomerular 
pressure, hyperfiltration and proteinuria (Navar & Harrison-Bernard, 2000). Ang II also has 
important effects on cardiovascular system, stimulating migration, proliferation, 
hypertrophy, increased production of growth factors and extracellular matrix proteins such 
as collagen, fibronectin (Carey et al.; 2000). 

Angiotensins have their actions exerted through AT1R and AT2R interaction, and Ang II, but 

not Ang I, has affinity to both of them. The actions of AT1R include vasoconstriction, 

aldosterone secretion, tubular sodium retention, release of vasopressin, increased sympathetic 

nervous activity and increased thirst. In the long term, actions of AT1R also include cell 

growth, organ hypertrophy, inflammation, remodeling and erythropoietic stimulation. On the 

other hand, AT2R mediates effects that are opposed to the actions of AT1R, and it has already 

been shown that AT2R is upregulated in response to tissue injury, suggesting its important 

role in the pathophysiology of several diseases (Hunyady & Catt, 2006). 

Several studies demonstrated AT1R and AT2R expression in renal tissue, and their role in 

the development of renal disease. A study with SHR after 32 weeks of STZ-induced DM, 

suggested that hypertension, increased albuminuria and renal injury were resulted from the 

reduction of expression of enconding genes for AT1R, and treatment with ibersatan 

prevented the down regulation of the AT1R receptor, with no effect on AT2R expression 

(Bonnet et al.; 2002). Moreover, Velloso et al. (2006) also demonstrated an interaction 

between RAS and the insulin signaling pathways, through AT1R as a result of treatment 

with ARB (Velloso et al.;  2006). 

Changes in the population of renal ATR can be involved in DN. Diabetes reduced gene and 

protein expression of AT1R but not AT2R in the kidneys of SHR rats, without changes in 

Wistar-Kyoto (WKY) strain. This reduction is supposed to be a protective mechanism 

against the intrarenal RAS activation by diabetes, and this effect was cancelled by the ARB 

ibersatan (Bonnet et al., 2002). Also, the cross-talk between AT1R and insulin receptor 

signaling pathways is related to the association between diabetes and hypertension, and 

may contribute to tissue damage (Velloso et al. 2006) induced by these pathologies.  

4. RAS and diabetes 

The activation of renal RAS, and the subsequent generation of Ang II, is the primary 
etiologic event in the development of hypertension in people with DM. Subsequently, the 
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increase of Ang II is responsible for the development of DN, a major cause of ESRD, via 
several hemodynamic, tubular and growth-promoting actions, as evidenced by the fact that 
blockade of this system has a beneficial effect on the kidney (Lewis et al.; 1993, 2001).  

RAS inhibition is important to prevent renal and cardiovascular complications of both DM1 
and DM2, through mechanisms that include improvement in endothelial fuction (Mukai et 
al.; 2002), decrease in inflammatory response (Mervaala et al.; 1999), increase in BK and Ang 
1-7 levels (Maia et al.; 2004). The initial studies with RAS inhibition in people with DN 
demonstrated that there was an effect beyond BP lowering. When compared with 
conventional antihypertensive therapy, those who received RAS blockade consistently had 
greater improvement in DN despite presenting similar BP control, through effects of RAS 
blockade on insulin resistance and glucose homeostasis (Gillespie et al.; 2005; Lewis et al.; 
1993; Ravid et al.; 1998). Thus, it was suggested a role for ACE in mediating renal injury by 
increasing local Ang II formation, prevented by both ACEi and ARB in the kidney. ACEi 
reduce the production of Ang II, and decrease degradation of endothelial BK, resulting in 
vasodilatation by stimulating nitric oxide and prostacyclin production and BP reduction. 
Moreover, ACEi have been shown to decrease the rate of progression of diabetic and non-
diabetic nephropathies, and improve insulin sensitivity, allowing better insulin action in 
patients with DM2 (Lewis et al.; 1993; Yusuf et al.; 2000). On the other hand, ARB have also 
been shown to decrease the risk of stroke in patients with hypertension and reduce the rate 
of progression of DN (Lewis et al.; 1993). ABR prevent the binding of Ang II to AT1R, 
leading to accumulation of Ang II, which in turn is converted to Ang 1-7 and increases the 
levels of this vasodilator peptide (Barra et al.; 2009;  Ferrari, 2005; Maia et al.; 2004). 

Several studies have demonstrated that activity of circulating (systemic) RAS is normal or 
suppressed in DM, as reflected by measurements of plasma renin activity and Ang II 
concentrations, while local renal tissue RAS (tRAS) has already been shown to be activated 
on cell culture, in response to high glucose exposure, and also on spontaneously or induced 
diabetic animals (Carey & Siragy.; 2003b). 

During the activation of tRAS in DM, Ang II activates NADPH oxidase enzyme which 
contributes to the generation of ROS. This process may result from over production of 
precursors to reactive oxygen radicals and or decreased efficiency of inhibitory and 
scavenger systems. In DM, the additional AT1R activation results in a vicious cycle of ROS 
production which contributes to organ damage (Hayden et al.; 2011). The mechanisms that 
contribute to increased oxidative stress in diabetes may include not only increased non 
enzymatic glycosylation (glycation) and autoxidative glycosylation (Baynes, 1991), but it 
is also related to several abnormalities, including hyperglycemia, insulin resistance, 
hyperinsulinemia and dyslipidemia, each of which contributes to mitochondrial 
superoxide overproduction in endothelial cells in large and small vessels as well as the 
myocardium. 

The pathophysiological mechanism that underlies diabetic complications could be explained 
by increased production of ROS via the polyol pathway flux, increased formation of 
advanced glycation end products, increased expression of the receptor for AGEs, activation 
of protein kinase C isoforms and overactivity of the hexosamine pathway. Furthermore, the 
effects of oxidative stress in individuals with DM2 are compounded by the inactivation of 
two critical anti-atherosclerotic enzymes: endothelial nitric oxide synthase and prostacyclin 
synthase (Folli et al.; 2011). 
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Increased AGT expression, in response to high glucose exposure, was also described to be 
involved in the development of DN, in vitro (Hsieh et al, 2003) and in vivo. Using an in vitro 
model, Vidotti et al. (2004) demonstrated that high glucose exposure increased Ang II 
generation, decreased prorenin secretion and induced an increase in intracellular renin 
activity of mesangial cells. In response to 72h of high glucose exposure, there was an 
increase in mRNA levels for AGT and ACE, while 24h of the stimulus increased mRNA 
levels of ACE, prorenin and cathepsin B. In this study, increased generation of Ang II, 
induced by high glucose exposure, was shown to be dependent on at least three factors: a 
time-dependent stimulation of (pro)renin gene transcription, a reduction in prorenin 
enzyme secretion, and an increased rate of conversion of prorenin to active renin, probably 
mediated by cathepsin B. Moreover, the consistent upregulation of ACE mRNA suggests 
that, along with renin, ACE is directly involved in the increased mesangial Ang II 
generation induced by high glucose (Vidotti et al.; 2004). 

In the kidney of streptozotocin (STZ)-induced diabetic animals, an increase in intrarenal 
AGT mRNA is attributed to the proximal tubule, and it seems to be mediated by glucose 
response element located in the AGT promoter (Zimpelman et al.; 2000). Studies with 
Zucker obese rat, a model of DM2 with nephropathy and hypertension, is also associated 
with increased activation of RAS, as demonstrated by an increase in intrarenal Ang II 
generation, which was prevented by treatment with ACEi (Sharma et al.;  2006). Using Non-
obese diabetic model (NOD) (Makino et al.; 1980), our group demonstrated that diabetes 
onset increases ACE activity and expression and decreases ACE2 expression in kidney, 
suggesting that the higher renal ACE/ACE2 ratio may contribute to renal injury leading to 
overt nephropathy (Colucci et al.; 2011). 

Ronchi et al. (2007) studied the association between sACE with 136 kDa and nACE with 69 
kDa from Wistar (W) rat tissue with DM. The authors analysed three groups: control (CT), 
insulin treated diabetic (DT) and untreated (D). In D group, urine ACE activity increased for 
both substrates, Hippuryl-His-Leu and Z-Phe-His-Leu, that distinguished nACE from 
somatic ACE when compared with CT and DT, despite the decreased activity in renal 
tissues. Immunostaining of renal tissue demonstrated that ACE is more strongly expressed 
in the proximal tubule of D than in the same nephron portion in the other groups. Ang I 
increased in the renal tissue of D and DT groups, but Ang II levels decreased in the D and 
DT groups when compared to the control. Ang 1-7 was detected in all studied groups with 
low levels in DT. These findings indicate that Ang I increase and Ang II decrease, as a result 
of renin and NEP simultaneous activation, increasing Ang 1-7.  Since Ang 1-7 can 
counterbalance Ang II effects, this modulation of angiotensin peptides has a protective role 
against  renal damage in DM (Ronchi et al., 2007). 

Few studies were described using animal models with genetic alterations in the RAS in DN. 
Studies have suggested associations between incidence of DN and a variety of genetic 
polymorphisms. An association was identified between nephropathy in DM1 and the D 
allele of an insertion/deletion (I/D) polymorphism in intron 16 of ACE gene. Huang et al.; 
(2001) described that the induction of diabetes by SZT was not affected by ACE gene copy 
number. The authors compared the changes with the time of BP of one, two and three–copy 
mice with the pressures of untreated controls. The BPs of untreated mice were not affected 
by ACE gene copy, however the BP of the three-copy diabetic mice with genetically higher 
ACE activity increased with time, and 12 weeks after induction of diabetes were 10-20 
mmHg higher than the BPs of the one and two copy diabetic mice (Huang et al.;  2001). 
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Regarding ACE2, differences in renal enzyme levels have been detected in hypertensive 
humans when compared with controls (Van Buren & Toto, 2011). Wong et al. (2002) have 
shown that pharmacological inhibition of ACE2 and genetic ablation in different rodent of 
models of diabetes, increased albuminuria and glomerular lesions. Furthermore, animals 
with STZ-induced DN have decreased renal expression of ACE2 (Tikellis et al.; 2003). In 
humans, biopsies from patients with DN showed a decrease in glomerular expression of 
ACE2, suggesting that a therapy increasing the activity of this enzyme can help in the future 
in the treatment of diabetic kidney disease (Wong et al.; 2007). 

Aldosterone has been implicated in DM complications. Sato et al (2003) in a study in 
patients with DM2 described that patients with aldosterone escape of 40% have higher 
albumin excretion than those without. Treating these patients with spironolactone 
associated to ACEi, the authors detected reduction in urinary albumin excretion over a 24-
week period. They conclude that RAS activation in DN could be related to an aldosterone-
mediated increase in disease progression. (Sato et al.; 2003).  

5. Conclusion 

We reviewed the physiology of the RAS in DM and hypertension, highlighting the 
importance of this system in diabetic nephropathy. The RAS is up or down regulated in the 
kidney and Table 2 summarizes the role of components of the RAS in diabetic nephropathy. 
Figure 6 presents our understanding of the intrarenal RAS in diabetic nephropathy. 
Increased Ang II is responsible for both intrarenal insulin resistence and renal injury, as well 
as, decrease AT2R expression might contribute to accelerated renal injury (Carey and Siragy, 
2003b). In addition to controling blood pressure, we evidenciated the importance of ACEi 
and ARB in protecting the kidney against injury. The newly discovered components of RAS, 
such as renin receptor, ACE2, Ang IV and also aliskeren, the renin inhibitor, represent that  

 

Description References 

RAS up regulation 

 Renal Ang II increase 

 AT1R activation - organ damage 

 Increased AGT expression – diabetic 
nephropathy 

 Increased mRNA levels of ACE, prorenin 
and cathepsin B. 

 Ang I increase and renin/neutral 
endopeptidase activation 

Lewis et al., 1993, 2001; Zimpelman et 
al., 2000 
Hayden et al.., 2011. 
Hsieh et al, 2003. 
Vidotti et al., 2004. 
 
Ronchi et al., 2007. 

RAS down regulation 

 ACE inhibition – increase in BK and Ang 
1-7, control of blood pressure 

 ACE inhibition, improve insulin 
sensitivity 

 ACE2 decrease 

 ACE2 inhibition - increased albuminuria 
and glomerular lesions 

Maia et al., 2004. 
 
Lewis et al., 1993; Yusuf et al., 2000. 
 
Colucci et al., 2011; Wong et al.,  2007 
Wong et al.,2002. 

Table 2. RAS is up- or down-regulated  in diabetic kidneys 
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research is open in this field. New pathways and signaling compounds can be discovered 
explaining  the modulation of the RAS resulting in expression of other genes. 

 

Fig. 6. Pathways through which the intrarenal renin–angiotensin system contributes to 
diabetic nephropathy based on current evidence. Solid arrows represents biochemical 
pathways or ligand–receptor interactions. The broken arrow indicates decreased ligand–
receptor interaction owing to decreased AT2R synthesis. Abbreviations: ACE, angiotensin-
converting enzyme; ACE2, angiotensin-converting enzyme2; AGT, angiotensinogen; ANG, 
angiotensin; AT1R, angiotensin II receptor; AT2R angiotensin II receptor; MC, glomerular 
mesangial cell; PTC, proximal tubule cell. Adapted from Carey and Siragy, 2003b. 
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