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1. Introduction 

This chapter is the sequel to the chapter entitled “Phospho-signaling at Oocyte Maturation 

and Fertilization: Set Up for Embryogenesis and Beyond Part I. Protein Kinases” by Mahbub 

Hasan et al.  

2. Kinase regulators and substrates in oocyte maturation, fertilization and 
activation of development 

2.1 Actin 

Filamentous actin or F-actin is a major component of stress fibers and involved in cellular 

architecture. Its dynamic rearrangement supports not only cellular morphology but also 

intracellular signal transduction that regulate cell-cell or cell-extracellular matrix 

interactions, cell motility, and proliferation. Several lines of evidence demonstrate that, in 

several organisms, oocyte cortical cytoskeleton involving F-actin network undergoes a 

dynamic rearrangement during meiosis/oocyte maturation and that this is often involving 

phosphorylation of actin and/or actin-interacting proteins (e.g. ADF/coffilin, see below) 

catalyzed by PKC (in Tubifex, Xenopus) (Capco et al. 1992; Shimizu 1997). In Drosophila, PKC 

phosphorylation of a tumor suppressor protein-homolog named Lgl (lethal (2) giant larvae) 

is responsible for actin-dependent oocyte polarity formation (Tian and Deng 2008). In 

mammalian oocytes (rat), F-actin has been implicated in tyrosine kinase-dependent 
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rearrangement of cortical structures (Meng et al. 2006). In unfertilized rat eggs, F-action is in 

association with PKC and RACKS and thought to suppress the cortical granule to exocytose, 

and after fertilization, PKC-dependent phosphorylation releases the actin suppression and 

cortical granule exocytosis occurs (Eliyahu et al. 2005).  

2.2 ADF/coffilin 

Actin-depolymerizing factor (ADF)/coffilin are an evolutionarily conserved F-actin-
binding protein, whose function is essential for cortical actin cytoskeleton. It is well known 
that the actin-binding ability of ADF/coffilin can be regulated by its phosphorylation and 
dephosphorylation (Bamburg et al. 1999). This type of regulation of ADF/coffilin has been 
reported in maturing oocytes of starfish, where active transport of MPF from nucleus to 
cytoplasm is required for oocyte maturation (Santella et al. 2003), and dividing embryos of 
Xenopus, where cytokinesis involves the function of ADF/coffilin (Abe et al. 1996; Chiu et al. 
2010; Tanaka et al. 2005). In the former case, MPF has been identified as a kinase for 
ADF/coffilin. In the latter case, protein phosphatase Slingshot is involved in Rho-dependent 
inactivation of ADF/coffilin, thereby promotes the rearrangement of actin cytoskeleton 
essential for cytokinesis. 

2.3 ASIP/PAR-3 

ASIP/PAR-3 (atypical PKC isotype-specific interacting protein/partitioning defective 3) 

is a PDZ-domain-containing adaptor protein that has been initially identified as a 

downstream element of PAR-6 in early embryos of the nematode C. elegans (Watts et al. 

1996). Further studies have demonstrate the importance of PAR3 as an atypical PKC 

(aPKC)-interacting protein functioning in establishing asymmetric cell division and 

polarized cell structures in C. elegans and Drosophila embryos, and mammalian epithelial 

cells (Joberty et al. 2000). In Xenopus immature oocytes, ASIP/PAR-3 is shown to localize 

to animal hemisphere in association with aPKC, and upon hormone-induced oocyte 

maturation, aPKC undergoes kinase activity-dependent re-localization. These results 

suggest a potential role of ASIP/PAR-3 as a regulator and/or substrate of aPKC (Nakaya 

et al. 2000). Although phosphorylation of Ser-827 in ASIP/PAR-3 by aPKC has been 

shown in mammalian somatic cell systems (Hirose et al. 2002), its occurrence in 

oocyte/egg system is not yet demonstrated.  

2.4 Astrin  

Astrin is a spindle-associated non-motor protein that regulates mitotic cell cycle 
progression. In the meiosis of mouse oocytes, where centrioles are missing but multiple 
microtubule-organizing centers (MTOCs) are present, proper lining and segregation of 
homologous chromosomes and sister chromatids require the precise regulation of MTOCs 
by centrosomal protein kinases such as Aurora kinase and PLK1. It has been shown that 
inhibition of Astrin function by RNAi-mediated knockdown or overexpression of a coiled-
coil domain of Astrin results in a defect in spindle disorganization, chromosome 
misalignment and meiosis progression arrest (Yuan et al. 2009). As Astrin localizes to the 
spindle apparatus, it is suggested that Astrin is a substrate of Aurora/PLK1. In support with 
this idea, site-directed mutation of Thr-24, Ser-66 or Ser-447, potential PLK1 
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phosphorylation sites in Astrin, causes oocyte meiotic arrest at metaphase I with highly 
disordered spindles and disorganized chromosomes (Yuan et al. 2009).  

2.5 Bad 

Bad is a member of BH3 (Bcl-2 homology 3) family proteins, the other members of which 

include Bax, Bak, Bik, Bid and Hrk. While Bcl-2, a firstly identified BH3 and other BH 

domain (BH1 and BH2)-containing protein, and its relative proteins (e.g. Bcl-xL) act as anti-

apoptosis components, Bad and other BH3-only proteins participate in pro-apoptotic 

cellular functions (e.g. activation of caspases) (Danial 2008; Lutz 2000). Most of these anti-

apoptotic or pro-apoptotic proteins localize to mitochondrial outer membranes and function 

as a sensor of intracellular damage as well as a trigger of mitochondrial death/survival 

pathway. Several species ranging from nematode, Drosophila and sea invertebrates to 

vertebrates including mammals undergo germline or ovarian/postovulatory oocyte 

apoptosis in an age-dependent or -independent manner (Buszczak and Cooley 2000; Chiba 

2004; Morita and Tilly 1999). In particular, Bad has recently been identified as a factor for 

phospho-dependent mechanism of egg apoptosis in Xenopus (Du Pasquier et al. 2011). Bad 

in ovarian oocytes at the first meiotic propahse is negatively regulated by inhibitory 

phosphorylation on Ser-112 and Ser-136 by unknown mechanism (maybe PKA 

phosphorylation). Upon oocyte maturation, Bad becomes further phosphorylated on Ser-128 

in a CDK- and JNK-dependent manner. The Ser-128 phosphorylation, if it exceeds the extent 

of those of Ser-112/Ser-136 phosphorylations during a long period of oocyte maturation in 

the absence of fertilizing sperm, will allow Bad to trigger a mitochondrial apoptotic 

pathway involving cytochrome c release and caspase activation. Whether normal process of 

oocyte maturation and fertilization involves anti-apoptotic mechanism is not known. 

2.6 Brain-derived neurotrophic factor (BDNF) 

BDNF is a member of neurotropic family of growth factors that include nerve growth factor 

(NGF). Its cellular functions are exerted by cell surface receptors such as TrkB, a tyrosine 

kinase/receptor, and p75 low-affinity NGF receptor (Chao and Hempstead 1995). In 

mammals including human, ovarian BDNF has been implicated in oogenesis, oocyte 

maturation, and pre-implantation embryogenesis (Kawamura et al. 2005; Zhang et al. 2010). 

In vitro maturation of mouse oocytes in the presence of cumulus cells is accompanied by 

BDNF-dependent activation of Akt/PKB and MAPK and its maintenance has been 

demonstrated (Zhang et al. 2010). Pharmacological experiments suggest that the Akt/PKB 

activation involves TrkB function (TrkB-PI3K-PIP3 pathway), while the MAPK does not. 

2.7 Bub1/BubR1 

Bub1 and BubR1 (Mad3 in yeast, worms and plants) are multidomain-containing protein-
serine/threonine kinases that have been characterized as components of the mitotic 
checkpoint of spindle assembly (Bolanos-Garcia and Blundell 2011). In mouse oocytes, 
BubR1 is shown to act as a spindle assembly checkpoint protein in the first meiotic arrest 
(Homer et al. 2009; Jones and Holt 2010; Schwab et al. 2001; Wei et al. 2010). In maturing 
Xenopus oocytes, Bub1 is activated by MAPK-dependent p90Rsk phosphorylation, and is 
suggested to be involved in spindle assembly checkpoint and, in collaboration with 
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cdk2/cyclin E complex, cytostatic arrest of the meiosis II (Schwab et al. 2001; Tunquist et al. 
2002). Precise mechanism of the cytostatic arrest, i.e. inhibition of anaphase-promoting 
complex, is not known, because a substrate of Bub1 has not yet been identified. In mammals, 
first meiotic anaphase also seems to be regulated by Bub1-dependent mechanism 
(McGuinness et al. 2009). 

2.8 Calcineurin 

Calcineurin is a protein serine/threonine-specific phosphatase that can be up-regulated by 
the binding of Ca2+/calmodulin (Pallen and Wang 1985), another target of which is CaMKII. 
In Xenopus eggs and cell-free egg extracts, Ca2+-dependent exit of meiosis II involves 
transient activation of calcineurin. When the activation of calcineurin is blocked, inactivation 
of MPF by means of cyclin degradation does not occur and sperm nuclei remains 
condensed. In addition, cortical contraction of the pigmented granules in the animal 
hemisphere is also blocked. On the other hand, if the activity of calcineurin is artificially 
kept up-regulated for a prolonged period, growth of sperm aster is inhibited and fusion of 
the female and male pronuclei is also inhibited. It has been shown that calcineurin 
dephosphorylates Cdc20, a key regulator of the anaphase-promoting factor that is a 
substrate of MAPK (Mochida and Hunt 2007; Nishiyama et al. 2007). These results highlight 
a requirement of calcineurin for Ca2+-dependent inactivation of cytostatic factor and for the 
onset of the mitotic cell cycle in the early embryos. 

2.9 Caspase 2  

Caspase 2 is a member of caspase family, which regulates and/or triggers the apoptotic cell 

death in response to a wide variety of extracellular and intracellular signals. It has been 

shown that in caspase 2-deficient mice, excess number of ovarian oocytes is a major cause, 

suggesting that caspase 2 is involved in ovarian oocyte apoptosis. Oocytes deficient in 

caspase 2 expression also exhibit a marked resistance to cell death induced by chemicals 

(Bergeron et al. 1998; Morita and Tilly 1999). Further insight into the roles of caspase 2 in the 

control of oocyte survival has been demonstrated by the studies with use of cell-free extracts 

prepared form Xenopus eggs. In this system, glucose-6-phosphate has been identified as an 

important component to drive continual operation of the pentose phosphate pathway that 

prolongs cell survival. In addition, NADPH generation by this pathway is critical for 

promoting CaMKII-dependent inhibitory phosphorylation of caspase 2 (Nutt et al. 2005). As 

CaMKII is known as a crucial component that inactivates CSF activity in frog and mammals, 

it is intriguing whether the CaMKII-caspase 2 axis also functions at fertilization. 

2.10 Cdc20/Fizzy 

Cdc20 is an activator of anaphase-promoting complex (APC) that directs the onset and 
progression of the meiotic and mitotic cell cycle (Chung and Chen 2003; Rudner and Murray 
2000; Shteinberg et al. 1999; Tang et al. 2004; Weinstein 1997). In Drosophila, Cdc20-related 
gene Fizzy serves a similar function (Dawson et al. 1993; Pesin and Orr-Weaver 2008). The 
activity of Cdc20 is negatively regulated by phosphorylation on its serine and threonine 
residues: in case of Xenopus Cdc20, Ser-50, Thr-64, Thr-68 and Thr-79. In Xenopus maturing 
oocytes, phosphorylation of Cdc20 is catalyzed by MAPK, a component of cytostatic factor, 
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and/or Bub1/BubR1 kinases, key regulators of spindle checkpoint, and it is involved in the 
maintenance of cytostatic factor activity that involves the inactivation of APC. Analyses 
using cell-free extracts prepared from unfertilized Xenopus eggs demonstrate that the 
phosphorylated form of Cdc20 is a target of calcineurin, whose phosphatase activity is 
transiently activated in response to Ca2+ signals (Mochida and Hunt 2007). 

2.11 Cdc25 phosphatase (Cdc25A/B/C)  

Cdc25 is a protein-tyrosine phosphatase that has been originally identified and 
characterized as a yeast cell cycle regulator (Fleig and Gould 1991). A major target of this 
phosphatase is the Cdc2 protein-serine/threonine kinase, its cyclin-associated form of which 
functions as MPF. Before oocyte maturation in vertebrates, the activity of Cdc2 protein is 
down-regulated by the absence of cyclin and by phosphorylation by Myt1/Wee1 dual-
specificity kinases on Thr-14 and Tyr-15 residues. During oocyte maturation, however, both 
accumulation of newly synthesized cyclin as well as removal of the phosphates from Cdc2 
ensures the Cdc2 activation (Karaiskou et al. 1998; Kim et al. 1999b; Oh et al. 2010; 
Perdiguero and Nebreda 2004; Perdiguero et al. 2003; Pirino et al. 2009; Qian et al. 2001; 
Rime et al. 1994; Zhang et al. 2008; Zhao et al. 2008). There are several types of Cdc25: e.g. 
Cdc25A, Cdc25B, and Cdc25C. PKA phosphorylation and activation of Cdc25B has been 
reported in mammals (Pirino et al. 2009). In Xenopus, Cdc25C is up-regulated by Plx1-
mediated phosphorylation on Ser-287 (Qian et al. 2001). Other reports have shown that 

Xp38/SAPK (Perdiguero et al. 2003) and Greatwall kinase (Zhao et al. 2008) can be 
responsible for the stimulatory phosphorylation of Cdc25C. Cdc25A has been implicated in 
embryonic cell cycle regulation (Kim et al. 1999b).  

2.12 Cdh1/Cort/Fzy  

Cdh1 is an activator of anaphase promoting complex/cyclosome (APC/C), an E3 ubiquitin 
ligase that regulates the onset of anaphase during meiotic and mitotic cell cycle (Visintin et 
al. 1997). Several cell cycle regulators are subjected to Cdh1- and proteasome-dependent 
degradation, by which APC/C-dependent cell cycle progression through anaphase is 
triggered. In Xenopus egg cell-free extracts, Cdh1-dependent degradation of Aurora A kinase 
plays an important role in mitotic exit (Littlepage and Ruderman 2002). The Aurora A-Cdh1 
interaction requires the phosphorylation of Aurora A on Ser-53 residue, which is a substrate 
of M-phase-activated kinase(s). On the other hand, APC-independent cellular function 
involving Cdh1 has also been suggested in Xenopus oocyte maturation (Papin et al. 2004). In 
immature mouse oocytes, where the meiotic cell cycle is paused at the prophase I, Emi1-
dependent mechanism of cdh1 inhibition (thereby inhibition of APC/C) functions for the MI 
arrest (Marangos et al. 2007). In Drosophila and C. elegans, Cdc20/Cdh1-related protein, Cort 
and Fzy, respectively, controls the meiotic cell cycle progression in a Cdh1-like manner 
(Kitagawa et al. 2002; Marangos et al. 2007; Swan and Schupbach 2007).  

2.13 Cohesin/SCC1/Rec-8  

Cohesin is a chromosome-binding protein that is involved in meiotic and mitotic assembly 
and segregation of sister chromatids (Heck 1997). In many vertebrate species, cell cycle 
progression through anaphase involves a proteolytic cleavage of cohesin, as catalyzed by 
separase and subsequent release of cohesin from the sister chromatids, so that the 
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chromosomal segregation occurs. In Xenopus, however, proteolysis-independent release of 
cohesin from sister chromatids is working and it involves polo-like kinase phosphorylation 
of cohesin (Sumara et al. 2002). A similar phospho-dependent release of chromosome 
cohesion has been demonstrated in C. elegans, where the AIR-2 kinase (Aurora B kinase in 
this species) phosphorylation of the nematode cohesion Rec-8 (Rogers et al. 2002).  

2.14 Crk adaptor protein (Crk/CRKL)  

Crk is an SH2/SH3-containing adaptor protein that has been originally identified as an 

oncogene product (viral Crk or v-Crk) of avian sarcoma virus CT10 (Feller et al. 1994; Mayer 

et al. 1988; Mayer and Hanafusa 1990). Its SH2 domain-dependent phosphotyrosine-binding 

property and SH3 domain-dependent binding to proline-rich sequences in other molecules 

are required for malignant cell transformation. Three cellular homologues of v-Crk have 

been found in mammals: c-Crk I, c-Crk II, and c-Crk-like (CRKL). These cellular Crk family 

proteins have been identified as a major substrate of Bcr-Abl tyrosine kinase that causes 

chronic myeloid leukemia (CML) (Feller et al. 1998).  Another aspect of Crk function has 

been demonstrated in the studies of Xenopus egg cell-free extract: apoptosis in aged egg 

extracts is shown to involve interaction between the SH2 domain of Crk and the tyrosine-

phosphorylated form of Wee1 dual-specificity kinase (Evans et al. 1997; Smith et al. 2000). 

Further study has demonstrated that the SH3 domain of Crk is important for interacting 

with the nuclear export factor Crm1, an antagonistic factor for apoptosis in cell-free extract, 

and that mutually exclusive interaction between Crk and Crm1 or Wee1 in the nucleus 

regulates the onset of apoptosis.  

2.15 Cyclin B  

Cyclin is a family of CDK activator proteins, whose first example has been discovered in 
fertilized sea urchin eggs (Evans et al. 1983) and starfish maturing oocytes (Evans et al. 1983; 
Standart et al. 1987). Cyclin family consists of several proteins: cyclin A, B, D, E and others, and 
cyclin B are a component of MPF, another subunit of which is Cdc2/CDK1 serine/threonine-
specific protein kinase (Hunt 1989; Maller 1990). In many species, hormone-induced MPF 
activity in maturing oocytes is generally dependent on de novo synthesis and accumulation of 
cyclin B (and subsequent phospho-dependent regulation of Cdc2/CDK1 by the actions of 
Wee1/Myt1 kinases and Cdc25 phosphatase is also important) (Gaffre et al. 2011). Fertilization 
triggers an ubiquitin/proteasome-dependent degradation of cyclin B that causes a rapid 
decrease of MPF activity (Edgecombe et al. 1991; Huo et al. 2004b; Lapasset et al. 2005; 
Lapasset et al. 2008; Meijer et al. 1989a; Meijer et al. 1991; Meijer et al. 1989b; Sakamoto et al. 
1998). Other cyclins (e.g. cyclin A, D) serve a similar CDK-activating property, but have 
distinct physiological functions (e.g. G1/S transition, spindle checkpoint) by interacting with a 
specific CDK member(s) (e.g. CDK2, CDK5). 

2.16 sn-1,2-diacylglycerol (DG) 

DG is one of two hydrolyzed products by phospholipase C of phosphatidylinositol 4,5-
bisphosphate, another product of which is inositol 1,4,5-trisphosphate (IP3). DG serve as a 
second messenger in a variety of extracellular signals such as hormones and 
neurotransmitters, and is well characterized as a direct activator for PKC, a family of 
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serine/threonine kinase (Nishizuka 1984; Nishizuka 1986). DG also acts as a substrate of DG 
kinase that produces phosphatidic acid or PA, which has pleiotropic cellular functions. In 
Xenopus eggs, fertilization promotes a rapid increase in intracellular DG concentration, a 
large part of which seems to be due to phospholipase D (PLD)-mediated cleavage of 
phosphatidylcholine (PC) (but not PIP2). In support of this, choline, another product of PC 
hydrolysis by PLD, is also accumulating in a similar time course of fertilization. Whether 
DG is involved in the activation of egg PKC remains to be clarified (Stith et al. 1997). 
Production of DG has also been examined in mouse eggs (Stith et al. 1997; Yu et al. 2008). In 

this species, sperm-derived PLC seems to be mainly responsible for DG production and 
subsequent PKC activation.  

2.17 Initiation factor 4E-binding protein (4E-BP)  

4E-BP is a binding protein for eukaryotic initiation factor 4E (eIF4E), an mRNA cap-binding 

protein that facilitates the initiation of protein synthesis in association with eIF4F. The 

interaction between 4E-BP and eIF4E depends on the phosphorylation state of 4E-BP: hypo-

phosphorylated form of 4E-BP has an ability to bind to and inhibit eIF4E, whereas the 

phosphorylated form of 4E-BP releases eIF4E so that eIF4E-eIF4F complex is formed and 

promotes active translation of mRNA (Lasko 2003). In sea urchin eggs, fertilization is 

accompanied by a rapid burst of protein synthesis. It has been shown that fertilization also 

promotes a rapid decrease in 4E-BP as well as an increase in phosphorylated form of 4E-BP 

(Cormier et al. 2001). Two-dimensional electrophoresis demonstrated that 4E-BP is 

phosphorylated on multiple sites after fertilization. In mitotic sea urchin embryos, further 

decrease in 4E-BP expression has been demonstrated and it is mediated by a rapamycin-

sensitive mechanism of proteolysis of 4E-BP (Salaun et al. 2003), suggesting that mTOR 

(mammalian target of rapamycin)-like kinase is involved in the phosphorylation of 4E-BP. A 

rapamycin-sensitive mechanism of global protein synthesis involving 4E-BP regulation (but 

not translation of some proteins such as cyclin B and Mos, whose translational control 

involves the phosphorylation of CPEB phosphorylation) has also been demonstrated in 

maturing oocytes of starfish (Lapasset et al. 2008).  

2.18 EGG-3/4/5  

C. elegans EGG-3 is a member of protein-tyrosine phosphatase-like (PTPL) family, whose 

mutant egg undergoes fertilization normally but has a defect in polarized dispersal of F-

actin, formation of chitin eggshell, and production of polar bodies (Maruyama et al. 2007). 

Although enzymatic substrate for EGG-3 has not yet been demonstrated (PTPL proteins are 

supposed to be pseudo-phosphatase), its functional interaction with CHS-1, which is 

required for deposition of egg shell, plays a role for proper distribution of MBK-2 kinase 

that regulates degradation of maternal proteins and egg-to-embryo transition (Nishi and Lin 

2005; Qu et al. 2006; Qu et al. 2007; Stitzel et al. 2007; Stitzel et al. 2006). Other members of 

PTPL family such as EGG-4 and EGG-5 have also been characterized as components of 

meiotic cell cycle progression and egg-to-embryo transition. These two EGG proteins have 

no phosphatase activity, however, interact with YTY motif of MBK-2 kinase, which is 

autophosphorylated in the active kinase, and inhibit the kinase activity (Cheng et al. 2009; 

Parry et al. 2009). 
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2.19 Emi1 and Emi2/xErp1  

In vertebrate unfertilized eggs, cytostatic factor (CSF) is responsible for maintaining the 
meiotic cell cycle at MII (metaphase of second meiosis) (Masui 2000; Tunquist and Maller 
2003). As a candidate of molecule involved in CSF activity, several kinase proteins have 
been suggested and evaluated (e.g. Mos, MAPK, Rsk). On the other hand, APC/C (anaphase 
promoting complex/cyclosome) has been identified an initiator of meiotic resumption (thus, 
as a disruptor of CSF-mediated arrest or a main target of CSF activity). Emi1 has been 
identified first as a negative regulator of APC/C in Xenopus eggs and cell-free extracts 
(Reimann et al. 2001a; Reimann et al. 2001b; Reimann and Jackson 2002). Thereafter, an 
Emi1-related protein named Emi2/xErp1 has been identified and characterized as an 
essential component of CSF inhibition of APC/C (Hansen et al. 2006; Liu and Maller 2005; 
Rauh et al. 2005; Tang et al. 2008; Tung et al. 2005; Wu et al. 2007a; Wu et al. 2007b). In the 
current scenario, CSF arrest by Emi2/xErp1 of APC/C involves recruitment of PP2A to the 
Rsk-phosphorylated Emi2/xErp1 (this phosphorylation has stabilizing effect on 
Emi2/xErp1) and its phosphatase action on other phosphates in Emi2/xErp1 catalyzed by 
Cdc2/cyclin B complex (this phosphorylation weakens Emi2/xErp1).  After fertilization, 
CaMKII and Plx1 phosphorylation promotes ubiquitin-dependent proteolysis of 
Emi2/xErp1, thereby APC/C is released from the inhibitory interaction with Emi2/xErp1 
(Wu and Kornbluth 2008). 

2.20 FKHRL1/FOXO3a 

FKHRL (forkhead in rhabdomyosarcoma) is a transcription factor, whose activation has 
been implicated in the onset of apoptosis and Akt phosphorylation (on Thr-24, Ser-256, 
and Ser-319) leads to suppression of its function (Brunet et al. 1999; Tang et al. 1999). Its 
genetic loss or ablation can be a trigger of carcinogenesis, thus FKHRL is a tumor 
suppressor (Gallego Melcon and Sanchez de Toledo Codina 2007). Akt-dependent 
phosphorylation of FKHRL1 has been demonstrated in follicular oocytes that receive stem 
cell factor (SCF) for mammalian oocyte development (Reddy et al. 2005). SCF is a ligand 
for c-Kit receptor/tyrosine kinase that, upon its ligand-induced activation, promotes 
sequential activation of PI3K, PDK, and Akt. Thus, follicular development of oocytes 
involves the suppression of pro-apoptotic signal transduction by FKHRL1. In support of 
this, FKHRL1 gene-deficient mice exhibited excessive activation from primordial to 
primary follicles as well as enlarged oocyte sizes (Reddy et al. 2005). A similar pathway 
involving FOXO3a, a rat homologue of FKHRL transcription factor, has been shown in rat 
oocytes (Liu et al. 2009).  

2.21 XGef  

XGef is a Xenopus homologue of mammalian guanine nucleotide exchanging factor, 
RhoGEF that activates Rho-family small GTP-binding protein such as Cdc42. XGef has been 
initially identified as a CPEB-binding protein and in fact, it has been shown that XGef is 
involved in polyadenylation and translation of Mos mRNA during oocyte maturation 
(Reverte et al. 2003). GEF activity of XGef is required for Mos synthesis. In addition, 
interaction between XGef is responsible for an increase in CPEB phosphorylation during 
oocyte maturation, which is important for CPEB activation (Martinez et al. 2005). Further 
studies have shown that MAPK interacts with XGef and acts as a kinase of CPEB on Thr-22, 
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Thr-164, Ser-184, and Ser-248 (Keady et al. 2007). These phosphorylation sites seem to be 
required for another and most important phosphorylation event on CPEB: Ser-174 
phosphorylation (maybe catalyzed by XRINGO/CDK1 kinase complex) (Kuo et al. 2011). 

2.22 Grb2/7/10/14  

Grb is a growth factor receptor-bound protein family that has one or more 

phosphotyrosine-binding and proline-rich interacting domains (i.e. SH2 and SH3 domains) 

and plays crucial roles in tyrosine kinase receptor-dependent signal transduction (Rozakis-

Adcock et al. 1993). There are several Grb family members (e.g. Grb2), most well known of 

which is Grb2, whose Drosophila homologue is drk (Olivier et al. 1993). Grb2/drk directly 

interacts to receptor/tyrosine kinase with phosphotyrosine residue(s) (e.g. EGFR in 

mammals, sevenless in Drosophila). Because Grb2 interacts constitutively with Sos (son of 

sevenless in Drosophila), a guanine nucleotide-exchanging factor (GEF) for Ras, its 

recruitment to the plasma membranes leads to Ras activation and subsequent MAPK 

cascade propagation. In Xenopus oocytes expressing fibroblast growth factor 

receptor/kinase (FGFR), some Grb family members (Grb7, Grb10, and Grb14) have been 

implicated in tyrosine kinase-dependent signal transduction (Cailliau et al. 2003). 

Microinjection of Grb2 into immature Xenopus oocytes has been shown to cause oocyte 

maturation in a Ras-dependent manner (Browaeys-Poly et al. 2007; Cailliau et al. 2001). In 

this unusual, but interesting oocyte maturation system, SH2 domains and SH3 domain of 

Grb2 interact with tyrosine-phosphorylated lipovitellin 1 and PLC, respectively. Whether 

hormone-induced oocyte maturation involves Grb protein is not yet clear. 

2.23 Heparin-binding and EGF-like growth factor (HB-EGF)  

HB-EGF is a member of EGFR/Erb/HER ligand family, other members of which include 

EGF, transforming growth factor , and heregulin. HB-EGF is initially expressed as a 
membrane-associated precursor and its mature form is secreted outside the cells is done by 
extracellular shedding as mediated by matrix metalloproteinases (MMPs). HB-EGF 
participates in several biological processes, including heart development and maintenance, 
skin wound healing, eyelid formation, progression of atherosclerosis and tumor formation 
(Miyamoto et al. 2006). In mammals, implantation of early embryos have been shown to 
involve the action of HB-EGF secreted from the surrounding epithelium as well as those 
autocrined (Lim and Dey 2009). In this system, HB-EGF exerts its biological functions 
through activation of intracellular Ca2+-dependent pathways and MAPK cascade. Human 
trophoblast survival, where anti-apoptosis in low oxygen environment is a key event, has 
been shown to involve HB-EGF function (Armant et al. 2006). In other species such chicken 
and fish, expression of HB-EGF in oocytes is supposed to be required for ovarian follicle cell 
proliferation (Tse and Ge 2009; Wang et al. 2007).  

2.24 Heterogenous nuclear ribonucleoprotein K (hnRNP K) 

hnRNP K is a K homology (KH) domain-containing RNA-binding protein of the HnRNP 

family, other KH-containing RNA-binding proteins of which include hnRNP E1/E2 and 

Sam68 (Bomsztyk et al. 2004; Dreyfuss et al. 2002; Mattick 2004). hnRNP K binds to RNA 

through its three KH domains and serves multiple functions related to transcription and  
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posttranscriptional regulation of mRNAs (e.g. splicing, translation). In Xenopus unfertilized 

eggs, hnRNP K is phosphorylated on serine and/or threonine residue(s). This 

phosphorylation seems to be done by MAPK, because a MAPKK inhibitor U0126, but not 

other inhibitors for MPF (Cdc2/cyclin B) and PKA, diminishes the signals. Consistently, 

fertilization results in a rapid decrease of the MAPK phosphorylation of hnRNP K. At the 

same time, hnRNP K becomes tyrosine-phosphorylated, most likely because of sperm-

induced Src activation (Iwasaki et al. 2008). These MAPK and Src phosphorylation of 

hnRNP K has also been demonstrated in mammalian cell systems, in which RNA-binding 

property (i.e. inhibition of translation) of hnRNP K is up-regulated by MAPK and down-

regulated by Src (Habelhah et al. 2001; Ostareck-Lederer et al. 2002). In Xenopus eggs and 

embryos (before mid-blastula transition, where zygotic transcription is activated), maternal 

mRNAs will be subjected to active protein synthesis to support embryonic development. 

Data obtained so far suggest that hnRNP K is involved in the suppression and release of 

specific subset of maternal mRNAs for its active translation (Iwasaki et al. 2008).  

2.25 Heterotrimeric and monomeric GTP-binding proteins  

G-proteins constitute a large family of proteins that includes small G-proteins and trimeric 

G-proteins, each of which act as a transducer for extracellular and/or intracellular signals 

(Gilman 1987; Kaziro et al. 1991). In the case of small G-proteins, a monomeric G-protein 

(e.g. Ras) is regulated by cell surface receptor-mediated modulation of GAP (GTPase-

activating protein) and GEF (guanine nucleotide exchanging factor) activities, and the GTP-

bound, active form interacts with effector molecules (e.g. Raf kinase) and regulates cellular 

functions. Trimeric G-proteins (e.g. Gi, Gs) consist of three subunits: , , and . Before 

activation, these three subunits containing GDP-bound form of a subunit are present in a 

tight complex. Upon activation of cognate cell surface receptors, they become dissociated 

and each of the subunit (GTP-bound form of  subunit and / complex) exerts its cellular 

function. In some species, introduction of non-hydrolysable GTPS or expression of G-

protein-coupled cell surface receptor and its ligand activation, which promotes a 

constitutive activation of (mainly heterotrimeric) G-proteins, is shown to cause egg 

activation-like phenomena such as repetitive increase in intracellular Ca2+ concentration (in 

mammals) (Swann et al. 1989), cortical reactions (in Xenopus) (Kline et al. 1991), and DNA 

synthesis (in starfish) (Shilling et al. 1994). While involvement of some specific G-proteins 

(e.g. Gq) in the process of sperm-induced egg activation have been negatively evaluated 

(Runft et al. 1999; Williams et al. 1998), the fact that the Xenopus egg membrane-associated 

Src activity can be directly stimulated by GTPS suggests that one or more unknown G-

protein(s) serve as a signal transducer of gamete interaction (Sato et al. 2003; Shilling et al. 

1994; Swann et al. 1989). Involvement of trimeric G-proteins in oocyte maturation is much 

more convincing in some species (Mehlmann 2005). Starfish and mouse oocyte meiotic 

arrest and/or maturation is shown to involve G-protein that directs PI3K-dependent or 

independent mechanism of Akt/MAPK/MPF/PKA activities (Han et al. 2006; Kalinowski et 

al. 2004; Kishimoto 2011; Mehlmann et al. 2004; Okumura et al. 2002). Xenopus oocyte 

maturation also seems to involve progesterone-induced membrane receptor activation that 

leads to modulation of G-protein (maybe Gs, not Gi)/adenylate cyclase pathway (Gallo et al. 

1995; Kalinowski et al. 2003).  
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2.26 Histone H3 

Histone is a family of basic polypeptides with ~130 amino acids and has been well 
characterized as DNA-binding proteins. Nucleosome, a complex of DNA-histones, is 
organized by an octamer of histone H2A, H2B, H3, and H4. Posttranslational modifications 
such as acetylation, methylation, and phosphorylation regulate the DNA-binding property 
of histones including H3. In some mammalian species, phosphorylation of H3 by aurora 
kinase and an adjacent dimethylated lysine residue are coordinately involved in 
chromosomal condensation during oocyte maturation (Bui et al. 2007; Ding et al. 2011; 
Eberlin et al. 2008; Gu et al. 2008; Jelinkova and Kubelka 2006; Maton et al. 2003; Swain et al. 
2007; Wang et al. 2006). 

2.27 Inositol trisphosphate receptor (IP3R) 

Fertilization induces oscillation of inositol 1,4,5-trisphosphate receptor (IP3R)-dependent 

intracellular Ca2+ that is responsible for initiating oocyte maturation, egg activation and 

early embryogenesis. Three isoforms of IP3R have been detected. IP3R is dynamically 

regulated during meiotic maturation and is required for fertilization induced Ca2+ release in 

Xenopus (Kume et al. 1997; Runft et al. 1999). Developmentally regulated type 1 IP3R is up-

regulated in oocytes at fertilization and down-regulated after fertilization and this down-

regulation is mediated by degradation in proteasome pathway in mouse (Fissore et al. 1999; 

Jellerette et al. 2000; Parrington et al. 1998; Wakai et al. 2011) and bovine (Malcuit et al. 

2005). IP3R1 is phosphorylated during both maturation and the first cell cycle mediated by 

M-phase kinases e.g. MAPK/ERK2 or polo-like kinase 1 and this is vital for IP3R function in 

optimum Ca2+ release at fertilization in Xenopus, mouse and pig (Ito et al. 2008; Ito et al. 

2010; Lee et al. 2006; Sun et al. 2009; Vanderheyden et al. 2009). Type 1 IP3R is differentially 

distributed during human oocyte maturation through GV to MII stage and after fertilization 

in both peripheral and central in the zygotes and early 2-4-cell embryos and in perinuclear 

in the 6-8-cell embryos (Goud et al. 1999). 

2.28 Insulin 

Insulin is a peptide hormone and is crucial for follicular cell growth and development. The 

addition of insulin to the serum- and hormone-free maturation medium though does not 

improve the maturation but improves the fertilization rate of bovine oocytes in vitro (Matsui 

et al. 1995). Artificially induced impaired insulin secretion had a lower percentage of 

zygotes and a higher percentage of unfertilized and degenerated oocytes in mouse (Vesela 

et al. 1995). Mouse oocyte has the insulin receptor-beta and highly elevated insulin 

influences oocyte meiosis, chromatin remodeling, and embryonic developmental 

competence (Acevedo et al. 2007). Insulin did not activate MPF might be primarily due to 

the inability of the peptide to activate Ras and to stimulate Mos synthesis in Xenopus stage 

IV but successfully induced maturation of stage VI oocyte (Chesnel et al. 1997). Binding of 

insulin was revealed in oocytes, granulosa and theca internal cells of healthy pre-antral and 

antral follicles implying its function in these cells of swine (Quesnel 1999). Insulin increased 

the developmental potential of porcine oocytes and embryo (Lee et al. 2005). In insulin 

induced carp oocyte maturation, PI3K is an initial component of the signal transduction 

pathway, which proceeds, MAPK, and MPF activation (Paul et al. 2009). 
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2.29 Insulin-like growth factor -1 (IGF-1) 

Insulin-like growth factor-1 (IGF-1) is primarily synthesized in liver and secreted in 
circulation that mediate endocrine signal important for the early embryonic development. In 
in vitro reconstructed horse oocytes, IGF-1 induced a bigger accumulation of MAPK 
(especially ERK2) in the cytoplasm that undergoes nuclear remodeling like a normal embryo 
following somatic cell nuclear transfer (Li et al. 2004). IGF-1 acts differentially to induce 
oocyte maturation competence but not meiotic resumption by IGF-1 in white bass (Weber 
and Sullivan 2005) and white perch (Weber et al. 2007). IGF-1 as like insulin also mediates its 
action through the activity of IRS-1 in Xenopus oocyte maturation (Chuang et al. 1993b). IGF-
1 induced mammalian oocyte maturation and subsequently the embryo development e.g. in 
bovine (Bonilla et al. 2011; Stefanello et al. 2006; Wasielak and Bogacki 2007), mouse 
(Inzunza et al. 2010) and even human (Coppola et al. 2009). 

2.30 Insulin receptor substrate-1 (IRS-1) 

Insulin and insulin-like growth factor-1 (IGF-1) receptors (IR and IGFR-1) possess tyrosine-
kinase enzymatic activity that is essential for signal transduction to mediate the putative 
effects of these hormones on oocyte maturation, fetal growth and development. This causes 
rapid tyrosine phosphorylation of a high-molecular-weight substrate termed insulin 
receptor substrate-1 (IRS-1), a docking protein that can bind with Src homology 2 domain 
containing molecules e.g. PI 3-kinase, Grb2. Insulin-induced maturation of Xenopus oocytes 
involve the activation of IRS-1 and PI 3-kinase where activation of PI 3-kinase might act 
upstream of mitogen-activated protein kinase activation and p70 S6K activation (Chuang et 
al. 1994; Chuang et al. 1993a; Chuang et al. 1993b; Liu et al. 1995; Yamamoto-Honda et al. 
1996). IRS-1 is expressed maternally and constantly during Xenopus embryogenesis and is 
important for eye development (Bugner et al. 2011). 

2.31 Integrin β1 

Integrins are a family of cell surface receptors that mediate cell-cell and cell-matrix 
interactions in different cellular systems. Variety of integrins is differentially expressed 
during development, consistent with diverse roles for integrins in embryogenesis. Integrin 

1 (this subunit can interact with 6) is present on the mouse egg surface that increases the 
rate of sperm attachment but does not alter the total number of sperm that can attach or fuse 

to the egg (Baessler et al. 2009; Tarone et al. 1993). Integrin 61 in association with 
tetraspanin CD151 and CD9 complex do function in human and mouse gamete fusion 

(Ziyyat et al. 2006). In Xenopus, integrin 1 is present on the oocyte membrane throughout 
oogenesis and during maturation it is localized in several membrane vesicles in the 
cytoplasm might be to provide the material source for the rapid membrane formation 

during cleavage (Muller et al. 1993). Even integrin 61 might serve as potential clinical 
marker for evaluating sperm quality in men (Reddy et al. 2003).  

2.32 Interleukin-7 (IL-7) 

Interleukin-7 (IL-7, pre-B-cell growth factor) is playing its role not only as 
immunomodulator but also in the beginning of development. IL-7 in together with IL-8 
inhibited the gamete interaction of hamster egg and sperm (Lambert et al. 1992). The role of 
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IL-7 was tested in differentiation during embryonic development e.g. in mouse: 
development of thymus (Wiles et al. 1992) and lymph node (Coles et al. 2006). IL-7 could be 
also a good marker of the embryo quality for implantation (Achour-Frydman et al. 2010). In 
rat granulosa cell culture of early antral and preovulatory follicles, IL-7 stimulated the 
phosphorylation of AKT, glycogen synthase kinase (GSK3B), and STAT5 proteins in a time- 
and dose-dependent manner (Cheng et al. 2011). It is concluded that oocyte-derived IL-7 act 
on neighboring granulosa cells as a survival factor and promote the nuclear maturation of 
pre-ovulatory oocytes through activation of the PIK3/AKT pathway (Cheng et al. 2011). 

2.33 Lipovitellin (LV) 

LV1 and LV2 are components of crystallized yolk platelet in vertebrate oocytes, eggs, and 

embryos. Precursor protein of LVs, vitellogenin, is synthesized in a highly phosphorylated 

form in liver of adult and transferred to ovarian tissue, where growing oocytes actively 

incorporate vitellogenin through the action of specific oocyte membrane receptors (Bergink 

and Wallace 1974). The incorporated vitellogenin is subjected to partial proteolysis so that 

LV2 and other fragments such as lipovitellin 1, phosvitin, and pp25 are formed (Finn 2007). 

A similar set of yolk-associated proteins is also found in invertebrates including insect (e.g. 

vitelline). It is well known that phosvitin and pp25 are highly serine/threonine-

phosphorylated proteins that serve as an energy source of oogenesis and early 

embryogenesis. On the other hand, tyrosine phosphorylation of LV1 (Browaeys-Poly et al. 

2007) and LV2 (Kushima et al. 2011) has recently been demonstrated in Xenopus. In 

particular, tyrosine phosphorylation of LV2 is unusually stable during oogenesis, oocyte 

maturation, and early embryogenesis until the removal of yolk-associated materials from 

swimming tadpole (Kushima et al. 2011). Possible function of tyrosine-phosphorylated form 

of Xenopus LV1 and LV2 so far suggested is oocyte maturation (Browaeys-Poly et al. 2007; 

Kushima et al. 2011), although it’s upstream (liver or oocyte) kinase and downstream 

cellular function is uncertain.  

2.34 Maskin/Cytoplasmic polyadenylation element (CPE)-binding protein 
(CPEB)/TACC3/p82 

Maskin is a cytoplasmic polyadenylation element-binding protein-associated factor. 
Dormant state of maternal mRNAs in immature oocytes is maintained by an abortive 
interaction of this protein with the eukaryotic initiation factors 4E and 4G. Phosphorylation 
of maskin promotes the dissociation of this interaction, thereby allows the dormant mRNAs 
to be translated actively. Aurora phosphorylation of maskin is reported to be involved in 
protein synthesis in maturing clam and Xenopus oocytes and in centrosome-dependent 
microtubule assembly at mitosis (Kinoshita et al. 2005; Pascreau et al. 2005). 

2.35 Myosin regulatory light chain (MRLC) 

Myosin regulatory light chain (MRLC) or, in short, myosin light chain (MLC) is a 
component of myosin that regulates the function of actin and actin filaments (see above) 
through the binding to the actin molecule. Unfertilized eggs of sea urchin undergo cortical 
contraction in response to calyculin A, an inhibitor for protein phosphates. The results 
suggest that an egg protein(s), in its phosphorylated form(s), is capable of inducing cortical 
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contraction in this system. As a candidate phosphoprotein for this phenomenon, MRLC has 
been identified (Asano and Mabuchi 2001). Further biochemical experiments have 
demonstrated that CK2 (casein kinase 2) is a responsible kinase for the phosphorylation of 
MRLC (Komaba et al. 2001). Phosphorylation of MRLC in sea urchin eggs occurs on Ser-19 
and Thr-18 residues, both of which are stimulatory phosphorylation sites (Asano and 
Mabuchi 2001). On the other hand, MRLC has also been identified as a phosphoprotein in 
cell-free extracts prepared form sea urchin eggs. In this system, phosphorylation of MRLC 
occurs at mitotic phase of cell cycle on Ser-1/2 and Thr-9, all of which are canonical PKC 
sites, and it is suggested that MPF is the responsible kinase (Totsukawa et al. 1996). In 
Drosophila, phosphorylation of Ser-21 of MRLC-homologue (sqh, spaghetti squash gene 
product) has been implicated as an important event for oogenesis (Jordan and Karess 1997). 

2.36 Na
+
/H

+
 antiporter/exchanger 

On fertilization there are marked changes in the cytoplasmic ionic concentration e.g. Ca2+, H+, 
are necessary and sufficient to constitute the egg activation and beyond. A second messenger 
type substance that stimulates protein kinase C linked the activation of the Na+/H+ exchange 
to the calcium transient and ultimately the protein synthesis is increased and the cytoplasmic 
alkalinization occur in sea urchin eggs (Swann and Whitaker 1985). In sea urchin eggs, though 
the Na+/H+ exchanger is regulated by PKC or Ca2+/CaMK activities but fertilization mediated 
activation of this exchanger is Ca2+, CaM-dependent (Shen 1989). G proteins activated Na+/H+ 
antiporter mediated by PKA and/or PKC in Xenopus oocytes (Busch 1997; Busch et al. 1995). A 
typical Na+/H+ exchanger mediated increased intracellular pH though activate the surf clam 
oocytes but is neither sufficient nor required for GVBD (Dube and Eckberg 1997). The function 
of Na+/H+ exchanger has also been described even for later stage of development e.g. 
blastocyst of mouse (Barr et al. 1998), bovine embryos (Lane and Bavister 1999) and human 
pre-implantation embryos (Phillips et al. 2000). 

2.37 OMA-1 

In C. elegans, two CCCH-type zinc finger proteins OMA-1 and OMA-2 are expressed 
specifically in maturing oocytes and are functionally redundant during maturation. Both 
Oma-1 and Oma-2 mutant oocytes arrest at a defined point in prophase I and the removal of 
Myt1-like kinase Wee-1.3 results the release of prophase I arrest (Detwiler et al. 2001). As 
WEE-1.3 functions as a negative regulator, OMA-1 and OMA-2 either function upstream of 
WEE-1.3 or in parallel with WEE-1.3 as positive regulators of prophase progression 
(Detwiler et al. 2001). OMA-1 protein is largely reduced because of rapid degradation after 
the first mitotic division and this is necessary for the early embryonic development by 
regulating the temporal degradation of maternal proteins in early C. elegans embryos (Lin 
2003; Shimada et al. 2006; Shirayama et al. 2006). OMA-1 is directly phosphorylated (Thr-
239) by DYRK kinase MBK-2 that facilitates subsequent phosphorylation (Thr-339) by 
another kinase GSK-3 and these precisely timed phosphorylation events are important for 
its function in 1-cell embryo and degradation after first mitosis (Nishi and Lin 2005). 

2.38 p53 

The p53 protein family includes three transcription factors-p53, p63 and p73 that play roles 
in both cancer and normal development (Levine et al. 2011). Mostly stable p53 protein is 
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synthesized during late oogenesis and stage VI oocyte and even after fertilization at least 
until the tadpole stage during Xenopus development (Tchang et al. 1993). After fertilization, 
part of the largely stored p53 is imported into the nucleus and associates both with 
decondensed DNA and the nuclear lamina envelope but not with any replication complexes 
during Xenopus early development (Tchang and Mechali 1999). In the absence of TPX2 
(targeting protein for Xklp2), p53 can inhibit Aurora A, a serine/threonine kinase, activity 
(Eyers and Maller 2004). TPX2 is required for Aurora A activation and for p53 synthesis and 
phosphorylation during Xenopus oocyte maturation (Pascreau et al. 2009). The tumor 
suppressor protein p53 regulates the efficiency of human reproduction. The p53 allele 
encoding proline at 72 (Pro72) was found to be significantly higher (P=0.003) over the allele 
encoding arginine (Arg72) among women experiencing recurrent implantation failure (Kang 
et al. 2009; Kay et al. 2006; Levine et al. 2011) 

2.39 p95 

Several studies showed that in mammals, egg-specific extracellular matrix zona pellucida 

component ZP3 regulates an essential event in sperm function. Mouse zona pellucida 

glycoprotein ZP3 regulates acrosomal exocytosis by aggregating its corresponding receptors 

located in the mouse sperm plasma membrane e.g. a protein p95 that might serve as a 

substrate for a tyrosine kinase in response to zona pellucida binding or itself act as tyrosine 

kinase (Saling 1991). A phosphotyrosine containing receptor tyrosine kinase was identified 

in human sperm that is similar to mouse sperm protein, p95, having tyrosine kinase activity 

and human ZP3 stimulate the tyrosine kinase activity of this protein (Burks et al. 1995; Naz 

and Ahmad 1994). Acrosome reaction was induced with increased tyrosine phosphorylation 

of p95 epitope only in capacitated human spermatozoa (Brewis et al. 1998). 

2.40 Paxillin 

Paxillin is a prominent focal adhesion docking protein that regulates somatic and germ cell 

signaling. Paxillin was shown as one of the major tyrosine kinase substrates during rat chick 

embryogenesis (Turner 1991) and regulator of Rho and Rac signaling during Drosophila 

development (Chen et al. 2005). It was described that paxillin is required for synthesis and 

activation of Mos (the germ cell Raf homolog), that promotes MEK and subsequently Erk 

signaling and then possibly Erk mediate the phosphorylation of paxillin required for steroid 

(testosterone)-induced Xenopus oocyte maturation (Rasar et al. 2006). In prostate cancer cell, 

EGFR-induced Erk activation requires Src-mediated phosphorylation of paxillin but paxillin 

was not involved in PKC-induced Erk signal (Sen et al. 2010). Erk-mediated 

phosphorylation of paxillin was necessary for both EGFR- and PKC-mediated cellular 

proliferation indicate that paxillin serves as a specific upstream regulator of Erk in response 

to receptor-tyrosine kinase activity but as a general regulator of downstream Erk actions 

regardless of agonist (Sen et al. 2010). 

2.41 Peptidylarginine deiminase (PAD) 

Peptidylarginine deiminase (PAD) catalyzes the post-translational modification of protein 
converting the arginine to citrulline in the presence of calcium ions. PAD is present in the 
cortical granules of mouse oocytes, is released extracellularly during the cortical reaction, 
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and remains associated as a peripheral membrane protein until the blastocyst stage (Liu et 
al. 2005). In mouse peptidylarginine deiminase-like protein termed ePAD (p75) was 
expressed in immature oocyte, mature egg, and until the blastocyst stage of embryonic 
development (Wright et al. 2003). Peptidylarginine deiminase 6 (PAD6) is uniquely 
expressed in male and female germ cells but the inactivation of PAD6 gene leads to female 
infertility whereas male fertility is not affected (Esposito et al. 2007) and its transcript is 
detectable at embryonic day 16.5 in mouse (Choi et al. 2010). Mouse oocyte cytoplasmic 
sheet-associated PADI6 undergoes developmental change in phosphorylation that might be 
linked to interaction between PAD16-YWHA during oocyte maturation (Snow et al. 2008). 
PADI6-deficient mice are also infertile might be due to disruption of development beyond 
the two-cell stage (Snow et al. 2008).  

2.42 Phosphodiesterase 3A (PDE3A) 

Intracellular concentration of the second messenger cAMP is the key signaling molecules in 

the control of oocyte meiotic resumption mediated by the activity of phosphodiesterases 

(PDEs). cAMP blocks meiotic maturation of oocytes of  a broad spectrum of species  and 

cyclic nucleotide phosphodiesterase 3A (PDE3A) is primarily responsible for oocyte cAMP 

hydrolysis. The PDE3A activity in the regulation of oocyte maturation of several species has 

been studied extensively e.g. in rodent (Wiersma et al. 1998), rat (Richard et al. 2001), mouse 

(Masciarelli et al. 2004; Nogueira et al. 2003b; Nogueira et al. 2005), monkey (Jensen et al. 

2005), porcine (Sasseville et al. 2006; Sasseville et al. 2007), bovine (Mayes and Sirard 2002; 

Thomas et al. 2002), and human (Nogueira et al. 2003a). Various PDE3 inhibitors were used 

like org9935, cilostamide, or milrinone. PDE3 activity is required for insulin/insulin-like 

growth factor-1 stimulation of Xenopus oocyte meiotic resumption. It should be note that the 

activation of PDE3A by PKB/Akt-mediated phosphorylation potentiates the Xenopus and 

mouse oocytes maturation (Han et al. 2006). 

2.43 pp25 and phosvitin 

Functions of multiple vitellogenin (VgA, VgB, and VgC)-derived yolk products, e.g. 
lipovitellin/phosvitin were described during oocyte maturation and early embryos in various 
species, e.g. barfin flounder, Verasper moseri, a marine teleost (Matsubara et al. 1999; Sawaguchi 
et al. 2006), red seabream (Pagrus major), another marine teleost and gray mullet (Mugil 
cephalus) (Amano et al. 2008). A substrate pp25 for protein serine/threonine kinases was 
derived from the precursor of pp43 that is consisting of a portion of the Xenopus VgB1 protein 
(Xi et al. 2003). pp25 may have a role as an inhibitory modulator of some protein 
phosphorylation mediated by CKII and PKC in Xenopus oocytes and embryos (Sugimoto and 
Hashimoto 2006). A differentially distributed pp25 was shown to localize at the surface just 
below the plasma membrane in oocyte and in embryogenesis a transition from beneath the 
outer surface of each germ layer to endoderm during tail budding from where it gradually 
decreased and disappeared at the tadpole stage in Xenopus (Nakamura et al. 2007).  

2.44 Protein methyl transferase 5 (PRMT5) 

Distinct protein/DNA methylation patterns were observed in developmental stages during 
genomic reorganization. The protein methylase activity was measured at mesenchymal 
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blastula and at young gastrula of sea urchin embryonic development and lysine of histones 
H3 and H4 are the main target (Branno et al. 1983). A Janus-2 (JAK-2) binding protein, JBP1, 
acts as an arginine methyl transferase and is now designated as PRMT5. In Xenopus oocytes, 
PRMT5 inhibited the oncogenic/transformed p21Ras mediated maturation but not the 
insulin mediated maturation that involve the wild-type p21Ras (Chie et al. 2003). Decreased 
level of methylated H3K79 was observed soon after fertilization and the hypomethylated 
state was maintained at interphase (before the blastocyst stage) and variation in methylation 
was observed at M phase (Ooga et al. 2008) in mouse. DNA methyltransferase-1 might work 
during the late stage of oocyte differentiation, maturation and early embryonic development 
in mammals e.g. cow (Lodde et al. 2009). 

2.45 Proline-rich inositol phosphate 5-phosphatase (PIPP) 

Different types of inositol polyphosphate 5-phosphatases (IPP) selectively remove the 
phosphate from the 5-position of the inositol ring from both soluble and lipid substrates, i.e., 
inositol 1,4,5-trisphosphate, inositol 1,3,4,5-tetrakisphosphate, phosphatidylinositol 4,5-
bisphosphate or phosphatidylinositol 3,4,5-trisphosphate and they have various protein 
modules probably responsible for specific cell organelle localization or recruitment e.g. SH2 
domain, SH3-binding motif, proline-rich sequences, etc. (Erneux et al. 1998; Kong et al. 2000; 
Mochizuki and Takenawa 1999). They demonstrate the restricted substrate specificity and 
act downstream of various receptors by removing a phosphate. Proline-rich IPP (PIPP) had 
been studied in PI3K pathway for early development of fertilized mouse eggs. PIPP might 
affect development of fertilized mouse eggs by inhibition of level of phosphorylated Akt at 
Ser-473 and subsequent inhibition of downstream signal cascades resulting reduced 
cleavage rate of fertilized mouse eggs (Deng et al. 2011). In embryonic day 15.5 mice, SHIP2 
a homologue of SHIP1 was strongly expressed in the liver, specific regions of the central 
nervous system, the thymus, the lung, and the cartilage perichondrium (Schurmans et al. 
1999). 

2.46 Protein phosphatase 1/2A (PP1/PP2A) 

Numerous protein kinases and phosphatases have important functions during mitosis and 
meiosis. Protein phosphatase (PP) 1 (PP1) and 2A (PP2A ) that preferentially 

dephosphorylate the - and -subunit of phosphorylase kinase had been identified in 
starfish oocyte (Pondaven and Cohen 1987). With the similar mechanism involved in 
mammals and Drosophila, PP4, a centrosomal protein, involved in the recruitment of 
pericentriolar material components to the centrosome from prophase to telophase, but not 
during interphase, and is essential for the activation of microtubule nucleation that promote 
spindle formation in C. elegans (Sumiyoshi et al. 2002). When the normal physiological 
function of PP1 and PP2A was blocked, premature separation of sister chromatids during 
meiosis I and aneuploidy in mouse oocytes was observed (Mailhes et al. 2003). In Xenopus 
oocyte, PP2A negatively regulates Cdc2 activation whereas Aurora-A activation is indirectly 
controlled by Cdc2 activity independent of either PP1 or PP2A activity (Maton et al. 2005). 
Constant cyclin B levels are maintained during a CSF arrest through the regulation of Emi2 
activity that inhibits the anaphase-promoting complex (APC), an E3 ubiquitin ligase that 
targets cyclin B for degradation in vertebrates like Xenopus (Wu et al. 2007b). Rsk or Cdc2-
mediated phosphorylation of Emi2 was antagonized by PP2A, which could bind to Emi2 
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and promote Emi2-APC interactions results CSF arrest (Wu et al. 2007a; Wu et al. 2007b). 
Cdk1/cyclin B (MPF) induced active Gwl promotes PP2A (B55 is the regulatory subunit) 
inhibition to enter and maintenance the M phase that would otherwise remove MPF-driven 
phosphorylations (Castilho et al. 2009; Vigneron et al. 2009). 

2.47 Protein tyrosine phosphatase (PTP) 

In the early steps of embryogenesis both the protein tyrosine phosphorylation and the 

protein tyrosine phosphatase (PTP) regulated activities are involved. In Xenopus MPF and 

progesterone but not insulin-induced oocyte maturation was retarded by PTPase 1B action 

(Tonks et al. 1990) whereas non receptor PTP13 activate the oocyte maturation (Nedachi and 

Conti 2004). PTP exert its role by different mechanism for example, PTP regulate the oocyte 

maturation in pig (Kim et al. 1999a), receptor-type PTP regulate Fyn in zebrafish egg 

fertilization (Wu and Kinsey 2002), Src homology-2 domain containing PTP (SHP2) regulate 

normal human trophoblast proliferation (Forbes et al. 2009), and pseudo-PTP (lack at least 

one key residue in the catalytic site) regulate oocyte-embryo transition in nematode 

(Heighington and Kipreos 2009) and antagonist of PTP reduced GVBD and MAPK/MPF 

activities in sea water treated marine nemertean worms oocytes (Stricker and Smythe 2006). 

Receptor type PTP and PTP are essential for convergence and extension cell movements to 

shape the body axis during vertebrate gastrulation e.g. for zebrafish in a signaling pathway 

parallel to non-canonical Wnt and upstream of Fyn, Yes and RhoA (van Eekelen et al. 2010). 

2.48 Pumilio1/2 

In Xenopus, the cytoplasmic polyadenylation element (CPE) in the 3’-untranslated region 

(UTR) of cyclin B1 mRNA is responsible for both the translational repression (masking) and 

activation (unmasking) of the mRNA where CPE is bound by a CPE-binding (CPEB) protein 

(Hake and Richter 1994; Hodgman et al. 2001; Mendez and Richter 2001). Xenopus pumilio 

(Pum) in coordination with CPEB-maskin complex acts as a specific regulator for timing 

translational activation of cyclin B1 mRNA first as repressor in mature oocyte by binding 

and as activator by its release from phosphorylated CPEB during oocyte maturation 

(Nakahata et al. 2003). Usually nemo-like kinase (NLK) that acts downstream of Mos, 

phosphorylate Pum1, Pum2 and CPEB and this phosphorylation is proceeded with 

translational activation of cyclin B1 mRNA stored in oocytes for maturation (Ota et al. 2011a; 

Ota et al. 2011b). 

2.49 p21
Ras

 

In Xenopus oocytes, transformed/active p21Ras increased the level of total cell protein 
phosphorylation that culminated with germinal vesicle breakdown (GVBD) in the absence 
of protein synthesis and the same pattern of phosphorylation was observed by hormone 
either progesterone or insulin treatment (Nebreda et al. 1993). Activated p21Ras and 
GTPase-activating protein (GAP) complex may promote MAPK activity by tyrosine 
phosphorylation followed by the activation of S6-kinase II (Nebreda et al. 1993; 
Pomerance et al. 1992). Later it was shown that Ras-GAP activity is required for Cdc2 
activation and Mos induction independent of MAPK activation (Pomerance et al. 1996). It 
should be note that active Ras increased MAPK and S6K activities and sensitized the 
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oocytes to insulin-stimulated maturation via IRS-1 (Chuang et al. 1994). T-Cell Origin 
protein Kinase (TOPK) and the nuclear kinase, DYRK1A are attractive candidates in 
insulin mediated wild-type p21Ras-induced oocyte maturation independent of MAPK (Qu 
et al. 2006; Qu et al. 2007). Phospholipase D (PLD) activity induced MAPK and S6K II 
activity might constitute a relevant step in Ras-induced GVBD in Xenopus oocytes was 
also reported (Carnero and Lacal 1995). p21Ras did not appear to be ubiquitous in the rat 
conceptus prior to gastrulation but was found in embryos from 6.5 to 12 days of age 
(Brewer and Brown 1992). 

2.50 Phosphatidylinositol 3-kinase (PI3K) 

PI3K is a lipid kinase that phosphorylates 3’-position in the inositol ling structure of inositol 
phospholipids (e.g. phosphatidylinositol 4,5-bisphosphate).  Inactive PI3K consists of a 
heterodimer of one catalytic subunit (e.g. p110) and one regulatory subunit (e.g. p85), a 
latter of which is known to be tyrosine-phosphorylated in response to a variety of 
extracellular signals (Vanhaesebroeck et al. 1997). The tyrosine-phosphorylated regulatory 
subunit releases the catalytic subunit so that PI3K becomes enzymatically active. 
Involvement of PI3K in oocyte maturation and fertilization has been examined with the use 
of specific inhibitors such as LY294002 and Wortmannin as well as expression of native or 
mutant PI3K proteins (Chuang et al. 1993a; Hoshino and Sato 2008; Hoshino et al. 2004; 
Mammadova et al. 2009). In starfish oocyte, 1-methyladenine-induced oocyte maturation 
involves a sequential activation of the hormone receptor on the cell surface, G-proteins 
attached to the receptor, and PI3K. The activated PI3K promotes Akt kinase activation 
through the production of PIP3 and stimulation of PIP3-dependent protein kinase PDK1 
(Kishimoto 2011). In oocytes of Xenopus or other frog species, PI3K is suggested to be a 
component of progesterone-induced oocyte maturation (Bagowski et al. 2001; Ota et al. 
2008).  However, wortmannin promotes oocyte maturation in the absence of hormonal 
signal (Carnero and Lacal 1998), suggesting the possibility that this drug targets unknown 
factor(s) other than PI3K or that, as opposed to the case in starfish, PI3K is negative 
regulator of oocyte maturation. On the other hand, LY294002 has been shown to block 
sperm-induced egg activation (Mammadova et al. 2009). LY294002 also blocks sperm-
induced Src activation and Ca2+ release, suggesting that PIP3 production by PI3K plays a 
role in fertilization. Interestingly, however, tyrosine phosphorylation of p85 subunit of PI3K 
is not detected, suggesting that alternative pathway for PI3K activation (e.g. recruitment to 
membrane microdomains) is working in this system. 

2.51 Phospholipase C (PLC) 

PLC is a member of PLC family proteins (other members are PLC, PLC, PLC, PLC etc.) 
that hydrolyzes phosphatidylinositol 4,5-bisphosphate into DG and IP3, both of which are 
second messenger to promote PKC activation and intracellular Ca2+ mobilization, 

respectively (Rhee 2001). PLC is the first example of non-tyrosine kinase protein, whose 

structure contains SH2 and SH3 domains (Stahl et al. 1988). PLC is also unique in its 
regulatory mechanism, where tyrosine phosphorylation of the protein can up-regulate the 

enzyme activity. Under this background, function of PLC in oocyte maturation and 
fertilization has been analyzed extensively in relation to tyrosine kinase signaling. In fact, 

tyrosine kinase-dependent activation of PLC at fertilization has been demonstrated in some 
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vertebrate (e.g. fish, frog) and invertebrate species (e.g. ascidian, sea urchin, starfish) 
(Carroll et al. 1999; Carroll et al. 1997; Giusti et al. 1999; Giusti et al. 2000; Mehlmann et al. 
1998; Runft et al. 2004; Runft and Jaffe 2000; Runft et al. 2002; Runft et al. 1999; Sato et al. 
2002a; Sato et al. 2001; Sato et al. 2003; Sato et al. 2000b; Shearer et al. 1999; Tokmakov et al. 

2002). It should be noted that Src-dependent activation of PLC involves a new function of 

PLC as GEF for small G-protein Ras (Bivona et al. 2003), suggesting that other means of 
cellular function contributes to egg activation in these species. On the other hand, Ca2+ 
release associated with mammalian fertilization does not seem to involve tyrosine kinase 

activity and PLC activation, probably because sperm-derived PLC activity is necessary 
and sufficient for sperm-induced Ca2+ release in these species (Kurokawa et al. 2004; 
Parrington et al. 2002; Saunders et al. 2002).  

2.52 RNA polymerase II large subunit 

RNA polymerase II (also called RNAP II or Pol II), a complex of twelve subunits (p550) is 

an enzyme that catalyzes the transcription of DNA to synthesize precursors of mRNA and 

most snRNA and microRNA (Kornberg 1999; Sims et al. 2004). A large subunit of RNAPII 

(p220) was shown to be phosphorylated at the onset of wheat germination that moderately 

increase the RNA polymerase activity (Mazus et al. 1980). In C. elegans, embryonically 

transcribed gene products are required for gastrulation initiation where a large subunit of 

RNAPII is involved (Powell-Coffman et al. 1996). In Xenopus, the largest subunit of RNA 

polymerase II (RPB1) accumulates in large quantities from previtellogenic early diplotene 

oocytes up to fully grown oocytes where the C-terminal domain (CTD) was essentially 

hypophosphorylated in growing oocytes from stage IV to VI (Bellier et al. 1997). Upon 

maturation, RPB1 is hyperphosphorylated dramatically and abruptly but dephosphorylated 

within 1 h after fertilization (Bellier et al. 1997). Metaphase II-arrested oocytes showed a 

much stronger CTD kinase activity than that of prophase stage VI and this kinase activity 

were attributed to the activated MAPK i.e. RPB1 could be a substrate of MAPKs (e.g. p42) 

during Xenopus oocyte maturation (Bellier et al. 1997).  

2.53 Receptor for activated C kinase (RACK) 

PKC, serine/threonine kinase, is a pivotal enzyme in a variety of signal transduction 

pathways that includes the maturation through actin cytoskeleton rearrangement and 

cortical granules exocytosis (CGE) to early stages of embryogenesis. The translocation of 

PKC is facilitated by receptor for activated C kinase (RACK). Activation of PKC exposes the 

RACK-binding site, enabling the association of the enzyme with its anchoring RACK (Ron 

and Mochly-Rosen 1995). Inhibition of binding the PKC to RACK blocks the function of PKC 

(Ron et al. 1995). During the activation of MII eggs, PKC,II and  individually and 

RACK1 together with both PKC and PKCII translocate to the egg cortex (Haberman et al. 

2011). The association of PKC and actin with RACK1 is known to be involved in CGE. Upon 

egg activation, increased level of RACK1 shuttles activated PKCs to the egg cortex, thus 

facilitating CGE (Haberman et al. 2011). The phytohormone abscisic acid promoted the 

expression level of RACK that is regulated by G-protein and plays an important role in a 

basic cellular process as well as in rice embryogenesis and germination (Komatsu  

et al. 2005). 
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2.54 Rho 

The Rho family of small GTPases is known to organize and maintain the actin filament-

dependent cytoskeleton, and rho is involved in the control mechanism of cytokinesis. Actin-

depolymerizing factor (ADF)/coffilin, a key regulator for actin dynamics during cytokinesis, 

is suppressed and reactivated by phosphorylation and dephosphorylation respectively. 

Rho-induced dephosphorylation of ADF/coffilin is dependent on the XSSH (Xenopus 

homologue of Slingshot phosphatase) activation that is caused by increase in the amount of 

F-actin induced by Rho signaling (Tanaka et al. 2005). XSSH may reorganize actin filaments 

through dephosphorylation and reactivation of ADF/coffilin at early stage of contractile 

ring formation during Xenopus cleavage (Tanaka et al. 2005). In sea urchin egg, Rho is 

synthesized early in oogenesis in soluble form, associates with cortical granules in the end of 

maturation and after insemination secreted by cortical granules exocytosis and retained in 

the fertilization membrane indicate the involvement of Rho in Ca2+-regulated exocytosis or 

actin reorganization that accompany the egg activation (Covian-Nares et al. 2004; Cuellar-

Mata et al. 2000; Manzo et al. 2003). In ascidians Rho proteins are involved in egg 

deformation, ooplasmic segregation and cytokinesis downstream of the Ca2+ transients 

(Yoshida et al. 2003). 

2.55 Ribosomal S6 

In Xenopus oocytes 40S ribosomal protein S6 becomes phosphorylated by S6K on serine 

residues in response to hormones or growth factors and following microinjection of the 

tyrosine-specific protein kinases associated with Rous sarcoma virus or Abelson murine 

leukemia virus. S6 is minimally phosphorylated in unstimulated oocytes and in 

progesterone induced Xenopus oocyte maturation: phosphorylation of S6 precedes germinal 

vesicle breakdown (GVBD) and is maximal at the time when 50% of the oocytes have 

undergone GVBD (Erikson and Maller 1985; Hanocq-Quertier and Baltus 1981; Nielsen et al. 

1982). In Xenopus oocytes, Ras (p21, have GTPase activity) proteins activate the pathway 

linked to S6 phosphorylation and that PKC has a synergistic effect on the Ras-mediated 

pathway (Kamata and Kung 1990). Microinjection of purified pp60v-Src into Xenopus caused 

the phosphorylation of S6 and accelerated the time course of progesterone-induced oocyte 

maturation (Spivack et al. 1984). 

2.56 RINGO 

RINGO/Speedy (Rapid Inducer of G2/M transition in Oocytes) proteins can bind to and 
directly stimulate CDKs (CDK1 and CDK2) that regulate cell cycle transition although they 
do not have amino acid sequence homology with cyclins. In Xenopus oocytes RINGO 
(XRINGO) accumulates transiently during meiosis I entry and this process is directly 

stimulated by several kinases, including PKA and GSK3, and contributes to the 
maintenance of G2 arrest (Gutierrez et al. 2006). Later XRINGO is down-
regulated/degraded after meiosis I that is mediated by the ubiquitin ligase Siah-2, which 
probably requires phosphorylation of XRINGO on Ser-243 and important for the omission 
of S phase at the meiosis-I-meiosis-II transition in Xenopus oocytes and finally trigger G2/M 
progression (Gutierrez et al. 2006; Karaiskou et al. 2001). p42 MAPK (ERK2) activity and 
RINGO accumulation are also required for activating phosphorylation of CPEB by Cdk1. 
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RINGO/Speedy, is necessary for CPEB-directed polyadenylation-induced translation of 
Mos and cyclin B1 mRNAs in maturing Xenopus oocytes (Padmanabhan and Richter 2006). 
Recently, it was shown that XGef (a Rho family guanine nucleotide exchange factor) is 
involved in XRINGO/CDK1-mediated activation of CPEB and that an 
XGef/XRINGO/ERK2/CPEB complex forms in ovo to facilitate the maturation process 
(Kuo et al. 2011). In mammals for example in porcine RINGO A2 (SPDYA2) speed up the 
oocyte maturation (Kume et al. 2007) and in mouse RINGO efficiently triggers meiosis 
resumption of oocytes and induces cell cycle arrest in embryos (Terret et al. 2001).  

2.57 Sam68 adaptor protein (Sam68) 

Sam68 is a KH domain-containing, STAR (signal transduction and activation of RNA) 

family RNA-binding protein that has been originally identified as a mitosis-specific Src-

phosphorylated protein of 68 kDa (Taylor et al. 1995; Taylor and Shalloway 1994). Sam68 

has also a proline-rich sequence that would interact with SH3 domain-containing proteins, 

linking its possible function to Src-dependent signal transduction pathways. The RNA-

binding ability of Sam68 contributes to, like hnRNP K, another KH-containing RNA-binding 

protein, posttranscriptional regulation of mRNAs (e.g. splicing, translation). While its 

physiological function in spermatogenesis has been well known to date (Sette et al. 2010), 

roles of Sam68 in the oocyte and/or egg system have just recently been shown in 

mammalian species: Sam68-deficient female mice are severely subfertile (Bianchi et al. 2010). 

Further studies demonstrated that Sam68 directly binds the mRNAs for the follicle-

stimulating hormone (FSH) and the luteinizing hormone (LH) receptors (FSHR and LHR) 

and is involved in proper expression of these transcripts in pre-ovulatory follicles in adult 

ovary. Whether these Sam68 functions involve phosphorylation of Sam68 is not known. 

2.58 Separase 

The cysteine protease named separase is widely expressed in unicellular and multicellular 
organisms and is involved in a timely cleavage of the sister chromatid protein 
cohesins/SCC1 so that the separation of sister chromatids is made possible in the anaphase. 
The activity of separase can be negatively regulated by two mechanisms: one is the binding 
of securin, and the other is Cdc2-dependent phosphorylation on Ser-1126 and subsequent 
phospho-dependent binding of cyclin B (Nagao and Yanagida 2002; Nasmyth et al. 2000; 
Stemmann et al. 2001). In meiotic cell cycles in Xenopus oocytes, phospho-dependent 
inhibition of separase seems to occur: progesterone-induced oocyte maturation promotes 
firstly an accumulation of Xenopus homolog of securin, and then it undergoes degradation at 
the meiotic anaphase I and II in an APC/C-dependent manner (Fan et al. 2006; Holland and 
Taylor 2006). Mutation studies of the phosphorylation site in separase demonstrated that 
phospho-dependent regulation of this enzyme also works in germ cell developmental stages 
and early embryonic (8-cell and 16-cell) stages (Huang et al. 2009). 

2.59 SHB 

The adaptor protein SHB (Src homology 2 domain-containing adapter protein B) mediates 
certain responses in platelet-derived growth factor (PDGF) receptor-, fibroblast growth 
factor (FGF) receptor-, neural growth factor (NGF) receptor-, T cell (TC) receptor-, 
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interleukin-2 (IL-2) receptor- and focal adhesion kinase- (FAK) signaling where in some cells 
the Src-like Fyn-related kinase (FRK/RAK) act upstream of SHB (Cross et al. 2002; Karlsson 
et al. 1998; Karlsson et al. 1995; Welsh et al. 1998).The absence of SHB enhanced ERK 
(extracellular-signal regulated kinase) and RSK (ribosomal S6K) signaling in mouse oocytes 
increasing the ribosomal protein S6 phosphorylation and activation (Calounova et al. 2010). 
SHB regulates normal oocyte and follicle development and that perturbation of SHB 
signaling causes defective meiosis I and early embryo development in mouse (Calounova et 
al. 2010). The SHB protein is required for normal maturation of mesoderm and efficient 
multilineage differentiation during in vitro differentiation of embryonic stem cells (Kriz et 
al. 2006; Kriz et al. 2003). 

2.60 Shc adaptor protein (Shc) 

Src homology and collagen (Shc) is an SH2-containing adaptor protein that has been 
identified as a mammalian proto-oncogene, whose overexpression in fibroblast cells leads to 
the malignant transformation (McGlade et al. 1992; Pelicci et al. 1992; Rozakis-Adcock et al. 
1992). Shc consists of three isoforms (i.e. p46, p52, and p66) produced by alternative 
transcription and translation from one transcript and all isoforms also have an additional 
phosphotyrosine-binding domain in its amino-terminal region, named PTB domain. In some 
receptor/tyrosine kinase-mediated signal transduction pathway, Shc is recruited to the 
phosphotyrosine clusters of the activated receptor proteins, phosphorylated on its tyrosine 
residues (e.g. in mammals, Tyr-239/240 for Myc activation, Tyr-317 for MAPK/Fos 
activation), and recruit other SH2 and/or SH3-containing proteins (e.g. Grb2) to elicit 
downstream signaling cascade. In Xenopus, insulin-dependent oocyte maturation and egg 
fertilization seem to involve tyrosine kinase-dependent function of Shc (Aoto et al. 1999; 
Chesnel et al. 2003). Because two of three isoforms of Shc (p52 and p66) has been shown to 
be a direct activator of Src tyrosine kinase (Sato et al. 2002b), it is interesting to examine 
whether Shc-dependent Src activity contributes to these physiological events. 

2.61 SNT/FRS2 

Membrane anchored adaptor protein Suc1-associated neurotrophic target-1 or -2/fibroblast 
growth factor receptor substrate-2 or  (SNT-1 or -2/FRS2), is implicated in the transmission 
of extracellular signals from several growth factor receptors e.g. fibroblast growth factor 
receptors (FGFRs) and neurotrophin receptors (Trks) through their N-terminal 
phosphotyrosine binding (PTB) domains to the mitogen-activated protein (MAP) kinase 
signaling cascade during embryogenesis. SNT-1 physically associates with the Src-like 
kinase Laloo, and SNT-1 activity is required for mesoderm induction by Laloo in Xenopus 
(Akagi et al. 2002; Hama et al. 2001). Activated FGFR and FRS2 induced Mek/MAPK 
activity for germinal vesicle breakdown (GVBD) and substantial H1 kinase activity might be 
through PI3 kinase activation for Xenopus oocyte maturation but not by progesterone (Mood 
et al. 2002). During progesterone-induced oocyte maturation Mek/MAPK activity is critical 
for the induction and/or maintenance of H1 kinase activity (Mood et al. 2002). 

2.62 Sperm receptor/p350 

During fertilization, sperm must first bind in a species-specific manner to the eggs thick 
extracellular coat, the zona pellucida or vitelline envelope and then undergo a form of 

www.intechopen.com



 
Embryogenesis 

 

522 

cellular exocytosis, the acrosome reaction. Little is known about sperm-binding proteins in 
egg envelope of vertebrate/invertebrate species. In sea urchin the sperm receptor is 
phosphorylated by an egg cortical tyrosine kinase in response to sperm or purified ligand 
(bindin) binding within 20 sec (Abassi and Foltz 1994). In sea urchin egg, a protein (p350) 
was isolated as sperm receptor with the egg plasma membrane-vitelline layer complexes 
(Giusti et al. 1997) and another report have shown that EBR1 gene product serves a species-
specific sperm-interacting protein on the egg vitelline envelope (Kamei and Glabe 2003). In 
Ascidians (Halocynthia roretzi), the sperm-egg binding is mediated by the molecular 
interaction between HrUrabin, a glycosylphosphatidylinositol-anchored CRISP (cysteine-
rich secretory protein)-like protein on the sperm surface and HrVC70 on the polymorphic 
vitelline coat, but that HrUrabin per se is unlikely to be a direct allorecognition protein 
(Urayama et al. 2008). In Xenopus egg, gp69/64 glycoproteins are two glycoforms in the 
vitelline envelope and have the same number of N-linked oligosaccharide chains but differ 
in the extent of O-glycosylation, might serve as sperm receptor (Tian et al. 1999). In bufo, 
gp75 is expressed by previtellogenic oocytes and follicle cells and can be considered as a 
sperm receptor that undergoes N-terminal proteolysis during fertilization (Scarpeci et al. 
2008). mZP3, a zona pellucida glycoprotein that serve as sperm receptor is unique to 
mammalian eggs, from mice to humans, although related glycoproteins are found in 
vitelline envelopes of a variety of non-mammalian eggs, from fish to birds (Wassarman and 
Litscher 2001).  

2.63 STAT1/3 

Signal transducer and activator of transcription (STAT) proteins are transcription factors 

that play the important roles in fertility and early embryonic development. STAT1 and 

STAT3 are known to interact with each other and the heterodimer complex enters the 

nucleus and controls the expression of specific genes. Several studies have reported the 

association of JAK/STAT signaling pathway with fertility traits in cattle. Genotype 

combinations of STAT1 and STAT3 are found to promote fertilization and embryonic 

survival in Holstein cattle (Khatib et al. 2009). Leptin that is secreted from granulosa and 

follicular cells through the binding of leptin receptor can trigger the phosphorylation of 

STAT3 during mouse oocyte maturation (Matsuoka et al. 1999). JAK-STAT signaling 

crucially contributes to early embryonic patterning (Baumer et al. 2011). It was reported that 

Drosophila STAT (STAT92E) in conjunction with Zelda (Zld; Zinc-finger early Drosophila 

activator), plays an important role in the transcription of the zygotic genome at the onset of 

embryonic development (Tsurumi et al. 2011).  

2.64 Stomatin-like protein-2 (SLP-2/STML-2) 

Stomatin is an integral membrane protein, which is widely expressed in many cell types. 
Stomatin-like protein-2 (SLP-2; p42), a novel and unusual stomatin homologue, has been 
implicated in interaction with erythrocyte cytoskeleton and presumably with other integral 
membrane proteins. SLP-2 is overexpressed in human esophageal squamous cell carcinoma, 
lung cancer, laryngeal cancer, and endometrial adenocarcinoma (Zhang et al. 2006). SLP-2 is 
a mitochondrial protein, interact with the mitochondrial fusion mediator mitofusin 2 (Mfn2) 
and might be participate in mitochondrial fusion (Hajek et al. 2007). On the other hand, 
human erythrocytes and T-cells express plasma membrane-associated SLP-2, where it seems 
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to act as a transmembrane signaling involving protein phosphorylation (Kirchhof et al. 2008; 
Wang and Morrow 2000). In Xenopus eggs, a 40-kDa SLP-2-like protein has been identified 
as a membrane microdomain-associated protein that becomes tyrosine-phosphorylated by 
Src in vitro and in vivo (our unpublished results), suggesting that it is a component of 
sperm-induced tyrosine kinase signaling at fertilization. 

2.65 Transcription factor IIIA 

In Xenopus oocytes, transcription factor IIIA (TFIIIA), was isolated from the cytoplasmic 7 S 
ribonucleoprotein complex and is phosphorylated on Ser by CKII (Westmark et al. 2002). 
Expression of the TFIIIA gene is differentially regulated in oogenesis, early embryos and in 
somatic cells in Xenopus. The incorporation of histone H1 into chromatin during Xenopus 
embryogenesis directs the specific repression of the TFIIIA-activated transcription of 5S 
rRNA genes (Bouvet et al. 1994). Phospho-form of TFIIIA may allow the factor to act as 
repressor for oocyte-type 5S rRNA genes (Ghose et al. 2004). TFIIIA favorably binds to the 
somatic nucleosome whereas H1 preferentially binds to the oocyte nucleosome, excluding 
TFIIIA binding in Xenopus oocyte (Panetta et al. 1998). 

2.66 TPX2 

TPX2, targeting protein for Xenopus kinesin-like protein (Xklp2), has multiple functions 

during mitosis, including microtubule nucleation around the chromosomes and the 

targeting of Xklp2 and Aurora A, a serine/threonine kinase, to the spindle. At the 

physiological conditions, TPX2 is essential for microtubule nucleation around chromatin 

(Brunet et al. 2004). TPX2 is required for spindle assembly and spindle pole integrity in 

mouse oocyte maturation (Brunet et al. 2008). In Xenopus oocyte, activation of the 

centrosomal Aurora A by TPX2 is required during spindle assembly (Sardon et al. 2008). 

Localized Aurora A kinase activity is required to target the factors involved in 

microtubule (MT) nucleation and stabilization to the centrosome, therefore promoting the 

formation of a MT aster (Sardon et al. 2008). In Xenopus, TPX2 is required for nearly all 

Aurora A activation and for full p53 synthesis and phosphorylation during oocyte 

maturation (Pascreau et al. 2009). 

2.67 Tr-kit 

The c-kit, a tyrosine kinase receptor, is consists of an extracellular ligand binding domain 

and an intracellular kinase domain. With the onset of meiosis c-kit expression ceases, but a 

truncated c-kit product, Tr-kit, is specifically expressed in post-meiotic stages of 

spermatogenesis, and is accumulated in mature spermatozoa (Rossi et al. 2000). Fyn is 

localized in the cortex region underneath the plasma membrane in mouse oocytes. The 

interaction of Tr-kit with Fyn, make the Fyn active and that phosphorylate PLC1 with the 

result of Ca2+ oscillation (Sette et al. 2002). The truncated c-kit protein is present in primary 

tumors and shows a correlation between Tr-kit expression and activation of the Src pathway 

in the advanced stages of human prostate cancer (Paronetto et al. 2004). Recently it was 

shown that Tr-kit is present in the equatorial region of human spermatozoa, which are the 

first sperm components that enter into the oocyte cytoplasm after fusion with the egg 

(Muciaccia et al. 2010). 
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2.68 Tubulin  

Several studies were carried out to reveal the function of tubulin in some species oocytes to 
embryo because the spindle of vertebrate eggs must remain stable and well organized 
during the second meiotic arrest. The transition of tubulin from the quiescent oocyte state 
to that competent to form spindle microtubules may involve the changes in the 
availability of microtubule and qualitative changes in tubulin mRNAs occurred between 
the early blastula and hatched blastula stages in sea urchin embryos (Alexandraki and 

Ruderman 1985). Tubulin1 mRNA is evenly distributed during early embryogenesis but 
in later stages of embryogenesis is predominantly expressed in neural derivatives whereas 

tubulin 3 mRNA is restricted to the mesoderm in Drosophila (Gasch et al. 1988). Vg1 RBP 
is associated with microtubules and co-precipitated by heterologous, polymerized tubulin 
in Xenopus oocytes (Elisha et al. 1995). It was shown recently that Fyn and tubulin are 
closely associated where Fyn can phosphorylate tubulin and thus SFKs mediate 
significant functions during the organization of the MII spindle that involves possibly 
microtubules in rat eggs (Talmor-Cohen et al. 2004). Similarly, well-organized 
microtubule formation increased the GVBD and MII development in mouse oocytes 
(Mohammadi Roushandeh and Habibi Roudkenar 2009). 

2.69 Ubiquitin-proteasome pathway 

The ubiquitin-proteasome pathway (Schonfelder et al. 2006) is involved in the degradation 

of proteins e.g. cyclin B, a regulatory subunit of MPF that are related to oocyte meiotic 

maturation, fertilization and embryogenesis. Proteasome (26S) catalyzes the ATP- and 

ubiquitin-dependent degradation of Mos in an early stage of meiotic maturation of Xenopus 

oocytes and egg activation (Aizawa et al. 1996; Ishida et al. 1993). Xenopus RINGO/Speedy, 

a direct activator of Cdk1 and Cdk2, is limitedly processed by UPP to maintenance of G2 

arrest and fully degraded by the ubiquitin ligase Siah-2 during MI-MII transition (Gutierrez 

et al. 2006). UPP is important for oocyte meiotic maturation, fertilization, and early 

embryonic mitosis and may play its roles by regulating cyclin B1 degradation and 

MAPK/p90Rsk phosphorylation in pig (Huo et al. 2004a; Sun et al. 2004) and in mouse (Huo 

et al. 2004b; Karabinova et al. 2011; Tan et al. 2005a). UPP is required for meiotic maturation 

of rat oocyte (Tan et al. 2005b). In gold fish, cyclin B degradation is initiated by the ATP-

dependent and ubiquitin-independent proteolytic activity of 26S proteasome and then the 

cyclin to be ubiquitinated for further destruction by ubiquitin-dependent activity of the 26S 

proteasome that leads to MPF inactivation (Tokumoto et al. 1997).  

2.70 Uroplakin Ib/III (UPIb/UPIII) 

Uroplakins (UP; UPIa, UPIb, UPII, UPIIIa and UPIIIb) were first identified in highly 

differentiated somatic cells plasma membrane called asymmetric unit membrane (AUM), 

which is believed to play a protective role. Recently, they were identified in genital tract 

(Kalma et al. 2009; Shapiro et al. 2000) and germ cells and their function has been described 

in Xenopus fertilization (Mahbub Hasan et al. 2011; Sakakibara et al. 2005; Sato et al. 2006), 

pathogen infection (Thumbikat et al. 2009a; Thumbikat et al. 2009b) and cancer (Matsumoto 

et al. 2008). In Xenopus, UPIIIa a single transmembrane protein is tyrosine phosphorylated 

transiently in the cytosolic domain by a tyrosine kinase Src and this tyrosine 
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phosphorylation is required for sperm mediated egg activation. UPIIIa was shaded in the 

extracellular domain by cathepsin B like activity that is present in sperm and this activity are 

essential for egg activation and fertilization (Mahbub Hasan et al. 2005; Mizote et al. 1999). 

UPIIIa can serve as sperm receptor as the antibody against the extracellular domain of 

UPIIIa inhibited the fertilization (Sakakibara et al. 2005). UPIIIa is an interactive partner of 

UPIb, a tetraspanin and their interaction is required to negatively regulate the Src activity 

(Mahbub Hasan et al. 2007). 

2.71 Vg1RBP 

Xenopus Vg1RBP (RNA binding protein), also known as Vera or IMP3, is a member of the 
highly conserved IMP family of four KH (hnRNP K-homologous)-domain RNA binding 
proteins, with roles in RNA localization, translational control, RNA stability, and cell 
motility. Xenopus Vg1 mRNA is localized to the vegetal cortex during oogenesis for the 
regulation of germ layer formation and germ cell development where proteins e.g. 
Vg1RBP/Vera that specifically recognize the vegetal localization element (VLE) within the 3' 
untranslated region. It is reported that multiple KH domains are important in mediating 
RNA-protein and protein-protein interactions in the formation of a stable complex of 
Vg1RBP and Vg1 mRNA (Git and Standart 2002). PTB/hnRNP I (ribonucleo protein) is 
required for remodeling of the interaction between Vg1 mRNA and Vg1RBP/Vera in 
Xenopus oocytes (Lewis et al. 2008). Vg1RBP undergoes regulated phosphorylation by Erk2 
MAPK during meiotic maturation in Xenopus (Git et al. 2009).  

2.72 XEEK 

The PAR-4 and PAR-1 kinases are necessary for the formation of the anterior-posterior (A-P) 
axis in C. elegans. The Drosophila PAR-4 homologue, LKB1, is required for the early A-P 
polarity of the oocyte, and for the repolarization of the oocyte cytoskeleton that defines the 
embryonic A-P axis in Drosophila (Martin and St Johnston 2003) and in mouse (Szczepanska 
and Maleszewski 2005). PKA phosphorylates Drosophila LKB1 on a conserved site that is 
important for its activity(Martin and St Johnston 2003). LKB1/XEEK1 (Xenopus egg and 
embryo kinase 1) is found to exist in a complex with GSK3 and PKC, a known kinase for 
GSK3 and to regulate GSK3 phosphorylation resulting in increased Wnt-catenin signal in 
Xenopus embryonic development and mammalian cells (Clements and Kimelman 2003; 
Ossipova et al. 2003).  

2.73 Xp95 

In Xenopus oocytes, a protein Xp95 is tyrosine-phosphorylated from the first through the 
second meiotic divisions during progesterone-induced oocyte maturation. The Xp95 protein 
sequence exhibited homology to mouse Rhophilin, budding yeast Bro1, and Aspergillus 
PalA, all of which are important in signal transduction (Che et al. 1999). Src kinase mediated 
phosphorylation of Xp95 was increased during oocyte maturation (Che et al. 1999). Xp95 is 
phosphorylated at multiple sites within the N-terminal half of the proline-rich domain 
(PRD) during Xenopus oocyte maturation and the phosphorylation may both positively and 
negatively modulate their interaction with partner proteins at different stage of cell cycle 
(Dejournett et al. 2007). Human homologue of Xp95, termed Hp95, induces G1 phase arrest 
in confluent HeLa cells when overexpressed (Wu et al. 2001). 
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2.74 Tyrosine 3-monooxygenase/tryptophan 5-monooxygenase activation protein 
(YWHA)/14-3-3 

The tyrosine 3-monooxygenase/tryptophan 5-monooxygenase activation protein family 

(YWHA; also known as 14-3-3) are involved in the regulation of many intracellular 

processes. PKB, PKC and JNK target 14-3-3 to phosphorylate at different sites (Aitken 2006). 

YWHA might play the role regulating peptidylarginine deiminase type VI (PADI6), that 

undergo a dramatic developmental change in phosphorylation during mouse oocyte 

maturation until two cell stage (Snow et al. 2008). 14-3-3 protein binds to Cdc25C and 

inhibits dephosphorylation of Ser-287 by PP2A, allowing the arrest in the meiotic metaphase 

II in Xenopus oocytes (Hutchins et al. 2002). If 14-3-3 binding to Cdc25 is prevented while 

nuclear export is inhibited, the coordinate nuclear accumulation of Cdc25 that 

dephosphorylates Cdc2-cyclin B1 to make it active, which promotes oocyte maturation 

(Yang et al. 1999). 

3. Conclusion 

Since the discovery in the late 1800’s of the gamete membrane interaction and fusion as an 

initial and indispensable process for the beginning of life, i.e. fertilization, a number of 

research have dealt with the molecular and cellular basis of fertilization. In this chapter, we 

have reviewed the structure and function of key molecules likely involved in the phospho-

signaling at oocyte maturation, sperm-egg interaction and subsequent events for activation 

of development, collectively called “egg activation”. This work is an updated version of the 

review paper that we published in 2000 (Sato et al. 2000a), and thus a special focus point in 

this chapter is the kinases (both tyrosine kinases and serine/threonine kinases, total number 

of 53) and their regulators and/or substrates expressed in oocytes/eggs and/or early 

embryos of animal species (including some algae, total number of 74). We have compiled 

the currently available knowledge in the molecular level to explore the general as well as the 

species-specific features of oocyte maturation and fertilization, which is widely employed as 

an only-one strategy to give rise to a newborn in the bisexual reproduction system. It seems 

that number of kinases and their regulators/substrates will still be growing from day to day, 

and we may miss some important molecules in this chapter: we would continue to update 

that information not cited here in a future. Although the phospho-signaling system is just 

one kind of the post-translational modifications of cellular proteins, other kinds of steps e.g. 

transcriptional regulations or post-transcriptional modifications would also contribute to 

oocyte maturation and fertilization. We hope that this chapter could be helpful and 

enthusiastic for the readers in any kind of research field that deals with molecular (in 

particular, cellular proteins’) network involved in physiological and/or pathological 

features of biological system. 
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