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Hox Genes: Master  
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Institute of Biology, Sylvius Laboratory, Wassenaarseweg, Leiden, 

The Netherlands  

1. Introduction 

Typical vertebrates- like dogs and cats and fish - usually have their head-tail body axis 

parallel to the ground. The head is at the front end and the tail at the back. All limbs (legs or 

fins) are used for locomotion. In this configuration, we know the head- tail axis as the 

anteroposterior (main) axis. The upper side of the animal is called its dorsal side and the 

lower side its ventral side. In humans, the anteroposterior axis is held upright. Only the 

hind limbs are used for walking. Your front is your ventral side and your back your dorsal 

side. We use the terminology for a typical vertebrate in the sections that follow. 

During embryonic development, a developing animal is built by a hierarchy of genes. These 

include effector genes, encoding building blocks of the embryo- like muscle actin and 

keratin. They also include developmental control genes, which control the expression or 

action of other genes. These can be genes encoding proteins controlling the genesis, 

secretion or transduction of intercellular signals or genes encoding proteins controlling 

transcription or translation or protein action. Such developmental control genes regulate 

each other and may be organised in very large hierarchies. Hox genes are developmental 

control genes. 

2. Discovery and cloning of the Hox genes, their role and regulation in 
Drosophila 

Hox genes were first discovered as homeotic genes in the fruitfly Drosophila. They are 
sometimes referred to as: homeotic selector genes or: HOMC genes. They are characterised by 
the fact that a gain or loss of function  mutation in a typical Hox gene can result in conversion 
of one large or small part of the main body axis to another. These are clearly developmental 
control genes acting high up in the hierarchy.  In the case of the Hox genes, the conversions 
take place between different parts of the anteroposterior axis. One famous example is: Bithorax, 
discovered by Nobel prize winner Ed Lewis, which makes a four winged fly in its loss of 
function format. Drosophila normally has only two wings, on the mid thorax. The posterior 
thorax has vestigial ‘halteres’ . Bithorax is a gene for posterior thorax which converts this to 
mid thorax by loss of function (Lewis, 1978, 1995). In another equally famous example, 
discovered by Walter Gehring, Antennapedia, a gene for mid thorax  converts part of the fly’s 
head to mid thorax  and therefore antennae to legs by misregulated gain of function (Carrasco 
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et al., 1984) Vertebrate Hox genes similarly have drastic phenotypes but loss of function 
phenotypes are more difficult to visualise because each vertebrate Hox function is mediated by 
multiple Hox genes and these must all be knocked out. See Fig. 1.  

 

Fig. 1. Hox gene phenotypes 
The function of Hox genes is indicated by gain and loss of function phenotypes. The figure shows 
this in Drosophila and vertebrates. A. A wild type Drosophila fly This has two wings on the 
anterior thorax and two halteres (red arrow) on the posterior thorax. B. A four winged fly, caused 
by a loss of function mutation in ultrabithorax, a gene for posterior thorax (Lewis, 1995). The 
halteres are transformed to wings. C Antennapedia mutation: anterior thoracic legs replace 
antennae on the head, due to a misregulated gain of function mutation for the gene Antennapedia 
(a gene for anterior thorax), leading to its expression in the head segments (Gehring, 1987). D. In 
vertebrates, mouse genetics has been bedevilled by the fact that there are 4 Hox clusters, with 
parallel functions. This once led to the erroneous idea that vertebrate Hox loss of function 
mutations have mild phenotypes. In fact, if you knock out all of the paralogues of a particular Hox 
paralogue group (pg), or ectopically express a Hox gene this can give a dramatic phenotype. Left: 
wild type Xenopus hindbrain. This has 8 segments (rhombomeres) 2-8 each express a different 
combination of Hox genes and so have different identities, indicated by the different colours. 1 
(white) expresses no Hox genes. Its identity is determined by the gene Gbx2. Middle: hindbrain in 
Xenopus where Hox pg1 has been knocked down using morpholinos. The hindbrain is drastically 
anteriorised to the identity of r1. It is also shorter (redrawn from McNulty et al., 2005). Right: 
Skeletons of two mice. Above: wild type. Below, a mouse ectopically expressing HoxC10. The 
HoxC10 mouse is drastically different. For example, it lacks ribs (Carapuco et al., 2005). The 
thoracic vertebrae are posteriorised to abdominal identity. This is because Hox pg10 controls the 
transition from tthorax to abdomen, in the vertebral column. 
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These genes typically determine the identity of individual Drosophila body segments or 
groups of adjacent segments. In the early 80’s strategies were developed for cloning 
developmental control genes. The first genes cloned were the hox genes Bithorax- by 
Hogness and his colleagues (Bender et al., 1983) ( and Antennapedia- by the Gehring group 
(Carrasco et al., 1984). This was possible because these transcription factor genes contain a 
large highly conserved region- the homeobox- which encodes a 60 amino acid DNA binding 
domain and can be picked up by homology screening. It has, in fact emerged that Hox genes 
encode a subfamily of transcription factors and that the homeobox and another conserved 
region, the haxapeptide, are important in determining their specificity. 

3. Hox clustering and colinearity: The key property 

A key property of Hox genes is that they are often clustered in complexes.  Hox complexes 
are among the most remarkable regions of the genome.. A Hox complex usually consists of 
up to 9-13 closely related Hox genes arranged in tandem . These genes specify patterning 
along body axes in all bilateria (Gehring et al., 2009, Duboule, 2007).  Invertebrates have a 
single Hox complex, or dispersed Hox genes, but tetrapod vertebrates typically possess four 
similar Hox complexes (HoxA–D), located on different chromosomes (Duboule, 2007).  
(Fig. 2) The Hox complexes also contain 5 micro RNA (miRNA) genes intercalated at 
homologous positions (Pearson et al., 2005; Yekta et al., 2004, 2008; Woltering and Durston, 
2007; Ronshaugen et al., 2005). 

 

Fig. 2. Hox Spatial and Functional Collinearity 
The four human and one Drosophila Hox complexes are homologues. The colour coding in Panels A 
and B shows the correspondence between the genomic order of Hox genes in the Hox complexes (A) 
and their spatial sequence of expression and action zones along the main body axis in Drosophila and 
human (B). From  Goodman, 2003.  
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The 3’ to 5’ order of Hox genes along a chromosome corresponds to the order in which they act 
along body axes; this collinear property links clustering to function, emphasizing that Hox 
complexes are functional units or meta genes No one Hox gene can pattern an axis but a whole 
Hox cluster can. (Mainguy et al., 2007, Duboule 2007). Hox collinearity is crucial in 
embryogenesis and includes 3 important and interrelated properties: functional colinearity 
describes the spatial order in which Hox genes act along a body axis; spatial colinearity refers 
to the spatial order in which the Hox genes are expressed, and temporal colinearity is the time 
sequence in which they are expressed (Text Box 1). The organization of Hox complexes is 
highly conserved, and Hox and mir genes not only have remained clustered through bilaterian 
evolution but are also in close proximity to each other despite their very complex and dynamic 
expression patterns. Individual Hox genes are also very highly conserved in Evolution. 

Text box 1: Collinearity 

Collinearity describes the sequential expression of a genomic cluster of Hox genes along an 
embryonic axis and associated properties. 

There are three important forms of collinearity: Spatial collinearity is the sequential 3’ to 5’ 
expression of Hox genes along a body axis. This occurs from anterior to posterior along the main 
body axis and also in other axes, for example from proximal to distal in developing limbs. Spatial 
colinearity can be associated with time dependence. The most 3’ gene is expressed first and more 5’ 
genes are expressed sequentially later. This is defined as  temporal collinearity and, in early 
vertebrate development, spatial collinearity is generated from pre-existing temporal collinearity by 
time space translation. The gastrula’s organiser interacts with Hox expressing non organiser 
mesoderm to translate a temporal sequence of Hox codes to a spatially collinear pattern.  We also 
define a third  property, functional collinearity- — which is the capacity of Hox genes to collinearly 
define region-specific structures along an axis. 

Hox collinearity and the organisation of the Hox complexes are phenomena that have long 

fascinated developmental, molecular and evolutionary biologists. These phenomena 

represent an important example of genomic regulation. Understanding the structure and 

function of Hox genes is crucially important, because they are implicated in a growing 

number of diseases, including important cancers (Grier et al., 2005). See also below. 

Research and thinking on Hox collinearity has concentrated on three aspects. First, there is 

the question of how collinearity evolved, which is clearly one of the keys to understanding 

this phenomenon. Second, there are three mechanistic ideas. The first is that Hox spatial 

colinearity is secondary and due to an upstream hierarchy of spatially ordered genes. Hox 

collinearity is thus not utilised. The second  is that collinearity is based on transcriptional 

regulation, and specifically that it is limited by the progressive 3’ to 5’ opening of Hox 

cluster chromatin and/or mediated by global control regions. The third model is that 

collinearity depends on interactions among the Hox genes themselves. These interactions 

include ‘posterior prevalence’, - a negative interaction among Hox proteins that clearly 

relates to functional collinearity in Drosophila (and possibly also to spatial and temporal 

collinearity; see Text  Box 1).  

In this article, we review the basis of Hox evolution and of the three longstanding 

mechanistic hypotheses to explain Hox gene collinearity. But we also propose a new 
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explanation. Based on evidence from Amphibian and other vertebrate embryos, we reason 

that synchronised temporally collinear expression of the Hox complexes in early 

vertebrate embryos involves trans-acting factors and intercellular interactions. We review 

data implicating activating as well as repressive interactions among the Hox genes 

themselves, and timed signals from the somitogensis clock. This model provides a 

mechanistic link between the different  aspects of collinearity. A review of potential 

collinearity mechanisms is now opportune because new data that have never been 

reviewed in the literature are now available and because the existing, entrenched models 

are limiting in the sense that they direct research in the same direction- that of chromatin 

opening and transcriptional control- and that they do not explain all of  the facts (below).  

This has spurred us to interpret the data in a different light. The field gains a new 

perspective from this new synthesis of the data. 

4. The evolution of Hox genes in different taxa, including vertebrates 

Hox genes are available in all metazoans that have been studied. In all bilateria where 
there is information, they are concerned with patterning the main body axis.  
Invertebrates have one Hox gene complex: vertebrates have 4 or 8. The 4 Hox gene 
complexes typically present in most tetrapod vertebrates arose through 2 rounds of 
genome duplication during evolution. Xenopus laevis and teleost fishes have 8 Hox 
complexes because of 3 genome duplications. Even the individual Hox genes are strongly 
conserved in evolution throughout the animal kingdom (Carrasco et al., 1984; Gehring et 
al. 2009; Duboule 2007, DeRobertis, 2008) and are recognisable  by having distinct 
conserved sequences. The Hox genes corresponding to the same position in each of  the 
different vertebrate Hox complexes are conserved. They have very similar homeoboxes 
and hexapeptides and are called a paralogue group. Hox  genes in invertebrates may be 
clustered and show collinearity or they may be scattered in the genome to various extents. 
Different extents of fragmentation, from atomised to fully clustered have been identified. 
The clustered format is thought to be ancestral.  

 

Text box 2: An evolutionary explanation of collinearity 

It has been proposed that colinearity evolved by repeated tandem duplication of an ancestral ur-
Hox gene and sequential evolutionary modifications of the duplicates, leading to generation of an 
organised gene array from an evolutionary ground state . This idea can conceivably explain how a 
genomic sequence could relate to a spatial or temporal sequence of gene expression. Please note 
that, if this is the explanation of collinearity, it is the explanation and obviates the need for an 
explicit collinearity mechanism involving interactions between or clustering of the Hox genes. The 
upstream mechanism for Hox expression will be whatever it evolved to be in order to regulate the 
spatially collinear localised expression of the individual Hox genes- as with the segmentation gene 
hierarchy in Drosophila. The spatially collinear axial expression pattern of the Drosophila Hox 
genes is thus secondary and determined by the spatially ordered expression patterns of the gap 
genes. Nonetheless, we think that explicit collinearity mechanisms evolved- see main text.  

Evolution of Hox collinearity is particularly important because it can potentially offer an 

explanation of how collinear properties connect to Hox complex structure. The only other 
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potential  explanation for this comes from the chromatin opening model (below). It should 

be noted that whereas clustered Hox genes in organisms having Hox clusters show the 

normal spatially collinear sequence of Hox gene expression, so do Hox genes in fragmented 

clusters, from the split cluster seen in Drosophila to atomised Hox genes in organisms having 

no clustering- like Oikopleura (Duboule 2007, Seo et.al. 2004). These show ‘trans collinearity’ 

where the spatial sequence of expression of the Hox genes corresponds with their 3’ to 5’ 

genomic sequence in the ancestral cluster. It is thus clear that the spatial ordering of Hox 

gene expression does not rely soley on clustering.  Presumably, Hox spatial collinearity 

evolved in an ancestral organism with clustered Hox genes and  and persisted after cluster 

disintegration during evolution. This already demonstrates that Hox collinearity  properties 

can persist in the absence Hox clustering and therefore of progressive chromatin opening. It 

has been proposed that a Hox complex, whose function is to pattern an axis, acts as a meta 

gene or functional unit, where no one Hox gene can execute the whole function but the 

whole complex does (Mainguy et al., 2007, Duboule, 2007). It has also been proposed that 

spatial collinearity has been a selective pressure that drives Hox clustering rather than vice 

versa. (Duboule 2007). 

It has been proposed that Hox colinearity evolved by repeated tandem duplication of an 

ancestral ur-Hox gene and stepwise sequential evolutionary modifications of the duplicates, 

leading to generation of an organised gene array from an evolutionary ground state (Lewis 

1978 1995; Gehring  et al.,2009) (Text Box 2, Fig.3A). Lewis proposed that the modifications 

arose by unequal recombination between adjacent Hox genes.  This idea can conceivably 

explain how a genomic sequence could generate ordered properties like  spatial or temporal 

sequences of gene expression. Please note that, if this is the explanation of collinearity, it  

obviates any need for a dedicated collinearity mechanism. The upstream mechanism for Hox 

expression will be whatever it evolved to be in order to regulate the correctly localised 

expression of the individual Hox genes. This is the case with the gap-segmentation gene 

hierarchy in Drosophila, (see below). Nonetheless, we think that dedicated collinearity 

mechanisms evolved.  Lewis showed that 5’ posterior drosophila Hox genes are epistatic to 

the Hox gene Antennapedia. If they are ectopically expressed in the normal  Antennapedia 

domain, the most posterior Hox gene expressed dominates. If the most posterior Hox gene is 

deleted, the phenotype obtained is that of the most posterior Hox gene still expressed. And 

so on. This interaction was called posterior prevalence (below)  and was thought by Lewis to 

reflect the fact that Antennapedia represents an ancestral  ground state, while posterior Hox 

genes are derived from the ground state by tandem duplication and stepwise sequential 

modification (as above). It has been reported relatively recently by Gehring et al., (2009) that 

the anterior Drosophila Hox genes  have also evolved from the Antennapedia ancestral ground 

state and that these have developed anterior prevalence.  

5. The mechanism of Hox collinearity 

There are various ideas about this (Fig. 3).  

1. In the section above, we have described the idea that collinear Hox complexes arose 

by tandem duplication and sequential modification of an ancestral ur-Hox gene. In 

this case, no special mechanism is required to generate spatial collinearity. The 
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upstream mechanism for Hox expression will be whatever it evolved to be in order to 

regulate the correctly localised expression of the individual Hox genes. This is the 

case with the gap-segmentation gene hierarchy in Drosophila (Nuesslein- Volhard, 

1995), where  the spatial ordering of the Hox genes is secondary. The spatially 

expressed gap genes are the primary determinats of the spatially ordered Hox gene 

expression pattern (Kehle et al., 1998, Mito et al., 2006) . Later on, other genes, 

including the Hox genes themselves, the cofactor teashirt, polycomb group genes and 

segmentation genes play a role ( Gebelein and Mann, 2007, Rusch and Kaufman, 2000 

Mito et al., 2006) (Fig 3A, 3B).  

2. The idea has developed in the mouse that temporal collinearity is due to progressive 

opening of Hox complex chromatin, from 3’ to 5’ (Fig 3C). (. This idea has become rather 

popular. There is some evidence for this (Soshnikova and Duboule 2009, Cambeyron 

and Bickmore, 2004, Van der Hoeven et al, 1996, Kmita et al., 2000) but the idea has 

limited application. It can not apply in animals with dispersed Hox genes that behave 

colinearly. It is not even the whole story in vertebrates, presumably including the 

mouse. Synchronised temporal colinearity between the different Hox complexes during 

gastrulation (Wacker et al., 2004, Durston et al., 2010, 2011) indicates the importance of 

trans acting factors and intercellular signals for temporal collinearity. 

3. There is evidence that interactions between Hox genes are important. These can 
obviously not account for the relation between Hox complex structure and collinear 
properties but they are part of the story. Working in D. melanogaster, E. B. Lewis 
showed that loss–of-function mutations in posterior Hox genes drive the segmental 
phenotype towards that of the more anterior thoracic segment T2, which is 
determined by the Hox gene Antennapedia (Lewis, 1978, 1995). Struhl used esc- 
Drosophila embryos, which show constitutive activation of gene expression, in 
combination with Hox loss of function mutations to elucidate the functional hierarchy 
of Drosophila Hox genes (Struhl, 1983). All Drosophila segments were transformed to 
the phenotype of the most posterior functional Hox gene expressed.   Posterior 
prevalence in Drosophila has been thought to underly functional collinearity only, not 
spatial collinearity. Experimentally derived ubiquitous expression of Hox genes under 
promoters that are known to be transcriptionally irrepressible leads to 
transformations only in regions anterior to the functional domain of the gene. For 
example, the thoracic Antennapedia, when ubiquitously expressed, suppresses Hox 
genes of the head, resulting in posterior transformation of head segments towards a 
thoracic identity while not affecting the abdomen — here, the effect of Antp is 
phenotypically suppressed by bithorax-complex genes such as Ubx (Gonzalez-Reyes et 
al., 1990 Gibson and Gehring, 1988 ). However, posterior prevalence occurs not only 
postranslationally (Plaza et al., 2008) but also at the levels of transcription (Beachy et 
al., 1988, Hafen et al., 1984, Appel and Sakonju, 1993, Struhl and White, 1985) and 
posttranscriptional regulation of mRNA abundance (Yekta et al., 2004, 2008, 
Woltering and Durston, 2007, Ronshaugen et al.,2005 ) (Text box 3). It can thus also 
potentially regulate the mRNA expression of Hox genes. Namely, spatial and 
temporal collinearity. Hox interactions also occur during vertebrate gastrulation. 
These include posterior prevalence (Hooiveld et al, 1999, Woltering and Durston, 
2007) but also 3’ to 5’ activation of Hox gene expression (McNulty et al, 2006, 
Hooiveld et al., 1999) See Fig. 3E, Fig. 5.  
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Fig. 3. Some facts and ideas about Hox colinearity 
A. Tandem duplication and sequential modification. Clustered Hox genes are thought to have evolved 
by tandem duplication of an ancestral Ur-Hox gene. The duplicates are then thought to have been 
progressively modified, so they become more and more different from each other. The figure shows 
tandem duplication and progressive modification towards the right. The ur- Hox gene (left, blue) 
duplicates and the right hand daughter is modified (green). The green Hox gene duplicates again and 
its right hand daughter is modified (yellow). The yellow Hox gene duplicates again and its right hand 
daughter is modified (red). This type of mechanism can give collinear properties. 
B. The associated upstream mechanism needed to generate spatial collinearity. If such a Hox cluster is 
to generate spatial colinearity without an explicit colinearity mechanism, an  individual input is 
needed to turn on each Hox gene to ensure it is expressed at exactly the right axial position. The 
inputs concerned are going to need an axial pattern themselves. This kind of mechanism is used in 
Drosophila, where the gap genes provide the inputs. Gap genes specify the primary axial positions 
where the Hox genes are expressed and segmentation genes, the Hox genes themselves, polycomb 
group genes and cofactors like teashirt  refine this information, restricting Hox expression by specific 
segment boundaries. In this situation, the Hox genes thus do not provide the primary axial patterning 
information. They are secondary. It is likely that this kind of mechanism is general in invertebrates, 
which probably have no temporal colinearity or colinearity mechanism and have had to evolve an ad 
hoc mechanism to generate spatial collinearity. Something like this may also occur in the vertebrate 
hindbrain, where the gastrula’s colinearity mechanism is presumably the primary patterning 
mechanism and hindbrain genes confirm or alter the patterning information. 
C. Progressive chromatin opening: the basic idea. This is an idea proposed by Duboule and colleagues 
to account for vertebrate temporal collinearity. The Hox complex chromatin opens from 3’ to 5’. This 
opening progressively permits Hox gene transcription, from 3’ to 5’. 
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D. Time- space translation. Vertebrates show early Hox collinearity. There is a temporally collinear 
sequence of Hox gene expression in the gastrula. This is used to generate a spatially collinear axial 
sequence of Hox gene expression. For details, see Fig. 4.  
E. Hox interactions.What regulates vertebrate temporal collinearity? Not just chromatin opening, as 
proposed by Duboule. The different vertebrate Hox clusters are expressed with synchronous temporal 
collinearity. What may be involved are interactions between different Hox genes. The figure shows 
some interactions between Hox genes in the vertebrate gastrula.  

Text box 3: The Level Of Action 

All effects above on activation or repression of Hox genes during gastrulation result in more or 
less Hox mRNA.but not all act on transcription.  Recent evidence shows that Hox complex mRNA 
availability is strongly regulated posttranscriptionally, involving such phenomena as polycistronic 
transcripts, sense/ antisense transcript interactions and alternative splicing.  At least one early 
vertebrate Hox interaction; downregulation of more 3’ Hox mRNA’s by Hoxb4 is micro RNA 
mediated (posttranscriptional). We note that the important parameter for colinearity is the sum 
total  of the (activating and repressing) inputs on each Hox gene (there may be many). We think it 
very significant that posterior prevalence (pp) acts at 3 different levels. If a Hox gene is activated 
transcriptionally, its mRNA can still be destabilised by pp miR action. If the Hox protein is made, 
it can still be inactivated by pp protein-protein interactions. We think that pp is the most 
important Hox-Hox colinearity interaction and that it needs to be dominant, to ensure the 3’ to 5’ 
directionality of colinearity 

6. Hox function in vertebrates 

Hox genes have several different roles in development 

Vertebrates are unique in being the only type of metazoan animals in which the ancestral 

Hox cluster has been duplicated due to genome duplications.  In most tetrapod vertebrates, 

there are four Hox clusters, on different chromosomes, presumably due to 2 genome 

duplications. Teleost fish have 8 clusters, due to 3 genome duplications. 

6.1 Hox genes in the developing CNS and hindbrain 

There is much evidence that Hox genes are important in early anteroposterior patterning of 

the vertebrate central nervous system. There is an approximately spatially collinear 

sequence of Hox expression in the early neural plate and neural tube. Anterior boundaries 

for expression of different Hox genes distinguish between different parts of the developing 

CNS- for example, some boundaries distinguish between the different segments in the 

hindbrain.  Much work has been done to characterise the regulatory gene networks that 

regulate Hox expression and Hox function in the developing CNS, particularly those that 

pattern the developing hindbrain: a segmented structure. These networks do not appear to 

contain any mechanism that mediates collinearity, which is presumably set up earlier in the 

mesoderm and transferred to the developing CNS. (see below). The hindbrain regulators 

seem to maintain this early pattern or alter it. They have an ad hoc nature, as do the 

upstream regulators  in Drosophila. They do not necessarily maintain spatial collinearity.  For 

example, the primary Hoxb1 expression domain is at a non collinear position. This work has 
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been reviewed extensively in recent review articles (Wright, 1993, Krumlauf, 1994, Tumpel 

et al., 2009, Schneider-Manoury et al., 1998) and will not be discussed further here. The role 

of Hox genes in patterning the developing vertebrate CNS is limited to the hindbrain and 

spinal cord. The fore- and mid- brain are patterned by other regulators, including the Otx 

and Emx gene families (Cecchi et al., 2000) . The patterning of the anterior CNS by these 

gene families is actually conserved in Drosophila, but the anterior CNS region where they act 

here is very small, compared with the vertebrate forebrain. 

6.2 Hox genes in axial mesoderm  

Besides specifying A-P levels early on, in the developing central nervous system, Hox genes 

specify A-P levels in mesoderm. We are talking here about the axial and paraxial mesoderm. 

Hox genes are expressed in and specify A-P levels in, the presomitic and somitic mesoderm 

and the lateral plate mesoderm. Hox genes are not expressed in and do not specify A-P 

levels in the early notochord, which is derived from the Hox-negative organiser mesoderm 

in the gastrula.  Hox patterning of axial mesoderm is covered by excellent recent reviews 

(Carapuco et al.,2005, Burke et al., 1995). We will not discuss it further here, except for one 

aspect (below). 

The expression of Hox genes in the presomitic and somitic mesoderm is interesting 
because it  correlates with the process of somitogenesis, the primary process of 
segmentation in the early vertebrate embryo, which occurs in this mesoderm. Vertebrate 
somitogenesis (segmentation of axial mesoderm) works via a mechanism where an 
oscillating system of gene expression generates a spatial pattern by time–space 
translation, just as in genesis of the vertebrate axial Hox pattern (see below and text box 1). 
The temporal oscillation in gene expression (somitogenesis clock) generates spatially 
periodic segments in the axial mesoderm: the somites (Palmeirim et al., 1997). This is 
closely linked to collinear Hox expression. Hox spatial expression boundaries coincide 
with somite/segment boundaries and several vertebrate somitogenesis genes are known 
to regulate Hox expression (Peres et al., 2006; Dubrulle et al., 2001, Dubrulle and Pourquie, 
2004, Zakany et al., 2001).  

6.3 Hox genes in gastrulation 

Hox genes are expressed earlier in development than in the developing central nervous 

system and axial mesoderm. This is interesting because the Hox genes set up the primary 

axial pattern during these early stages. The Hox genes are already expressed during 

gastrulation. For example, in the  non-organiser mesoderm (NOM) of the Xenopus laevis 

gastrula, where Hox genes are first expressed in the embryo and are expressed with 

temporal colinearity (Fig.4a). This mesoderm manifests a sharply timed temporally collinear 

sequence of Hox gene expression that is translated in time and space by interactions with the 

Spemann organiser (SO) to to generate a spatially collinear pattern of Hox gene expression 

along the main body axis of the organism (Wacker et al., 2004a; Durston et al., 2010, 2011)  

The mechanism for this is shown in Figure 4b. .In short, the temporal sequence of Hox gene 

expression in the mesoderm is sequentially frozen, from anterior to posterior and is 

transferred to the developing neural plate, which overlies the internalising mesoderm, in the 

gastrula. (Text Box 1, Fig. 4a,b).  
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Fig. 4. Temporal Collinearity AndTime space translation.  
A. Temporal Collinearity In the Xenopus Gastrula 
The figure shows Hox expression patterns at sequential stages during gastrulation in Xenopus. From 
Wacker et al., 2004. The embryos are seen from underneath, where a ring (the blastopore) shows the 
position where mesoderm tissue invaginates during gastrulation. This ring gets smaller as 
gastrulation proceeds and the upper tissues in the embryo spread out and cover the lower part of the 
embryo (epiboly).The expression of several different Hox genes, seen as blue colour by in situ 
hybridisation, is in each case initially in the gastrula mesoderm in the zone above (outside) the ring. 
Hox expression is thus seen as a blue ring, and since it is initially only in part of the mesoderm (non 
organiser nesoderm), the ring is initially broken. This ring of Hox expression gets smaller as the 
blatopore ring gets smaller and mesoderm invaginates into the embryo.The figure shows expression of 
a sequence of Hox genes with different paralogue numbers, from 1 to 9. It will be seen that the Hox 
gene with the lowest paralogue number starts expression first and later numbers start sequentially 
later. It will also be seen that the Hox genes in this time sequence include members of all of the 4 
primary vertebrate paralogue groups (a,b,c,d). 
B. Time-space translation  
Timed interactions between the Hox expressing non-organiser mesoderm and the Spemann organiser 
generate positional information during vertebrate gastrulation (Wacker et al., 2004). The drawings 
show simplified 2-dimensional representations of Xenopus gastrulae. The first 5 drawings show 
parasagittal (ventral to dorsal) two dimensional representations of gastrula profiles, starting at the 
beginning of gastrulation and then at sequential stages till the end. The last (6th.) drawing shows the 
end of gastrulation, from the dorsal side (profile at the level of the dorsal axial mesoderm). Hox 
expressing tissue (NOM (NO and I) and, late in gastrulation neurectoderm (N)) is represented by 
different colours, each of which represents a different hox code. Initially, the coloured bar represents 
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the broken ring of NOM in the wall of the embryo. The later internal coloured blocks at the dorsal side 
of the embryo represent the involuted NOM mesoderm. The coloured blocks next to them in the wall 
of the embryo represent the overlying neurectoderm, which also comes to express hox genes. Hox 
expression is copied from the gastrula mesoderm to the neurectoderm. The SO is shown only in the 
last drawing, as the heavy median black line. By this stage, it has become the notochord and a head 
mesodermal portion. The first 5 drawings represent paraxial profiles, where the organiser is not 
available. The black dotted line in the last drawing depicts the sphere of influence of the SO.  
N: neurectoderm, NO: non-organiser mesoderm; S,: Spemann organiser; A: Anterior; P: Posterior;  
L: Left; R: Right. N nonorganiser; S Spemann organiser. The white arrows reflect directions of cell 
movement flow. To dorsal, anterior and internal(drawings 1 and 6). -There is a collinear time 
sequence of hox expression in non involuted non-organiser mesoderm (NOM) in the gastrula 
(depicted by the spectral sequence of colours). -During gastrulation involution movements 
continuously bring cells from the NOM into the inside of the embryo See stack of blocks of different 
colours, reflecting a history of the collinear hox mesodermal time sequence, in the internal involuted 
mesoderm. -Stable (ectodermal) Hox expression is induced by a combination of signals from the SO 
and the Hox expressing NOM. See corresponding blocks of sequential spectral colours in the 
gastrula's mesoderm and outer layer, reflecting a vertical transfer of the Hox codes from involuted 
mesoderm to overlying neurectoderm. A “Hox stripe” as part of the anterior–posterior Hox pattern is 
thus formed at the dorsal side. 

A striking feature of the Xenopus gastrula mesoderm’s temporally collinear Hox expression 

sequence is that expression of Hox genes from different Hox complexes occurs in the same  

perfectly temporally collinear sequence (Fig. 4A). The temporal collinearity of the different 

Hox complexes is therefore synchronised (Wacker et al., 2004a; Durston et al., 2010, 2011) .  

The different Hox paralogues (ie the different copies of each different Hox gene type, 

produced by the vertebrate genome duplications) in the different complexes are on different 

chromosomes, ruling out that Hox colinearity simply reflects cis-localised progressive 

opening of Hox complex chromatin for transcription.  Trans acting signals are clearly needed 

to synchronise the different Hox complexes  and, since we are dealing with a cell mass rather 

than a single cell, intercellular signals are also required. We note that these trans-acting 

factors and intercellular signals must be very sharply timed to enable synchronisation of the 

different Hox complexes and are probably timed to trigger expression of different Hox genes 

at different times. This conclusion was not a complete surprise. It is known that trans acting 

factors must mediate collinearity in organisms with dispersed Hox genes. This is,  

however, the first evidence that vertebrate temporal collinearity is also mediated by trans 

acting factors.  

The involvement of trans acting factors and intercellular signals has been investigated and 

three sectors of the regulatory gene hierarchy have become interesting. 

1. There is evidence that the Hox genes themselves are involved, via Hox-Hox interactions 
including posterior prevalence and via interactions involving micro RNA’s. These 
interactions drive initiation of Hox complex expression as well as progression of 
temporally collinear expression through the Hox complexes (Hooiveld et al., 1999, 
Woltering and Durston, 2008, McNulty et al., 2005) (Fig. 5A). There is much evidence 
that Hox genes in vertebrates and Drosophila show activating as well as repressive 
interactions, including posterior prevalence McNulty et al., 2006; Hooiveld et al., 1999; 
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Woltering and Durston, 2008; Le Pabic et al., 2010; Lobe. 1995, Maconochie et al., 1997; 
Gould et al., 1997; Bergson and McGinnis,1990 ; Miller et al., 2001, Wellik and Capecchi, 
2003) and that they drive conventional intercellular signalling pathways(eg. Graba et al. 
1995, Bruhl  2004, Manak et al1994, Michaut et al., 2011, Morsi el Kadi et al., 2002, 
Pearson et al., 2005)  as well as acting as signalling molecules themselves (Bloch- 
Gallego et al., 1993, Chatelin et al., 1996). 

2. There is evidence that the signalling factor Wnt 8 acts as a signal to initiate synchronous 
expression of the different Hox complexes.  (In der Rieden et al., 2010) 

3. There is evidence that the somitogenesis clock is involved (Fig. 5B).  Vertebrate 
somitogenesis (segmentation of axial mesoderm) works via a mechanism where an 
oscillating system of gene expression generates a spatial pattern by time–space 
translation, just as in genesis of the vertebrate axial Hox pattern (see above and text box 
1). This dynamic process is known to start during gastrulation in chicken and Xenopus ( 
Peres et al, 2006; Jouve et al., 2002)  and it drives activation of Hox gene expression. 
Xdelta2 is a Xenopus oscillating somitogenesis gene (Jen et al., 1997, 1999). It is already 
expressed during gastrulation and then generates presomitic stripes so its expression is 
already oscillatory. It regulates expression of Hox genes during gastrulation  (Peres et 
al., 2006). This gene could help to drive synchronised temporally collinear expression of 
the Hox complexes. It could do so either by regulating only initiation of expression of 
Hox complexes (via labial Hox genes) or by driving initiation and 3’ to 5’ progression, 
(repeatedly inducing expression of different Hox genes). We note that XDelta2 drives 
expression of at least 3 different Hox paralog groups including labial). If delta drives 
progression as well as initiation, a repeated periodic pulsatile signal is required. The 
idea that the somitogenesis clock drives Hox temporal collinearity is very attractive 
because both of these timers are known to operate already in the gastrula and because 
of the evidence linking Hox patterning and segmentation (above). Such a signalling 
pathway might act separately from the Hox genes or be  downstream of them. XDelta 2 
is indeed downstream of Hox genes as well as upstream. There is a positive feedback 
loop (McNulty et al., 2006, Peres et al., 2006). XDelta 2 may thus mediate Hox induced 
signalling. These findings indicate that the axial segmentation mechanism may help to 
drive Hox expression in vertebrates, just as in Drosophila. 

The X. laevis example was chosen because the data are most complete for this system; 
however, the conclusions are strongly supported by many findings in other vertebrates 
(zebrafish, chicken and mouse) (Gaunt and Strachan, 1996, Alexandre et al. 1996, Deschamps 
et al., 1999). This example illustrates that Hox colinearity cannot depend solely on the 
collinear opening of chromatin. Because the Hox complexes are synchronised, trans-
actingfactors and intercellular signals must be involved — trans-acting factors would be 
necessary for coordinating the sequential 3’ to 5’ activation of Hox genes in and between Hox 
clusters, and intercellular signals would enable the coordinated activation of Hox gene 
expression between cells in a tissue. An alternative explanation is that only the most 3’ Hox 
genes (Hox1) transactivate, and the remaining timing is provided by synchronised opening 
of the Hox complexes. The different structures of the 4 primary vertebrate Hox complexes 
(with different Hox paralogues missing from each) would, however, make it difficult for 
progressive opening of different Hox complexes to stay synchronous. Since the gastrula 
mesoderm is a cell mass, not a single cell, trans-activation needs to be accompanied by 
intercellular signalling. 
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Fig. 5. Regulators of vertebrate Hox temporal colinearity: Hox-Hox interactions and 
Somitogenesis oscillations 
A. some cross interactions between Hox genes and Mirs in the vertebrate Hox complexes during 
vertebrate gastrulation. Red: repression. Green: activation 
B. The somitogenesis clock and Hox temporal collinearity. We show an oscillating concentration of 
XDelta2. Sequential peaks of XDelta2 activate expression of different Hox genes. [XDelta2*]; The 
threshold concentration of XDelta2 at which Hox expression is activated. 

6.4 Hox genes in later development and in. limbs, hairs, haematopoiesis, the 
pancreas, etc 

Vertebrate Hox genes have many other functions than specifying levels in the main body 

axis, in the central nervous system and in axial mesoderm. They regulate the axial 

patterning of limbs (Zakany and Duboule, 2007). They mediate patterning and 

differentiation in hairs (Awgulevich, 2003), the gut (Kawazoe et al., 2002), the pancreas 

(Gray et al., 2011), the blood (Magli et al.,. See articles for details. These other functions will 

not be discussed further here. Many of these Hox functions have been elucidated by gain 

and loss of function expts. In general,  loss of function mutation in a single vertebrate Hox 

gene delivers a deceptively mild phenotype. This has bedevilled the analysis of Hox function 

using mouse genetics. It is because each vertebrate Hox gene is a member of a paralogue 

group of at up to 4 or 8 Hox genes which have parallel and shared functions. Where 

measures have been takn to knock out a whole paralogue group, a suitably dramatic 

phenotype is obtained. See Fig. 1.  

6.5 Modified use of Hox genes in elongated vertebrates: Snakes and Caecilians 

The elongated, snake-like skeleton, as it has convergently evolved in numerous reptilian and 

amphibian clades, is from a developmental biologist’s point of view amongst the most 

fascinating anatomical peculiarities in the animal kingdom. This kind of body plan is 

characterized by a greatly increased number of vertebrae, a reduction of skeletal 

www.intechopen.com



 
Hox Genes: Master Regulators of the Animal Bodyplan 145 

regionalization along the primary body axis and loss of the limbs. Recent studies conducted 

in both mouse and snakes now hint at how changes in gene regulatory circuitries of the Hox 

genes and the somitogenesis clock could underlie these striking departures from standard 

tetrapod morphology. These studies show that particular snake Hox genes have changed 

their specificities by mutations in the homeobox. This leads to their failing to specify the 

expected axial boundaries and enables particular body regions, especially the thorax, to 

become drastically extended (Woltering et al., 2009, Di Poi et al., 2010).  

7. Conclusions 

Hox genes are upstream regulators in the developmental hierarchy that are of great 
importance for the bodyplan. They  specify and differentiate  between different zones along 
the main body axis. These genes show collinearity- clustering associated with acquisition of 
ordered properties within the gene cluster- a spectacular phenomenon that has attracted 
much interest. A  Hox cluster is actually a metagene. It, but not an individual Hox gene, can 
fulfil a developmental function- patterning the body axis.  In Drosophila, and probably in all 
other invertebrates- the full potential of the Hox genes is not realised.  The expression of 
each individual Hox gene is regulated by other spatially regulated genes and so Hox 
collinearity is not used to pattern the main body axis.  In vertebrates,  temporal collinearity 
has been developed and this is used to pattern the main body axis and develop spatial 
collinearity,  by time-space translation. It is presently generally assumed that the mechanism 
of temporal collinearity is progressive 3’ to 5’ opening for transcription of Hox complexes. 
This may be important. However, we develop a different mechanistic hypothesis: that 
collinearity is partly mediated by Hox gene interactions. This idea was already indicated by 
earlier investigations of posterior prevalence. We review new evidence that trans-acting 
factors and intercellular signals mediate vertebrate Hox collinearity; that these include 
interactions among Hox genes, including posterior prevalence, as well as somitogenesis 
signals. We propose that these Hox interactions have a role in generating Hox temporal and 
spatial collinearity as well as functional collinearity. We note also that an evolutionary 
explanation for collinearity actually probably obviates any requirement for a dedicated 
collinearity mechanism. Our conclusions open new perspectives for research into the 
mechanisms underlying collinearity. Testing this model will require a much more extensive 
investigation and description of early vertebrate Hox temporal collinearity. 
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