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Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio 
USA 

1. Introduction 

Fanconi anemia (FA) is a genetic disorder characterized by bone marrow failure (BMF), 
clonal proliferation of hematopoietic stem cells, and transformation to leukemia and other 
cancers (Ames et al., 1995; Boglilo et al., 2002; Cohen-Haguenauer et al., 2006; Cumming et al., 
2001; Fagerlie et al., 2001; Jonkers et al., 2001; Suematsu et al., 2003). Somatic cell fusion 
studies show FA is genetically heterogeneous. So far mutations in 15 genes have been 
identified in FA or FA-like patients (Cohen-Haguenauer et al., 2006; Joenje et al., 1987; 
Jonkers et al., 2001; Lensch et al., 1999; Stoepker et al., 2011; Yamamoto et al., 2011). The genes 
encoding the groups A (FANCA), B (FANCB), C (FANCC), D1 (FANCD1/BRCA2), D2 
(FANCD2), E (FANCE), F (FANCF), G (FANCG), -I (FANCI/KIAA1794), J (FANCJ/ BRIP1), 
L (FANCL), M (FANCM), N (FANCN/PALB2),  O/RAD51C and P/SLX4 proteins have been 
cloned (de Winter et al., 1998, 2000a, 2000b; Howlett et al., 2002; Joenje et al., 2000; Letitus et 
al., 2004; Levran et al., 2005; Lo Ten Foe et al., 1996; Meetei et al., 2003, 2004, 2005; Meindl et 
al., 2010; Reid et al., 2006; Smogorzewska et al., 2007; Somyajit et al., 2010; Strathdee et al., 
1992; Timmers  et al., 2001; Xia et al., 2006; Yamamoto et al., 2011). The latter two genes are 
still thought of as tentative as they do not fall within a defined category biologically and the 
patients carrying these gene mutations are limited. The majority of mutations are found in 
FANCA, FANCC and FANCC genes in FA patients (Table 1). Recent studies on the biological 
function of these FA proteins have demonstrated that eight of the FA proteins (namely, 
FANCA, B, C, E, F, G, L, and M) form a nuclear multiprotein complex (Collins et al., 2005; 
D’Andrea et al., 2003; de Winter et al., 2000; Meetei et al., 2003; Smogorzewska et al., 2007; 
Tischkowitz et al., 2003; Walsh et al., 1994), which functions as a nuclear E3 ubiquitin ligase 
that monoubiquitinates downstream FANCD2/FANCI dimer in response to DNA damage 
or DNA replication stress. This FANCD2/FANCI heterodimer then recruits other 
downstream FA proteins including FANCD1 (which is the breast cancer protein BRCA2), 
and the recently identified FANCJ, FANCN, FANCO and another breast cancer protein, 
BRCA1 (D’Andrea et al., 2010), to nuclear loci containing damaged DNA and consequently 
influence important cellular processes such as DNA replication, cell-cycle control, and DNA 
damage repair.  The core complex also interacts with the FAAP100 and FAPP24 proteins, 
which are also crucial components in the pathway (Ciccia et al., 2007; Horejsi et al., 2009; 
Collis et al., 2008, Fig 1). FANCM and its interacting proteins, such as FAAP24 and MHF1, 
MHF2, also play a role in controlling the processing and stabilization of stalled replication 
forks (Schwab et al., 2010; Luke-Glaser et al., 2010; Singh et al., 2010).  
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Table 1. Complementation groups and interaction proteins of Fanconi Anemia. 

 

Fig. 1. Function of the FA pathway. Eight FA proteins form a nuclear core complex, which 
acts as ubiquitin ligase. FANCM interacts with FAAP24, FAAP100 as well as MHF1 and 
MFH2, resulting in complex chromatin loading and controlling the processing and 
stabilization of stalled forks, respectively. In response to DNA damage or replication stress, 
nuclear core complex monoubiquitinates two other FA proteins, FANCD2 and FANCI, 
which then recruit other downstream FA proteins FANCD1, FANCJ, and FANCN to 
damaged DNA and involved in  DNA repair, cell-cycle control to repair ICL (interstrand 
crosslink) lesions and to maintain genome stability.  

Many studies indicate that FA proteins might play specific roles in hematopoiesis by 
governing the responses of hematopoietic cells to both genotoxic and cytotoxic stresses. Loss 
of FA functions causes excessive apoptosis of HSC and progenitor cells (HSC/P) cells 
leading to BMF in the early stage of FA. As the disease progresses, apoptosis as well as 
genomic instability impose a selective pressure on FA HSC/P cells and promote the 
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development of mutant clones, which could be transformed  to leukemia (Cumming  et al., 
1996, 2001; Fagerlie  et al., 2001; Haneline et al., 1998, 1999, 2003; Koh  et al., 1999; Li X et al., 
2004; Li Y et al., 1997; Maciejewski  et al., 1995; Nakata  et al., 2004; Pang et al., 2001a, 2001b, 
2002; Rathbun et al., 1997, 2000;  Si et al., 2006; Walsh et al., 1994; Wang et al., 1998;  Whitney 
et al., 1996).  

2. FA hematopoiesis 

Hematological abnormalities are among the most important clinical features of FA. Children 
with FA often develop pancytopenia during the first few years of life. Complications of BM 
failure (BMF) are the major causes of morbidity and mortality of FA, and 80% of FA patients 
die from BMF (Bagby et al., 2003; Buchwald et al., 1998; Fagerlie et al., 2001; Kutler et al., 2003; 
Lensch et al., 1999; Liu et al., 2000). In addition, patients with FA have high risk of 
developing myelodysplasia (MDS) or acute myeloblastic leukemia (AML) (Bagby et al., 2003; 
Buchwald et al., 1998; D’Andrea et al., 2003; Fagerlie et al., 2001; Kennedy et al., 2005; 
Tischkowitz et al., 2003). During the BMF-MDS-AML progression, FA patients frequently 
develop clonal chromosomal abnormalities in the BM HSC/P cells. In fact, secondary 
occurred clonal cytogenetic abnormalities, such as 3q addition, 5q deletion and monosomy 7, 
are common in in children with FA who have evolved to MDS and AML and non-FA 
patients with MDS and AML after alkylating agents treatment (Freie et al., 2004; Fridman et 
al., 2003; Futaki et al., 2002; Giaccia et al., 1998; Lina-Fineman et al., 1995; Rubin et al., West et 
al., 2000).  

Excessive apoptosis and subsequent failure of the HSC compartment led to progressive BMF 
in FA patients have been documented from in vitro and in vivo studies. However, the 
molecular etiology of BMF and leukemia in FA remains to be elucidated.  Compelling 
evidence suggest that altered expression of certain growth factors and cytokines, such as 
reduced expression of interleukin-6 (IL-6) and granulocyte-macrophage colony stimulating 

factor (GM-CSF) but increased secretion of mitotic inhibitor TNF- in patient BM cells, may 
in part be responsible for hematopoietic disease progression in FA (de Cremoux et al., 1996; 
Dufour et al., 2003; Rosselli et al., 1992; 1994; Schultz et al., 1993; Stark et al., 1993). It is 
conceivable that these alterations may change the BM microenvironment (for instance, 
leading to factor deprivation or constant exposure to mitogenic inhibitors) and cause 
deregulation of cellular homeostasis. It has also been shown that FA BM cells are 

hypersensitive to a variety of extracellular cytokines, including interferon- (IFN-) and 

tumor necrosis factor  (TNF- (Dufour et al., 2003; Fagerlie et al., 2001; Haneline et al., 1998; 
Koh et al., 1999; Li X et al., 2004;  Li Y et al., 2004; Nakata et al., 2004; Pang et al., 2001a, 2001b, 
2002; Rathbun et al., 1997, 2000; Reid et al., 2006; Rosselli et al., 1992; Schultz et al., 1993; Si et 
al., 2006; Wang et al., 1998; Whitney et al., 1996), which may subsequently lead to cell 
apoptosis. Indeed, studies of FA patients have demonstrated that BM from FA patients has 
decreased number of colony-forming progenitors, as well as a reduction in colony size 
(Doneshbod–Skibba et al., 1980; Gluckman et al., 1989). These data demonstrate defective 
hematopoiesis in FA (Bagby et al., 2003; Fagerlie et al., 2001; Tischkowitz et al., 2003). 

In contrast to FA patients, mouse models deficient for several FA genes, including Fanca, 
Fancc, Fancd2 and Fancg, do not show no spontaneous hematological defects or leukemia 
development (Cheng et al., 2000; Whitney et al., 1996; Wong & Buchwald, 2002; Yang et al., 
2001). Studies in the Fanca and Fancc mouse models show that while blood count and the 
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number of committed BM progenitors are normal in FA mice as compared to WT mice; 
however, when subjected to sublethal dose of DNA cross-linking agent mitomycin C 
(MMC), which does not affect WT mouse cells, to the mutant mice experienced progressive 
decrease of all peripheral blood parameters, as well as early and committed progenitors, and 
eventually died within 8 weeks (Chen et al., 1996; Whitney et al., 1996). These results suggest 
that loss of FA genes in mouse models results in compromised defects in response to 
environmental insults (Chen et al., 1996; Whitney et al., 1996; Pang et al., 2000; Rathbun et al., 
1997; Haneline et al., 1998; Wong & Buchwald, 2002). 

Similar to FA-C patients, BM cells from Fancc-/- mice show compromised colony growth 

capacity following IFN-, TNF- and MIP-1 treatment (Haneline et al., 1998). Literatures 

suggest that IFN- and TNF- suppress colony growth forming ability of FA mouse BM cells 
by upregulating other cellular receptors, such as the fas receptor (CD95) (Young et al., 1997). 
Increase in CD95 expression has been found in CD34+ cells from children with FA as well as 
the CD34+ fraction of hematopoietic progenitors in Fancc-/- mice, which is associated with 
increased apoptosis (Cumming et al., 1996; Otsuki et al., 1999). The hypersensitivity of Fancc-

/- hematopoietic cells to IFN- and TNF- is also mediated through activation of the RNA-
dependent protein kinase (PKR) pathway, which is reported to initiate apoptosis in some 
instances, as an elevated level of activated PKR was found in Fancc-/- mouse embryonic 
fibroblasts (Pang et al., 2001, 2002; Zhang et al., 2004). Several groups independently showed 
compromised hematopoietic engraftment and reconstitution after BM transplantation of FA 
HSCs (Haneline et al., 2003; Zhang et al., 2007). Deregulation of apoptotic responses in 
hematopoietic cells may account at least in part for the nearly universal development of BM 
failure in children with inactivating FA mutations.  

3. Inflammation and FA 

Inflammation is a biological process orchestrated mainly by myeloid cells and accompanied 
by infection or phagocytosis (Balwill et al., 2001). Increased oxidative stress in FA patients 
may be the result of an increased burden of endogenously produced oxidants as well as 
increased amounts of ROS generated by various inflammatory cytokines. Many studies 
indicate a correlation between elevated circulating pro-inflammatory cytokines and anemia in 
patients with leukemia-related BM diseases (Hakim et al., 1993), but direct evidence for the 
mechanistic link between inflammation and BMF or leukemia is lacking.  

There is evidence showing that patients with FA have abnormally high levels of TNF- 
(Fagerlie et al., 2001; Fiers et al., 1999; Freie et al., 2003), which is a major mediator of 
inflammation and ROS production (Liu et al., 2003; Lohrum et al., 1999). Inappropriate 

induction or activation of TNF-signaling has been implicated in the pathogenesis of 
numerous common diseases such as arthritis, heart attacks, and cancer (Ekbom et al., 1990; 
Jonsson et al., 2005; Mantovani et al., 2002; Marx et al., 2004). It is conceivable that the presence 

of TNF- and increased oxidative stress in FA BM may account for profound physiologic 

changes, including the development of BMF and progression to leukemia. 

Similar to TNF-, IL-1 and IL-6 are also well-known pro-inflammatory cytokines with a 
wide range of biological activities in immune regulation, hematopoiesis, inflammation and 

oncogenesis (Ibanez et al., 2009). It has been demonstrated that IL-1 is overexpressed in FA-
A patients (de Cremoux et al., 1996). The elevated levels of IL-1β were completely reverted 
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by complementation of functional FANCA into FA-A lymphocytes. In addition, the 
constitutive activation of the PI3K-Akt pathway in FA cells upregulates the expression of IL-
1β through an NF-κB independent mechanism and this overproduction activates the 
proliferation of tumour cells (Ibanez et al., 2009). IL-6 is the chief stimulator of the 
production of most acute phase proteins (Scheller et al., 2011), whereas the other implicated 
cytokines influence subgroups of acute phase proteins. Recent studies demonstratethe 
presence of a defect in IL-6 production in FA patients (Coussens et al., 2002; Cumming et al., 
1996), suggesting that this cytokine may partly be responsible for pancytopenia associated 
with BMF, the major clinical feature of FA, in FA patients. In addition, it has been reported 
that Fancc-/- HSC/P cells had altered growth and apoptosis responses to combinations of 
stimulatory cytokines, most dramatically in response to a combination of factors that 
included interleukin-3 (IL-3) and IL-6 (Aubé et al., 2002). 

4. FA oxidant hypersensitivity 

Even in steady state, hematopoietic cells are exposed to various ROS, which are routinely 

generated during metabolic or inflammatory process. ROS induce a variety of responses in 

hematopoietic cells, including cellular proliferation and growth inhibition (Howlett et al., 

2002; Ichijo et al., 1997). Like cells from other tissues, hematopoietic cells have developed 

several mechanisms to prevent the damage induced by oxidative stress. First, antioxidant 

enzymes, including superoxide dismutases (SODs), catalase, glutathione peroxidases and 

peroxiredoxins, can directly eliminate ROS. Secondly, other cellular enzymes can function to 

repair DNA damage induced by ROS in hematopoietic tissues. While FA murine models do 

not recapitulate some of the major FA clinical manifestations such as BM failure and 

leukemia, hematopoietic cells from FA knockout mice exhibit extreme oxidant sensitivity. 

Extensive studies have demonstrated FA oxidant hypersensitivity by using primary and 

immortalized cell cultures as well as ex vivo materials from patients (Bogliolo et al., 2002; 

Cohen–Haguenauer et al., 2006; Cumming et al., 1996; Futaki et al., 2002; Hadjur et al., 2001; 

Kruyt et al., 1998; Pagano et al., 2005; Park et al., 2004; Saadatzadeh et al., 2004). It has also 

been shown that reoxygenation-generated oxidative stress, which is associated with 

significant DNA damage and inhibition of colony formation capacity (Ames et al., 1993; 

Hammond et al., 2003; Chen et al., 2000), induced senescence of bone marrow progenitor 

cells from Fancc-/- mice compared to their counterparts. While these studies suggest a 

correlation between oxidative stress and FA disease progression, the mechanism by which 

oxidative stress influences the function of FA HSC/P cells has not been systematically 

studied. A number of hypotheses regarding the effect of oxidative stress in FA have been 

suggested, including the proposal that ROS could damage DNA and inability of FA HSC/P 

cells to repair such damage would result in exacerbated genomic instability leading to 

apoptosis and malignant transformation.  

Three major FA core complex components, FANCA, FANCC, and FANCG (Bagby et al., 
2003; Kennedy et al., 2000; Green et al., 2009), were found to interact with a variety of cellular 
factors that primarily function in redox-related processes (Table 2), such as FANCC protein 
interacts with NADPH cytochrome P450 reductase and glutathione S-transferase P1-1 
(Cumming et al., 1996; Kruyt  et al., 1998), which are involved in either triggering or 
detoxifying reactive intermediates including ROS. It has also been demonstrated that Fancc-
/- mice with deficiency in the anti-oxidative enzyme Cu/Zn superoxide dismutase 
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demonstrated a defective hematopoiesis (Hadjur et al., 2001). Fancc-/- cells exhibit 
hyperactivation of ASK1, a serine-threonine kinase that plays an important role in redox 
apoptotic signaling (Saadatzadeh et al., 2004). Another FA protein, FANCG, interacts with 
cytochrome P450 2E1, which is associated with the production of reactive oxygen 
intermediates, and mitochondrial anti-oxidant enzyme peroxiredoxin-3 (Futaki et al., 2002, 
Mukhopadhyay et al., 2006), which suggested a possible role of FANCG in protection 
against oxidative DNA damage. Furthermore, FANCA and FANCG interact upon oxidative 
stress (Park et al., 2004). These findings indicate a crucial role of FA proteins in oxidative 
stress signaling. We recently found that FANCD2 associated with FOXO3a, a master 
regulator in response to oxidative stress (Huang et al., 2007; Li et al., 2010; Tsai et al., 2008). 
While these observations point to the involvement of FA proteins in oxidative stress 
response, the molecular pathways in which FA proteins function to modulate physiologic 
oxidative stress have not been defined. 

 

Table 2. Fanconi anemia proteins in redox signaling. 

5. Oxidative stress response in FA hematopoietic cells: a FOXO3a 
connection 

Forkhead transcription factors of the FOXO class O including FOXO1, FOXO3a, FOXO4 and 

FOXO6, are implicated in the regulation of diverse physiologic processes, including cell 

cycle arrest, apoptosis, DNA repair, stress resistance, and metabolism (Brunet  et al., 2004; 

Huang et al., 2007). It has been established previously that members of the FOXO family are 

negatively regulated by PKB/c-Akt in response to insulin/IGF signaling, and are involved 

in regulating cell cycle progression and cell death (Geert et al., 2002; Essers et al., 2004). 

Among these FOXO proteins, FOXO3a functions as a master regulator of oxidative stress 

(Huang et al., 2007; Tsai et al., 2008). Several recent studies demonstrate that FOXO3a 

protects quiescent HSCs from oxidative stress (Tothova et al., 2002, 2007; Miyamoto et al., 

2005). Some other studies also indicatethat Foxo3a is involved in inflammatory responses, 

such as inflammatory arthritis, intestinal inflammation, rheumatoid blood and synovial 

tissue, angiogenesis and postnatal neovascularization etc. (Turrel-Davin et al., 2009; Potente 

et al., 2005; Jonsson et al., 2005; Walbert et al., 2004).  

While strong evidence indicates that FA cells, including hematopoietic cells from FA 
patients, are intolerant to oxidative stress (Cohen-Haguenauer et al., 2006; Cumming et al., 
2001; Du et al., 2008; Futaki et al., 2002; Hadjur et al., 2001; Kruyt et al., 1998; Paganno et al., 
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2005; Park et al., 2004;  Saadatzadeh et al., 2004; Schindler et al., 1988; Zhang et al., 2005) and 
certain FA proteins interact with cellular factors involved in redox metabolism (Aggarwal et 
al., 2003; Ames et al., 1995; Bagby et al., 2003), the molecular pathways in which FA proteins 
function to modulate physiologic oxidative stress have not been defined. Our recent 
identification of the FANCD2-FOXO3a complex (Li et al., 2010) and preliminary 
characterization of impaired anti-oxidant defense in primary BM cells from FA patients 
opened new research opportunities to extend the functional study on the roles of FA 
proteins in the context of oxidative stress. We envision a model (Fig 2) in which the FA 
proteins regulate oxidative stress response through mechanisms involving functional 
interplay with the major oxidative stress-responsive transcription factor FOXO3a and 
protection of anti-oxidant genes from oxidative damage. Loss of these FA protein functions 
leads to elevated levels of ROS. As a consequence, FA HSC/P cells accumulate excessive 
DNA damage and increased genomic instability.  However, further studies remains to be 
done in this context. 

 
 
 

 

 

Fig. 2. A model for the role of FA proteins in oxidative stress signaling. In WT cells, the FA 
pathway helps keep cellular levels of ROS in check through functional interaction with the 
FOXO3a oxidative stress responsive pathway and safeguarding cellular anti-oxidant genes. 
In FA cells, both the FOXO3a pathway and the anti-oxidant defense are impaired due to loss 
of the FA protein functions. As a result, FA cells accumulate high levels of ROS, which 
damages DNA leading to genomic instability. 

6. The FA syndrome links inflammatory ROS to leukemogenesis 

Certain chronic inflammatory conditions have long been known to link to cancer. There is 
compelling evidence that chronic inflammation increases the risk of human cancers such as 
hepatocellular carcinoma, colon and bladder cancers, B cell lymphomas, and visceral 
malignancies (Kuper et al., 2000; Mackay et al., 2001; Martin et al., 2011; Suematsu et al., 2003; 
Umeda et al., 2002; Ziech et al., 2010), probably through the unbalanced machinery between 
DNA damage and repair (Fig. 3.).  
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Fig. 3. Possible mechanisms for induction of oxidative stress and DNA damage and the roles 
in carcinogenesis. Intracellular stress or exogenous insults induces ROS production, which 
damages DNA, lipids and proteins. Over-produced ROS leads to cell death and activates 
cell defense machinery, including DNA repair and other cellular signaling pathways to 
maintain genome stability. Insufficient DNA repair or apoptosis causes mutagenesis, which 
results in cancer development. 

Oxidative stress is considered as an important pathogenic factor in leukemia-prone bone 
marrow diseases like FA (Bogliolo et al., 2002; Cohen–Haguenauer et al., 2006; Cumming et 
al., 1996; Futaki et al., 2002; Hadjur et al., 2001; Joenje et al., 1987; Kruyt et al., 1998; 
Mukhopadhyay et al., 2006; Pagano et al.,  2005; Park et al., 2004; Saadatzadeh et al.,  2004; 
Schindler et al., 1988; Zhang et al., 2005a, 2005b). The expression of inflammatory mediators, 

particularly the pro-inflammatory cytokines TNF-, interleukin-1beta (IL-1, and IL-6 in 
these patients is often associated with increased production of ROS either as a component of 
their immune response or as a consequence of increased metabolism (Macciò et al., 1998; 
Mantovani et al., 1997; Mantovani et al., 2002; Tischkowitz et al., 2004). Many studies have 
shown a correlation between elevated circulating pro-inflammatory cytokines and anemia in 
patients with leukemia-related BM diseases but direct evidence for the mechanistic link 
between inflammation and leukemia is lacking.   

Normal hematopoiesis is maintained by dynamic interactions between HSCs and the bone 
marrow microenvironment, which is a complex system consisting of a variety of cell types, 
including stromal cells of nonhematopoietic, mesenchymal origin as well as 
hematopoietically derived stromal macrophages producing extracellular matrix components 
and hematopoietic growth factors (Bhatia et al., 1995; Konopleva & Michael, 2007; Marina et 
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al., 2007). Alterations of pro-inflammatory cytokine expression such as reduced IL-6 and 

increased TNF-which are often found in FA patient cells, may account for BM 
microenvironment changes such as growth factor deprivation or constant exposure to 
mitogenic inhibitors. These alterations may subsequently cause deregulation of cellular 
homeostasis in FA (de Cremoux et al., 1996; Dufour et al., 2003; Rosselli et al., 1992, 1994; 
Schultz et al., 1993; Stark et al., 1993) at least partially through upregulation of ROS 
production. 

ROS induce a variety of responses in HSCs, including cellular proliferation and apoptosis 

(Nakamura et al., 1997; Nakata et al., 2004). ROS can also cause DNA damage and drive 

HSCs into cell division, which is essential for DNA repair processes (Wilson A et al., 2008). 

There is strong evidence that HSCs are activated and thus functionally exhausted by oxidative 

stress. Mice with mutations in the ATM or FOXO genes, as well as various DNA repair 

genes exhibit premature exhaustion of HSCs due to accumulation of ROS or DNA damage, 

indicating that cellular balance between ROS and antioxidant defense as well as DNA repair 

is crucial for the maintenance of HSC self-renewal and hematopoietic function (Rossi et al., 

2007; Nijnik et al., 2007).  

The inflammatory cytokine TNF- which is overproduced in FA patients, has been 
considered as one important pathological factor involved in the abnormal hematopoiesis in 
FA. Extensive evidence demonstrated that excessive apoptosis of FA hematopoietic cells 

induced by TNF-, may contribute to at least partially the pathophysiology of BM failure in 

FA. The c-JUN NH2-terminal kinase (JNK) and nuclear factor-kappa B (NF-B) pathways 

are two well-established pathway involved in TNF--induced ROS production (Nakata et 

al., 2004; Ma et al., 2009; Ventura et al., 2004).  The JNK kinase can be activated by TNF--
induced ROS. This activation then in turn leads to more ROS production, and sustained JNK 

activation in NF-B-deficient cells was suggested to depend on ROS. It has been shown that 

TNF-induced ROS production at inflammatory sites causes DNA damage and therefore 
cause mutation and cancer (Aggarwal et al., 2003; Kryston et al., 2011; Martin et al., 2011 
Sedelnikova et al., 2010; Suematsu  et al., 2003; Wajant  et al., 2003; Ziech et al.,  2010). One 
possible mechanism is through Oxidation of bases and generation of DNA strand 
interruptions. However, the accurate measurement of oxidative stress is a hallmark of 
disease diagnosis as well as treatment. Recently, HPLC associated with tandem mass 
spectrometry (MS/MS) or electrochemical detector (ECD) together with optimized DNA 
extraction conditions has been developed as a relevant analytical approach for measuring 
oxidatively base damage in cellular DNA (Cadet et al., 2006, 2010). Our recent studies 
demonstrated the inflammatory ROS-mediated hematopoietic suppression and increased 
chromosomal aberrations in Fancc-/- mice, which is associated with impaired oxidative 
DNA-damage repair, implicating a role of FA pathway in maintaining genomic stability 

(Sejas et al., 2007; Zhang et al., 2007).  Further studies indicated that TNF- not only is a pro-
apoptotic signal suppressing FA hematopoietic progenitor activity, but also promotes 
leukemic transformation of FA hematopoietic stem/progenitor cells (Li et al., 2007). 
Therefore, FA disease progression to leukemia is governed not only by genetic changes 

intrinsic to the FA cells, but also by epigenetic and environmental factors and that TNF--
mediated inflammation is one of the most important epigenetic and environmental factors 
contributing to FA leukemogenesis. Recent study indicate that FA hematopoietic cells are 
prone to clonal hematopoiesis and malignancy, which is associated with increased 
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cytogenetic abnormalities and myeloid malignancies in Fancc-/- BM cells (Haneline et al., 
1998, 1999, 2003; Li X et al., 2004; Si et al., 2006). While the role of FA proteins in the 

regulation of TNF--induced ROS production remains to be elucidated, several hypotheses 
have been proposed, including that FA proteins protect chromosomal DNA from ROS 
attack or facilitate the repair of oxidative DNA damage, which in turn downstream ROS 
signaling. It is also possible that FA proteins can regulate the biosynthesis of ROS metabolic 
molecules, such as glutathione and the expression of antioxidant enzymes (such as 
glutathione Stransferases and catalase). However, there is no direct evidence for any of these 
assumptions so far. Another potential target is the redox-sensitive transcription factor NF-

B, a major player involved in transcription regulating during differentiation and 

inflammation (Dhar et al., 2006). The activation of NF-B is known to enhance inflammation 
and promote cancer (Coussens et al., 2002; Fiers et al., 1999; Macdougal et al., 2002). In 

addition, chronic exposure of FA BM cells to proinflammatory cytokine TNF- creates an 
environment selects for somatically mutated preleukemic stem cell clones which are 
apoptosis-resistant and acquire proliferative advantage (Li et al., 2007). Patients with these 

TNF--resistant BM cells may advance to MDS and AML via a mechanism involving 

genomic instability, coupled with inflammation driven by high NF-B transcriptional 
activity (Fig. 4).  

 

Fig. 4. The pro-inflammatory cytokines and their potential role in FA pathophysiology. 

Overproduced pro-inflammatory cytokines (TNF-, IL-6, IL-1 etc.) plays roles in not only 
pro-apoptotic signal suppressing FA hematopoietic progenitor activity, but also promoting 
leukemic transformation of FA HSC/P cells, which lead to typical phenotype of FA patients. 
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7. Functional interaction between the FA proteins and other oxidative stress 
response pathways 

Recent findings of a reduction of the HSC pool and a deficient repopulating capacity in 
Foxo3a knockout animals (Miyamoto et al., 2007) indicate that FOXO3a plays essential 
regulatory roles in HSC maintenance through a mechanism of regulating ROS. This is 
consistent with our recent finding that FANCD2 forms complex with FOXO3a in response to 
oxidative stress (Li et al., 2010). In addition, we observed several hematopoietic defects in FA 
mice deficient for Foxo3a (unpublished data). These results suggest that the FA proteins 
functionally interplay with other oxidative stress response pathways. Indeed, our 
preliminary results with primary BM cells from FA-A patients show that certain genes 
functioning in anti-oxidant defense and ROS metabolism fail to respond to oxidative stress 
(unpublished data). This suggests that one critical function of FA proteins under oxidative 
stress is to safeguard the expression of these anti-oxidant defense genes through DNA 
damage repair or gene promoter protection. While these observations indicate that the FA 
pathway functionally interacts with other cellular oxidative stress response pathways, the 
molecular mechanisms by which FA proteins function to modulate physiologic oxidative 
stress remain to be elucidated. Further investigation into the roles of FA proteins in 
oxidative DNA-damage response and repair, and the functional relationship between 
inflammatory ROS and genomic instability during FA leukemogenesis not only will 
advance our understanding of the function of FA proteins in hematopoiesis but also may 
suggest new targets for therapeutic prevention and treatment of BM failure and cancer 
progression of the disease. 

8. Conclusion 

Given other known genomic instability syndromes such as ataxia telangiectasia, Nijmegen 
breakage syndrome, xeroderma pigmentosum, and Werner syndrome rarely develop BM 
failure and leukemia, FA has been considered an excellent disease model for studying 
oxidative stress response in cancer development. Further investigation into the function of 
FA proteins in oxidative damage response and repair will help shed new light on the role of 
FA proteins in the maintenance of normal hematopoiesis under conditions of oxidative 
stress, and yield valuable information on whether targeting components of FA-related 
oxidative stress signaling pathways may be therapeutically useful in the prevention and 
treatment of FA BMF and leukemia. In addition, while FA is a rare disease, understanding 
functional interaction between FA proteins and other critical oxidative stress signaling 
pathways provides a unique opportunity to mechanistically comprehend and potentially 
intervene in these physiologically important processes.  
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