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1. Introduction

Many engineering systems represent challenging classes of complex dynamic systems.
Lacking information about their system properties leads to model uncertainties up to
a level where quantification of uncertainties may become the dominant question in
modeling, simulation and application tasks. Uncertainty quantification is the prerequisite for
probabilistic risk assessment and related tasks. Current numerical simulation models are often
too expensive for advanced application tasks that involve accurate uncertainty quantification,
risk assessment and robust design. This Chapter will present recent approaches for these
challenges based on polynomial response surface techniques, which reduce massively the
initial complex model at surprising accuracy. The reduction is achieved via projections on
orthonormal polynomial bases, which form a so-called response surface. This way, the model
response to changes in uncertain parameters and design or control variables is represented
by multi-variate polynomials for each output quantity of interest. This technique is known
as polynomial chaos expansion (PCE) in the field of stochastic PDE solutions. The reduced
model represented by the response surface is vastly faster than the original complex one,
and thus provides a promising starting point for follow-up tasks: global sensitivity analysis,
uncertainty quantification and probabilistic risk assessment and as well as robust design and
control under uncertainty. Often, the fact that the response surface has known polynomial
properties can further simplify these tasks. We will emphasize a more engineering-like
language as compared to otherwise intense mathematical derivations found in the literature
on PCE. Also we will make use of most recent developments in the theory of stochastic PDE
solutions for engineering applications. The current Chapter provides tools based on PCE for
global sensitivity analysis, uncertainty quantification and risk analysis as well as design under
uncertainty (robust design).

2. Response surface via polynomial chaos expansion

In the present Chapter, we consider the response surface in a closed polynomial form.
Obviously, a response surface can be constructed in different ways, e.g. it can be constructed
directly on a dense Cartesian grid of input parameters at extremely high computational
efforts. Likewise, conceptually straightforward numerical Monte Carlo (MC) simulation
techniques are computationally demanding since the statistical accuracy of their predictions
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2 Will-be-set-by-IN-TECH

depend on the number of realizations used. In this Chapter we explore an alternative
methodology which demands anly minimum number of model evaluations to construct a
response surface (see details in Section 2.3).

Our alternative approach is through the polynomial chaos expansion (PCE) introduced by
Wiener (1938). Generally, all PCE techniques can be viewed as an efficient approximation
to full-blown stochastic modeling (e.g., exhaustive MC). The basic idea is to represent the
response of a model to changes in variables through a response surface that is defined
with the help of an orthonormal polynomial basis in the parameter space. In simple
words, the dependence of model output on all relevant input parameters is approximated
by a high-dimensional polynomial. This projection can be interpreted as an advanced
approach to statistical regression. The PCE offers an efficient and accurate high-order way
of including non-linear effects in stochastic analysis, see e.g. Fajraoui et al. (2011); Foo
& Karniadakis (2010); Zhang & Lu (2004). One of the attractive features of PCE is the
high-order approximation of error propagation (Ghanem & Spanos, 1991; 1990) as well as its
computational speed when compared to MC (Oladyshkin, Class, Helmig & Nowak, 2011b).

The original PCE concept (Wiener, 1938) can be used only for Gaussian distributed input
parameters. In recent years, the classical PCE technique was extended to the generalized
polynomial chaos (gPC) (Wan & Karniadakis, 2006) which accommodates for the use of an
increased, yet limited number of statistical distributions (Askey & Wilson, 1985). The PCE
methods discussed above assume an exact knowledge of the probability density functions of
all input parameters and they are optimal only when applied to a finite number of certain
parametric probability distributions. Unfortunately, information about the distribution
of data or input parameters is very limited in many realistic applications, especially in
environmental engineering and sciences. Data that characterize model parameters often
indicate a variety of statistical distribution shapes (e.g., bounded, skewed, multi-modal,
discontinuous, etc). Also, empirical parameter distributions derived from raw data sets do
in general not follow analytically known distribution shapes. For such reasons, application
tasks demand further adaptation of the chaos expansion technique to a larger spectrum of
distributions.

To accommodate for a wide range of data distributions, a recent generalization of PCE is
the arbitrary polynomial chaos (aPC). There are only very few studies that have used aPC
before, and they can only be found in mathematical stochastics (Ghanem & Doostan, 2006;
Soize & Ghanem, 2004) and aerospace engineering (Witteveen & Bijl, 2006; Witteveen et al.,
2007). These studies focused on proofs of existence, constructing the basis by Gram-Schmidt
orthogonalization and on related, quite theoretical issues. A notable exception is the very
recent study of Li et al. (2011) in the field of petroleum engineering. That study did not discuss,
however, the aPC in the light of data availability which plays a critical role in applications such
as those presented by Oladyshkin, Class, Helmig & Nowak (2011a); Oladyshkin & Nowak
(2011).

Compared to earlier PCE techniques, the aPC adapts to arbitrary probability distribution
shapes of input parameters and, in addition, can even work with unknown distribution
shapes when only a few statistical moments can be inferred from limited data or from
expert elicitation. The arbitrary distributions for the framework can be either discrete,
continuous, or discretized continuous. They can be specified either analytically (as probability
density/cumulative distribution functions), numerically as histogram or as a raw data sets.
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The aPC approach provides improved convergence in comparison to classical PCE techniques,
when applied to input distributions that fall outside the range of classical PCE (Oladyshkin &
Nowak, 2011). The necessity to adapt to arbitrary distribution is discussed in more details in
Section 4 of the Chapter.

PCE techniques can mainly be sub-divided into intrusive (Ghanem & Spanos, 1993; Matthies
& Keese., 2005; Xiu & Karniadakis, 2003) and non-intrusive (Isukapalli et al., 1998; Keese &
Matthies, 2003; Li & Zhang, 2007; Oladyshkin, Class, Helmig & Nowak, 2011b) approaches,
i.e., methods that require or do not require modifications in the system of governing equations
and corresponding changes in simulation codes. Intrusive approaches require symbolic
manipulations of the governing equations and can sometimes provide semi-analytical
solutions for stochastic analyses of simple problems. The most well-known method from this
group is the stochastic Galerkin technique. However, the necessary symbolic manipulations
may become very complex and analytically cumbersome, and cannot easily be implemented
in commercial codes. For this reason, non-intrusive approaches like sparse quadrature and
the probabilistic collocation method (PCM: see Li & Zhang (2007); Oladyshkin, Class, Helmig
& Nowak (2011b)) have lately been receiving a quickly increasing attention. In a simple sense,
PCM can be interpreted as a smart (mathematically optimal) interpolation rule of model
output between different parameter sets. The polynomial interpolation may be interpreted
as a response surface of the model. It is based on a minimal and optimally chosen set of
model evaluations, each with a defined set of model parameters (called collocation points).
The challenge here is to find a compromise between computational effort and a reasonable
approximation of the physical processes.

2.1 Definitions and polynomial chaos expansion

In this Section, we will introduce the aPC-based framework. aPC is for arbitrary Polynomial
Chaos which is a most recent generalization of PCE methods (see Section 2.2). Let ω =
{ω1,...,ωN} represent the vector of N input parameters for some model Ω = f (ω). The model
Ω(ω) may be an explicit or implicit expression (e.g., a partial or ordinary differential equation
or a coupled system). To perform sensitivity analysis, uncertainty quantification and risk
assessment, we wish to investigate the influence of all parameters ω on the model output Ω.
The model output can be space and time dependent, i.e. x = (x1,x2,x3).

In the following, we will approximate the model response by a truncated polynomial
expansion for each point in space x and time t. According to polynomial chaos theory (Wiener,
1938), the model output Ω can be approximated by polynomials Ψj(ω) as follows:

Ω(x, t;ω) ≈
M

∑
j=0

cj(x, t)Ψj(ω), (1)

where the number M of polynomials depends on the total number of analyzed input
parameters (N) and the order d of the polynomial representation, according to the
combinatoric formula M = (N + d)!/(N!d!) − 1. The coefficients cj in Eq. (1) quantify the
dependence of the model output Ω on the input parameters ω for each desired point in
space x and time t. The symbol Ψj is a simplified notation of the multi-variate orthonormal
polynomial basis for ω including all cross-terms between different parameters, as explained
below. Let us mention that, in the current state of science for polynomial chaos expansion, the
random variables have to be statistically independent or may be linearly correlated, which
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can be removed by adequate linear transformation. Construction of a polynomial basis for
statistically dependent random variables beyond linear dependence is a very important issue
for future research.

2.2 Data-driven orthonormal basis

The support interval, weighting function or probability distribution for ω is determined from
available information (modeler’s experience, expert opinion, general prior information or
field data) and reflects the uncertainty or expected range of variation of input parameters.
This implies that the polynomial basis and related projections should adapt to the acquired
information, such that they approximate the model best where the probability density of the
parameters is highest. In order to construct such a data-driven polynomial basis that considers
all the available information about the input parameters ω, let us define the set of polynomials

{P
(0)
j , . . ., P

(d)
j } of degree d for the parameters ωj as an orthonormal basis in the parameter

space. The polynomial P
(k)
j (ωj) of degree k in an individual parameter ωj can be written as a

simple linear combination of the different powers i of ωj:

P
(k)
j (ωj) =

k

∑
i=0

p
(k)
i,j ωi

j, k = 0 . . . d, j = 0 . . . N. (2)

Here p
(k)
i,j are the coefficients within the polynomial P

(k)
j (ωj). Assuming that the input

parameters within ω are independent (Ghanem & Spanos, 1991), the multi-dimensional basis
can be constructed as a simple product of the corresponding univariate polynomials:

Ψk(ω) =
N

∏
j=1

P
(αk

j )

j (ωj),
N

∑
j=1

αk
j ≤ M, k = 1 . . . N, (3)

where αk
j is a multivariate index that contains the combinatoric information how to enumerate

all possible products of individual univariate basis functions. In other words, the index α
can be seen as M × N matrix, which contains the corresponding degree (e.g. 0, 1, 2, etc.)
for parameter number j in expansion term k. The multivariate basis allows to represent
the reaction of a model Ω to several (N) parameters ωj (j = 0 . . . N), as an N-dimensional
polynomial response surface, defined by the expansion in Eq. (1).

We will show now, how to construct the data-driven orthogonal polynomial basis for each
individual component ωj from the vector ω. The main idea of the data-driven approach,
see Oladyshkin, Class, Helmig & Nowak (2011a); Oladyshkin & Nowak (2011), consists in

constructing the coefficients p
(k)
i,j for Eq. 2 in such a way that the polynomials in Eq. (2) form

a basis that is orthonormal in precisely the given input distributions of model parameters.
It does so without posing any restrictions to the statistical distribution shapes or weighting
functions that available data, expert opinion or modeler experience may assume.

According to Oladyshkin & Nowak (2011), an orthogonal polynomial basis up to order d
can be constructively defined for any arbitrary probability measure, given that ωj has finite
statistical moments (e.g., mean, variance, skewness, etc) up to order 2d − 1. The unknown

polynomial coefficients p
(k)
i,j can be defined (among other available options for construction:
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Abramowitz & Stegun (1965); Stieltjes (1884); Witteveen & Bijl (2006)) from the following
matrix equation:

⎡
⎢⎢⎢⎢⎣

μ0,j μ1,j . . . μk,j

μ1,j μ2,j . . . μk+1,j

. . . . . . . . . . . .
μk−1,j μk,j . . . μ2k−1,j

0 0 . . . 1

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

p
(k)
0,j

p
(k)
1,j

. . .

p
(k)
k−1,j

p
(k)
k,j

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎣

0
0

. . .
0
1

⎤
⎥⎥⎥⎥⎦

. (4)

Here, μi,j are the ith non-central (raw) statistical moments for random variable ωj. It becomes
evident from Eq. (4) that statistical moments are the only required form of information on the
input distributions. This property carries over to all other types of Taylor or polynomial chaos
expansions.

The above orthogonal polynomial basis can be used directly for analysis. However, a
normalized basis has further useful properties. For example, the mean and variance of Ω(ω)
according to the expansion (1) is given by simple analytical relations (see Eq. (15) in Section
4 of this Chapter), by virtue of the orthonormality property. This follows from the general
properties of Fourier expansions, which encompass all expansions in orthonormal bases. The
squared coefficients of such expansions are called the spectrum (compare with the Fourier
transformation). The sum of squared coefficients is the total energy or variance. Due to
orthonormality, most terms cancel out in subsequent steps. For example, if we consider a
stochastic process in the probability space (Λ, A, Γ) with space of events Λ, σ-algebra A and

probability measure Γ (see e.g. Grigoriu (2002)) and if P̂
(k)
j (ωj) is an orthonormal basis, then

by definition of orthogonality:

∫

ωj∈Λ
P̂
(k)
j (ωj)P̂

(l)
j (ωj)dΓ(ξ) = δkl . (5)

The orthonormal polynomial basis can be obtained as:

P̂
(k)
j (ωj) =

P
(k)
j∥∥∥P
(k)
j

∥∥∥
,

∥∥∥P
(k)
j

∥∥∥
2
=

∫

ωj∈Λ

[
P
(k)
j (ω)

]2
dΓ(ωj), (6)

where ‖Pk
j ‖ is the normalizing constant of the polynomial Pk

j for space of events Λ (where

ωj ∈ Λ) with probability measure Γ.

Because the square of a polynomial of order k yields a polynomial of order 2k, normalization
according to Eq. (6) requires the statistical moments of ω up to order 2d.

When the input data set is small, the sample moments are only uncertain estimates of real
moments. Hence, a direct application of the method presented becomes less robust. In
that case, it would be useful to apply some standard methods to achieve robustness in the
estimation of moments, such as bootstrapping (e.g. Efron (1987)). Moreover, especially in
such cases, expert opinion can be very useful. In the presented approach, an expert will have
total freedom of data interpretation (not restricted to the selection among standard PDFs)
and can provide much more sophisticated information (e.g. lower and higher moments,
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etc.). Such an expert opinion (in a most general sense) will be incorporated directly without
any additional transformation or additional subjectivity when translating it to the stochastic
numerical framework.

2.3 Non-intrusive determination of the coefficients

The remaining task is to evaluate the coefficients cj in Eq. (1). Therefore, we will use the
non-intrusive probabilistic collocation method (PCM) (Li & Zhang, 2007; Oladyshkin, Class,
Helmig & Nowak, 2011b). The collocation formulation does not require any knowledge of
the initial model structure, i.e., of Ω. It only requires knowledge on how to obtain the
model output for a given set of input parameters, which allows to treat the model Ω like
a “black-box”. The distinctive feature of non-intrusive approaches is that any simulation
model can be considered a “black-box”, i.e. commercial software can be used without any
modifications required. The idea of PCM is to evaluate the model exactly M times, which
allows to directly fit the polynomial representation of Ω, see Eq. (1), with its M unknown
coefficients cj to the obtained M model results. The M model evaluations are performed with

M different parameter sets {ω
(i)
1 , ..., ω

(i)
N }, i = 1, .., M, called collocation points.

This leads to the following system (Villadsen & Michelsen, 1978) of linear equations:

MΨ(ω)Vc(x, t) = VΩ(x, t;ω) (7)

where Vc is the M × 1 vector of unknown coefficients cj in expansion (1), the M × 1 vector VΩ

contains the model output for each collocation point, and the M × M matrix MΨ contains the
polynomials evaluated at the collocation points:

MΨ =
{

Ψi(ω
(i)
1 , ..., ω

(i)
N )

}
, i = 1 . . . M, j = 1 . . . M;

VΩ =
{

Ωi(x, y, z, t, ω
(i)
1 , ..., ω

(i)
N )

}
, i = 1 . . . M; (8)

Vc = {ci(x, y, z, t)} , i = 1 . . . M.

The vectors Vc and VΩ are space- and time-dependent, whereas the matrix MΨ does not
depend on space and time and can be generated once for the given expansion degree and
parameter number.

The solution Vc of the system (7) depends on the selection of collocation points. According to
Villadsen & Michelsen (1978), the optimal choice of collocation points corresponds to the roots
of the polynomial of one degree higher (d + 1) than the order used in the chaos expansion
(d). Once the orthonormal polynomial basis is constructed using data (or assumptions on
data), the collocation points become as well data-driven and optimally distributed in the
space of input parameters. This strategy is based on the theory of Gaussian integration (e.g.,
Abramowitz & Stegun (1965)), and allows exact numerical integrations of order d given d + 1
values of the function to be integrated.

The data-driven polynomial basis (see Section 2.2) defines the positions of the collocation
points specific to the distribution of input parameters at hand and, thus, indicates what are
the optimal parameter sets for model evaluation using all available information about the
input parameters.

For multi-parameter analysis, the number of available points from the original optimal
integration rule is (d + 1)N , which is larger than the necessary number M of collocation
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Fig. 1. Computational costs: number of model evaluations for different orders

points. The full tensor grid can be used for low-order (1st, 2nd) analysis of few parameters,
but for higher-order analysis of many parameters the tensor grid suffers from the curse of
dimensionality ((d + 1)N points). In that case, a smart choice of a sparse subset of the tensor
grid becomes necessary. For this reason, the collocation approach became more popular in the
last years. Probabilistic collocation (Li & Zhang, 2007; Oladyshkin, Class, Helmig & Nowak,
2011b) chooses the collocation points from the full tensor grid according to their probability
weight, i.e. their importance as specified by the available probability distribution of ω. This
simply means to select the collocation points from the most probable regions of the input
parameters’ distribution (see Oladyshkin, Class, Helmig & Nowak (2011b)) and the modeler
can extract a lot of information in the main range of the parameter distribution.

From the practical point of view, the computational costs of the data-driven chaos expansion
combined with non-intrusive collocation approach are proportional to the number of terms
in the chaos expansion multiplied by the time of a single model evaluation. The number of
model evaluations (number of expansion terms M) for the construction of response surface
via collocation approach depends on crossing order of expansion and presented in Figure 1.

2.4 Efficient convergence of data-driven expansion

The data-driven polynomial chaos expansion presented in Section 2.2 provides a simple and
efficient tool for analysis of stochastic systems. Let us illustrate the efficiency of analysis within
the data-driven versus the conventional expansion. For that, we will consider the simple
exponential decay differential equation which was already used in Xiu & Karniadakis (2003)
for illustration of the Askey scheme:

dY(t)

dt
= −ξPhY, Y(0) = 1 (9)

Let YPC be the solution obtained using the polynomial chaos expansion (1) for the problem
defined in equation (9). We use a Monte Carlo simulation as reference solution and define
the relative error between the polynomial chaos expansion solution YPC and the Monte Carlo
solution YMC as ǫ = |YPC − YMC| / |YMC|.
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We will apply the chaos expansion to equation (9) with both intrusive, like the Galerkin
method (Ghanem & Spanos, 1993; Matthies & Keese., 2005; Xiu & Karniadakis, 2003), and
non-intrusive approaches , like the probabilistic collocation method (Isukapalli et al., 1998; Li
& Zhang, 2007; Oladyshkin, Class, Helmig & Nowak, 2011b). Both approaches depend on
the distribution of the random variable ξ. If the random variable ξ is not distributed in same
space as the polynomial basis, an additional conversion is required, such as e.g. Gaussian
anamorphosis (Wackernagel, 1998). For each method, we will construct two expansions:
conventional PCE mapped to Gaussian and data-driven aPC. Figure 2 demonstrates the
convergence of the mean value (at time t = 1) for a small selection of exemplary distributions
of the model input ξ (e.g. Rayleigh, Weibull, Log-normal). A similar situation has been
observed for the convergence of the variance. More details are presented in the study by
Oladyshkin & Nowak (2011). Chaos expansion in the data-driven (optimal) polynomial basis
without transformation shows at least an exponential convergence. Let us mentione, that
the data-driven basis provides identical results for both intrusive and non-intrusive methods,
because numerical integration is exact to the necessary degree when using the roots of the
d + 1 order polynomial from the optimal basis, and because no transformation from physical
to normal space is necessary. Convergence with a non-optimal basis (here: Hermite) after
transformation strongly depends on the nonlinearity of the required transformation.
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Fig. 2. Convergence estimationg the mean value based on optimal data-driven basis and
non-optimal transformed basis using Galerkin projection (G.) and Collocation approach (C.)

2.5 Conclusions to section 2

We presented the data-driven approach (aPC) for construction of a response surface based on
a global orthonormal polynomial basis for arbitrary distributions. The arbitrary distributions
can be either discrete, continuous, or discretized continuous and can be specified either
through a few statistical moments, analytically as PDF/CDF, numerically as a histogram,
or theoretically through the even more general format of a probability measure. The aPC
approach provides improved convergence in comparison to classical PCE techniques, when
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applied to input distributions that fall outside the range of classical PCE (Oladyshkin, Class,
Helmig & Nowak, 2011a; Oladyshkin & Nowak, 2011).

The method only demands the existence of a finite number of moments, and does not require
the exact knowledge or even existence of probability density functions. An interesting aspect
is that only moments up to twice the order of expansion matter. Therefore, any PDFs fitted
to input data will lead to the same statistical moments for model output, if the PDFs coincide
in the required moments up to twice the order of expansion. For the same reason, if one still
desires to fit a single PDF to the input data set, we recommend maximum entropy or minimum
relative entropy methods applied such that the moments relevant for PCE are matched. This
differs drastically from fitting low-parametric distributions to only lower moments of the
available data, because this would modify the remaining relevant moments up to twice the
order of expansion. More details on this issue will be provided in Section 4.

3. Global sensitivity analysis

Understanding the general role of parameters in models and the impact of varying model
parameters on the response of prediction models is a relevant subject in various fields of
science and engineering. Characterizing the impact of parameter variations is known as
sensitivity analysis and can be subdivided into local and global analysis (Saltelli et al., 2008;
Sobol, 1990; Sudret, 2008). In many cases of practical interest, we wish to perform a Global
Sensitivity Analysis (GSA) in order to analyze a model as such or to investigate, quantify
and rank the effects of parameter variation or parameter uncertainty on the overall model
uncertainty. GSA can also be used to: (1) quantify the relative importance of each individual
input parameter in the final prediction (Anderson & Burt, 1985; Sobol, 1990; Winter et al.,
2006); (2) aid engineers to produce more robust designs; and finally (3) help decision makers
to allocate financial resources towards better uncertainty reduction.

For example, the field of subsurface contaminant hydrology requires uncertainty estimates
due to the ubiquitous lack of parameter knowledge caused by spatial heterogeneity of
hydraulic properties in combination with incomplete characterization (Dagan, 1989; Rubin,
2003). For such reasons, we need to rely on probabilistic tools to predict contaminant
levels and their overall health effects, and to quantify the corresponding uncertainties.
Having efficient computational approaches to estimate uncertainty and to perform GSA
in hydrogeological applications (and many other fields of science and engineering that
feature uncertain dynamic or distributed systems) is desirable. It can inform modelers
about the relevance of processes or parameters in the models they compile, and can
inform engineers and decision makers about which parameters require most attention and
where characterization efforts should be allocated such that prediction uncertainty can be
minimized. Hence, there is an ever-increasing demand for having a GSA method that
efficiently quantifies uncertainty and parameter relevance in complex and non-linear systems.
An important recommendation to keep in mind is that GSA should be global not only in the
sense of looking at the entire range of possible parameter variations. It should also be used to
assess the importance of parameters on a global, final model output or post-processing result
that is relevant to generate new insight, or relevant for final decisions. GSA should not merely
be applied to model-internal quantities that are of secondary importance for the scientific or
application task at hand (Saltelli et al., 2008).
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In this Section, we tackle GSA based on the aPC technique, following the line of work
on aPC by Oladyshkin, Class, Helmig & Nowak (2011a); Oladyshkin & Nowak (2011)
and synthesizing the GSA approach by Oladyshkin, de Barros & Nowak (2011). Because
the presented framework accounts for arbitrary bounds or weighting functions for input
parameters, it provides a weighted global sensitivity. In some sense, the novel sensitivity
indexes introduced by Oladyshkin, de Barros & Nowak (2011) can be perceived as a
generalization of the Morris method (Morris, 1991) to weighted analysis. Up to presence
the Morris method considers a uniform importance of input parameters within pre-defined
intervals. We also generalize the Sobol indices (Sobol, 1990) for GSA to the aPC context,
and provide a novel GSA measure which resembles a weighted square norm of sensitivities.
Compared to Sobol indices, the new weighted sensitivity measure is absolute rather than
relative. The advantage of an absolute index over a relative one is that it is a quantitative
expression for the (averaged) derivative (slope), and hence keeps the original meaning of a
sensitivity as known from linear, local analysis.

Performing GSA requires to evaluate the model at many points in the space of the input
parameters. The correct choice of such points within the parameter space is important for
adequate and efficient assessment of sensitivity. The aPC approach explicitly offers a method
for optimal choice of these points, based on the generalized mathematical theory of Gaussian
integration (e.g., Abramowitz & Stegun (1965)), see Section 2.

Foglia et al. (2007) pointed out that, according to their experience, one can get 70% of the
insight from 2% of the model runs when using local sensitivity analysis methods versus
global methods. The big advantage of aPC-based GSA (or more generally: GSA based on
any PCE technique), is that one can obtain global sensitivity information at computational
costs that are hardly larger than those for local analysis. The reason is the following: Local
methods use infinitesimally small spacing between parameter sets for model evaluation to
get numerical derivatives evaluated at a single point. The aPC based-method places the
parameter sets for model evaluation at an optimized spacing in parameter space. This can be
interpreted as fitting secants (or polynomials for non-linear analysis) to the model response.
These secants (polynomials) approximate the model over the entire parameter space in a
weighted least-square sense (compare with the best unbiased ensemble linearization approach
described by Nowak (2009)). This is more beneficial to computing a tangent or local second
derivatives (compare FORM, SORM methods, e.g., Jang et al. (1994)) that approximate the
model well just around one point in the parameter space.

This Section provides an alternative procedure to perform GSA that is computationally
efficient and highly flexible. In particular, due to aPC, the GSA introduced here and
in Oladyshkin, de Barros & Nowak (2011) can be interpreted as exploiting a smart
(mathematically optimal) interpolation rule of model output between optimally chosen sets
of input parameters, where the number of model evaluations is minimal. Compared to earlier
works that related GSA to classical PCE the presented approach: (1) emphasizes a more
engineering-like language as compared to otherwise intense mathematical derivations and
is based on a clear 3-step procedure to perform sensitivity analysis, (2) provides easy-to-use
semi-analytical expressions for frequent use in applications, (3) generalizes PCE-based GSA
to arbitrary probability distributions of the investigated parameters, and moreover, (4) allows
to align the complexity and order of analysis with the reliability and detail level of statistical
information on the input parameters.
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3.1 Sobol sensitivity indices

Classical PCE has already been used for sensitivity analysis in different fields of applications
(Crestaux et al., 2009; Sudret, 2008). Within the data-driven PCE framework (de Barros,
Oladyshkin & Nowak, 2011; Oladyhskin et al., 2011) used in this work, the so-called Sobol
indices for sensitivity estimation (Sobol, 1990) can be computed analytically based on the PCE
(see Crestaux et al. (2009); Plischke (2010); Sudret (2008)) using Eq. (10):

Si1,...,is
=

M

∑
j=1

χjc
2
j

M

∑
j=1

c2
j

, χj =

{
1, i f αk

j > 0, ∀j ∈ (i1, ..., is)

0, i f αk
j = 0, ∃j ∈ (i1, ..., is)

}
,

where Si1,...,is
is the Sobol index that indicates what fraction of the of total variance of Ω can

be traced back to the joint contributions of the parameters ωi1
, ..., ωis

. The index selection
operator χj indicates where the chosen parameters ω numbered as i1, ..., is (i.e., ωi1

, ..., ωis
)

have simultaneous contributions within the overall expansion. In plain words, it enumerates
all polynomial terms that contain the specified combination i1, ..., is of model parameters.

A complementing metric for sensitivity analysis is the Total Index introduced by Homma &
Saltelli (1996). It expresses the total contribution to the variance of the model output Ω due to
the uncertainty of an individual parameter ωj in all cross-combinations with other parameters:

ST
j = ∑

(i1,...,is):j∈(i1,...,is)

Si1,...,is
, (10)

where ST
j simply sums up all Sobol indices in which the variable ωj appears, both as univariate

and joint influences.

3.2 Weighted sensitivity indices

The weighted sensitivity index introduced by Oladyshkin, de Barros & Nowak (2011) reflects
the square slope ∂Ω/∂ωj, but averaged over the statistical distributions or weighing functions
of ω1, ..., ωN :

S2
ωj

=
∫

ω1∈Λ
...

∫

ωN∈Λ

[
∂Ω(ω)

∂ωj

]2

dΓ(ω1)...dΓ(ωN) (11)

So, the weighted global index for GSA using an arbitrary probability measure Γ can be used
for reflection of the expected magnitude of parameter variation. Compared to Sobol indices
(see Section 3.1) which analyze the spectral energy (variance) contribution of individual
parameters to the model Ω, the new weighted measure looks at the spectral energy within
the derivatives ∂Ω/∂ωj. The averaged sensitivity index Sωj

can be explicitly expressed as:

S2
ωj

=
M

∑
k=0

c2
k

αk
j −1

∑
i=0

[
b
(αk

j−1)

i

]2

P
(i)
j (ωj). (12)
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where the re-collection coefficients b
(αk

j−1)

i are defined as solution of the corresponding linear
system:

⎡
⎢⎢⎢⎢⎢⎣

b
(αk

j−1)

0

b
(αk

j−1)

1
· · ·

b
(αk

j−1)

αk
j−1

⎤
⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎣

p
(0)
0,j 0 0 0

p
(1)
0,j p

(1)
1,j · · · 0

· · · · · · · · · · · ·

p
(αk

j −1)

0,j p
(αk

j−1)

1,j · · · p
(αk

j−1)

αk
j −1,j

⎤
⎥⎥⎥⎥⎥⎦

T

=

⎡
⎢⎢⎢⎢⎢⎢⎣

p
(αk

j )

1,j

2p
(αk

j )

2,j

· · ·

αk
j p

(αk
j )

αk
j ,j

⎤
⎥⎥⎥⎥⎥⎥⎦

. (13)

This index reflects the influence of a parameter ωj onto the model output Ω in a similar fashion
to the total index defined in Eq. (10). However, the new multivariate index in Eq. (11) does
not rely on comparison among different parameters, i.e., it is an absolute measure. This is an
advantage over the existing Sobol-based total index which is only a comparative and relative
measure.

3.3 Three-step algorithm for data-adaptive global sensitivity analysis

This Section summarizes the computational algorithm for GSA based on aPC. The important
feature in this computational algorithm is that it can be performed for arbitrary distributions
of the input data ω. The entire algorithm for the desired degree of precision d and number of
parameters N is based on the following 3 steps:

Step 1. Characterize the model parameters to be investigated: Compute the raw moments μk,j (k =
1 . . . 2d) of the input data for each input parameter ωj (j = 1 . . . N). If a probability density
function (PDF) is provided, then we can evaluate the actual theoretical moments in lieu of the
raw data moments of a given data set. Alternatively, expert elicitation may serve to provide
opinions on these moments, e.g., by guessing a distribution shape and using its moments.

Step 2. Approximate the model response surface by polynomials: For the specific moments μk,j,
compute the coefficients of the optimal polynomial basis in Eq. (3) using the system of linear
equations Eq. (4) and the normalization in Eq. (6). In addition, compute the coefficients of the
expansion using the system of linear equations, Eq. (7), to represent the model response.

Step 3. Compute the desired sensitivity information from the polynomials: With the original model
reduced to a multi-variable polynomial, the sensitivity indices can be obtained analytically
without any heavy additional computational efforts. This is achieved by using the relations
provided in Eqs.(10) or (12) provided in the two upcoming Sections.

In summary, the algorithm described above has the following advantages:

1. It constructs an optimal orthonormal polynomial basis for any desired distribution of
data, whereas previous PCE techniques were limited to a small number of statistical
distributions. Since only statistical moments are relevant, the input distributions may be
either discrete, continuous, or discretized continuous and can be specified either through
some statistical moments, analytically as PDF, numerically as histograms, or theoretically
through the even more general format of probability measures.

2. The algorithm performs an optimal projection of the physical model onto a polynomial
basis with minimum computational effort. This reduces the original model to a set of
polynomials with many useful properties that allow immensely fast evaluation and offer
a list of analytical relations.
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3. The presented algorithm can easily be implemented without any deep knowledge related
to the theory of chaos expansion and projection techniques.

4. The model Ω does not have to be modified and no specific properties are required. Hence,
it may by given in any arbitrary form for simple analytical solution up to a multi-scale
multi-physical simulation software framework.

3.4 Illustration: sensitivity analysis for human health risk

3.4.1 Problem formulation

We will demonstrate the presented GSA methodology for a contaminant transport problem in
a 3D heterogeneous aquifer and the resulting human health risk for an exposed population.
The aquifer has a hydraulic conductivity tensor K (x) and constant effective porosity ne. For
illustration purposes, we consider flow to be incompressible, single-phased, at steady-state,
free of boundary effects. The Random Space Functions for the log-conductivity Y = ln K is
statistically characterized by its mean 〈Y〉, variance σ2

Y , covariance model CY (assumed here
exponential) and its integral scale IY,i, where i = 1, 2 and 3 for x = (x1, x2, x3). We will consider
IY ≡ IY,1 = IY,2 and IY,v ≡ IY,3 with anisotropy ratio f = I3/IY . Statistical stationarity for
Y is assumed. Flow is uniform-in-the-average with mean velocity 〈u (x)〉 ≡ (U, 0, 0). In
this test case, we will make use of the semi-closed expressions for one-particle displacement
covariance function from Dagan (1988).

In most cases, decision makers are interested in quantifying adverse effects in human health
due to contaminated groundwater exposure. For this case, the environmental performance
metric of interest is human health risk, which depends not only on the hydrogeological
parameters but also on the physiological and behavioural parameters of the exposed
individual. For illustration purposes, we will consider the increased lifetime cancer risk model
from the EPA (USEPA, December 1989;D), although many other risk models exist as discussed
in the literature (de Barros, Ezzedine & Rubin, 2011; Maxwell & Kastenberg, 1999; Siirila et al.,
2011). The increased lifetime cancer risk formulation for the groundwater ingestion pathway
is given by:

r = aC, C = max

[
1

ED

t+ED

∑
t

C (t)

]∞

t=0

, (14)

where C is the maximum running average over the exposure duration ED (years) defined
in Maxwell & Kastenberg (1999) and a is an uncertain health parameter (see Oladyshkin,
de Barros & Nowak (2011) for details).

3.4.2 Importance ranking of modeling parameters

We will apply the presented framework introduced in Section 3.3 for the human health risk
analysis. These sensitivity indices are useful to quantify the simultaneous influence of model
parameters, especially when the number of parameters becomes large and visualization of a
multivariate model response becomes unfeasible and confusing. We will analyze an uncertain
contaminant spill location and uncertain parameters in the model for health risk. Let us
consider the integral scale IY, variance σ2

Y , longitudinal velocity U and position xs, ys, zs of the
source with the source volume V0 and the slope of the risk model a as analyzed parameters ωj

in our analysis.

329
Polynomial Response Surfaces for 
Probabilistic Risk Assessment and Risk Control via Robust Design

www.intechopen.com



14 Will-be-set-by-IN-TECH

According to Step 1 of the algorithm presented in Section 3.3, we first characterize all input
parameters. For illustrative purpose we will consider the following distributions of modelling
parameters:

• For ω1: ω1 = 1 + 2ω′
1, with ω′

1 following a beta distribution with α = 2 and β = 2;

• For ω2: Uniformly distributed within the interval [0.1, 0.7];

• For ω3: Log-normally distributed with μ = 3.6 and σ = 0.3.

• For ω4: ω4 = 9 + 2ω′
4, where ω′

4 is beta distributed with α = 2 and β = 2;

• For ω5 and ω6: ω5,6 = −1 + 2ω′
5,6, where ω′

5,6 is beta distributed with α = 2 and β = 2.

• For ω7: ω7 is lognormal distributed with μ = 1.7 and σ = 0.14.

These PDFs are used in Step 1 to calculate the corresponding raw moments of input data.
According to Step 2 of the algorithm (Section 3.3), we compute the coefficients of the
orthonormal polynomial basis using Eq. (4) and Eq. (6) for given raw moments and for the
desired degree of expansion d. Also, we consider the response surface of the model according
to Eq.(1) and Eq.(7). At the last phase of analysis, Step 3 of the algorithm (Section 3.3), the
desired quantitative sensitivity information is extracted from the polynomial response surface.

All sensitivity indices can be constructed as it was shown above. For brevity, we will focus
on the total and weighted indices only. Figure 3 illustrates the total (left plot) and weighted
(right plot) sensitivity indices at different degrees of expansion. This figure shows the overall
influence of all model parameters on the total human health effect (final prediction), which
implicitly includes a time integral over the concentration history (see Eq. 14). For this
particular case, we observe that the risk is more sensitive towards hydrogeological parameters
than the health parameters. In the case study related to health risk (Figure 3), the new
weighted measure converges faster in comparison to Total indices with increasing order of the
expansion. Total indices show the main reaction of the model to the analyzed parameters, but
as relative quantities do not provide faster stabilization in the ranking of analyses parameters
in comparison to absolute weighted indices. The presented approach for GSA provides a
relatively accurate approximation even for moderate orders (see also the convergence study
for aPC in general in Oladyshkin & Nowak (2011)). Thus, global and weighted sensitivity
analysis can already be performed at computational costs that are only slightly larger than
those of local analysis.

3.5 Conclusions to section 3

We have presented an alternative method for global sensitivity analysis (GSA), which is based
on the arbitrary polynomial chaos expansion (aPC). Compared to existing polynomial-based
GSA methods, it can accommodate for all types of statistical distributions or weighting
functions of the input parameters. This approach is denoted as data-adaptive because the aPC
method can be applied even in situations where precise statistical information (e.g., known
parametric distributions) for the input parameters is not available. If desired, the method can
work directly with raw sampled data sets to represent the uncertainty and possible variational
ranges of input data. The presented methods allow experts to choose freely of technical
constraints the shapes of their statistical assumptions, and they allow to align the complexity
and order of analysis with the reliability and detail level of statistical information on the input
parameters.
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Fig. 3. Convergence of total (left plot) and weighted (right plot) sensitivity indices for the
health risk prediction.

The proposed method incorporates the full range of possible simulation outcomes for the
investigated model parameters as it approximates the model’s full response surface by
multivariate polynomials. The existing polynomial-based method to compute Sobol indices
was extended to the much more general aPC framework. While Sobol’s indices look at
the contributions from individual parameters to the energy (variance) of the model, our
weighted sensitivity indices look at the energy norm of derivatives of the model with
respect to individual parameters. The resulting sensitivity measure shows better convergence
properties than Sobol analysis. It can convey the information of a global sensitivity analysis
at computational costs that are almost low as those of linear analysis.

4. Uncertainty quantification and probabilistic risk assessment

This Section presents a reasonably accurate method for uncertainty quantification and
probabilistic risk-assessment at acceptable computational costs. The lack of information about
distributed properties leads to model uncertainties up to a level where the quantification
of uncertainties becomes the dominant question in application tasks and may override
the influence of secondary physical processes. Often numerical simulation models are
inadequate for stochastic simulation techniques based on brute-force Monte Carlo simulation
and related approaches, because even single deterministic simulations may require parallel
high-performance computing. In the current Section, we suggest and apply a massive
stochastic model reduction technique based on non-intrusive polynomial expansion as
defined in Section 2. As a second focus for this Section, we continue discussion of data
availability and subjectivity raised in the Section 2.

Unfortunately, precise information on distribution shapes for all uncertain input parameters
is very rare in realistic applications, such as underground reservoir simulations, groundwater
modeling, etc. Applied research on real-world systems, like modeling CO2 storage,
groundwater flow, etc., often faces the problem of immensely limited information about the
model parameters involved, e.g. reservoir permeability, porosity, etc. With only limited data
available or even in total absence of data, not even probability density functions representing
the lack of knowledge can be easily inferred in a justified manner. Moreover, even if some
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amount of data is available, the statistical distribution of the corresponding model parameters
can be nontrivial, e.g. bounded, skewed, multi-modal or discontinuous. In any case, the
attempt to construct probability density functions from samples of limited size or from sparse
information introduces additional room for subjectivity into the analysis. Thus, applied tasks
demand the direct handling of arbitrary distribution shapes and sparse data sets without
additional assumptions.

The purpose of the current Section is to work with a highly parsimonic and yet purely
data-driven description of uncertainty, applying the arbitrary polynomial chaos (aPC). It
was shown in Section 2 that statistical moments are the only source of information that is
propagated in all types of polynomial expansion-based stochastic approaches. Thus, exact
probability density functions for uncertain input parameters do not have to be known and do
not even have to exist. This avoids the necessity of assuming subjectively or speculating on
the exact shapes of probability distributions. The new freedom in distribution shapes gained
with aPC opens the path to accessing with PCE even those applications where data samples
of limited size merely allow the inference of a few moments, and one would not be able
to construct a probability density function without introducing subjective assumptions and
hence dangerous sources of bias.

4.1 Evaluation of statistics

In the presented approach, the statistics of the model output are based directly on the model
and the specified moments of input data, see Section 2. If a model output Ω(ω) is expanded in
the normalized polynomial basis Eq. (6), then characteristic statistical quantities of Ω(ω) can
be evaluated directly. For example, the mean and variance of Ω(ω) are given by the following
simple analytical relations:

mean(Ω) = c1, var(Ω) =
N

∑
j=2

c2
j , (15)

where the latter is a result of Parseval’s Theorem (e.g. Siebert (1986)).

Likewise, all moments of Ω up to the order of expansion can be obtained analytically, based
only on expansion coefficients and the used moments of the input parameters. Therefore,
all probability distributions of input parameters that share the same 2d moments will, in
any polynomial chaos expansion of order d, lead to the same moments of model output of
order d. For the same reason, PCE expansions of order d are unaffected by subjective choices
concerning input parameter distributions that only affect moments beyond the order 2d. This
is the case, for example, for maximum entropy PDFs.

Cumulative distribution functions (CDF), probability density functions (PDF) and other
arbitrary statistics of model output can be evaluated via Monte Carlo analysis of the
polynomial response surface that results from the expansion Eq. (1). This is very fast,
because the polynomial surface is much faster to evaluate than the original model equations.
However, the latter approach will ask for full knowledge of the input probability density
function involved, which we try to avoid. If Monte Carlo cannot be avoided, e.g. for
computing exceedance probability in risk analysis, we suggest using maximum entropy
PDFs, or alternatively, a sufficiently large data set (if available) that can be used directly as
Monte-Carlo realizations of input parameters.
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4.2 Problem of data availability

Unfortunately, information is not available for all sources of uncertainty. In such cases,
additional assumptions become necessary. The classical way would be to introduce a
theoretical (parametric) probability distribution, e.g. with an assumed mean and variance.
For example, some expert could introduce a lognormal distribution for the leaky-well
permeability (see details in Section 4.3.1) with parameters defined from the benchmark values
(Class et al., 2009), see Figure 4.
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Fig. 4. Assumed stochastic distribution: theoretical PDF (red line), alternative PDFs (green
lines) with the same first four moments and Maximum Entropy PDF with the same first four
moments (blue line).

Establishing a full theoretical probability density function involves a strong assumption
on all higher moments up to infinite order, and assumes implicit knowledge of the exact
shape, e.g. also of the extreme-value tails. The data-driven approach strongly alleviates this
situation, because it can handle a set of moments directly (e.g. the mean, variance, skewness,
peakedness), without any further assumptions on higher-order moments and without having
to introduce a PDF. In the current Section, we will use this freedom, and obtain only a small
number of required moments directly from a large database or via experts, without asking for
a full PDF.

For evaluating arbitrary complex output statistics without having a sufficiently large raw
data set, we would recommend the Maximum Entropy PDF also shown in Figure 4 to draw
a sufficiently large sample for Monte Carlo analysis of the polynomial. For example, a
second-order expansion requires knowing the first four moments. Figure 4 illustrates possible
distributions of stochastic variables, where the red line represents a theoretical PDF and the
green lines represent a small collection of alternative PDFs with the same first four moments.
The data-driven method does not require a choice between these alternatives, but only uses
common information in the form of the required moments (here: up to order four). Existence
of finite moments (up to a certain required order) is a necessary and sufficient condition for
the proposed framework. Usually, this condition is easily fulfilled for a large spectrum of
practical applications, especially for moderate degrees of expansion.
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4.3 Illustration: risk assessment for carbon dioxide storage

4.3.1 Problem formulation

We consider the benchmark leakage problem of injected CO2 into overlying formations
through a leaky well defined by Class et al. (2009). In the current Section, we present
an illustrative example for a homogenized system, i.e. we consider spatial heterogeneity
only through zonation according to different geological media. However, the technique
presented can be extended to many classes of heterogeneous systems, where spatially
correlated heterogeneous parameter fields can be decomposed into their uncorrelated
principal components using the KL-expansion (e.g. Li & Zhang (2007)), if heterogeneity does
not span over too many scales. CO2 is injected into a deep aquifer, spreads within the aquifer
and, upon reaching a leaky abandoned well, rises to a shallower aquifer. The goal of the
simulation is to quantify the leakage rate which depends on the pressure build-up in the
aquifer due to injection and on the plume evolution. The leaky well is at the center of the
domain and the injection well is 100m away. Both aquifers are 30m thick and the separating
aquitard has a thickness of 100m. The leaky well is modeled as a porous medium with a
higher permeability than the formation. The CO2 leakage rate is defined in the benchmark
study as the total CO2 mass flux integrated over a control plane midway between the top and
bottom aquifer, divided by the injection rate, in percent.

The benchmark problem assumes that fluid properties such as density and viscosity are
constant, all processes are isothermal, CO2 and brine are two separate and immiscible phases,
mutual dissolution is neglected, the pressure conditions at the lateral boundaries are constant
over time, the formation is isotropic rigid and chemically inert, and capillary pressure is
negligible. Within the presented approach, the physical complexity of the problem can be
increased to an arbitrary extent because of the non-intrusive black-box conception of the
probabilistic collocation method (Isukapalli et al., 1998; Li & Zhang, 2007). All relevant
parameters used for the simulation are given in the paper by Oladyshkin, Class, Helmig &
Nowak (2011a). In the current study, the benchmark problem is simulated using DuMuX, a
multi-scale multi-physics toolbox for the simulation of flow and transport processes in porous
media (Flemisch et al., 2007).

To illustrate the proposed methodology, we will consider three parameters uncertain:
reservoir absolute permeability, reservoir porosity and permeability of the leaky well. The
distributions of absolute permeability and porosity were taken from the U.S. National
Petroleum Council Public Database (which includes 1270 reservoirs), see also the work of
Kopp et al. (2009). This choice reflects the situation of site screening, where site-specific data
and data that allow heterogeneity within geological units to be resolved are not yet available.
Instead, we use data sets that represent macroscopic properties of supposedly similar sites as
prior knowledge.

Formally, the investigated uncertain parameters correspond to the components of the vector
ω = {ω1, ω2, ω3} and represent the input parameters of Equation (1). The model output
quantities Ω considered here are pressure and saturation values as a function of space and
time, and the CO2 leakage rate through the leaky well as a function only of time.
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Fig. 5. Estimation of mean value (left plot) and standard deviation (right plot) of the CO2

leakage rate: expert opinions (dashed lines) and data-driven approach (solid lines)

4.3.2 Data-driven uncertainty quantification

Similar to GSA in Section 3 the procedure for quantifying uncertainty in CO2 storage can be
divided into three main steps. The first step is to construct the polynomial basis according
to the data considered in Section 4.3.1. The second step is to set up the chaos expansion
and obtain the required coefficients ci for expansion (1) using the non-intrusive probabilistic
collocation method. In the third step, we evaluate mean and variance of output statistics
according to Section 4.1, see Figure 5.

The three steps mentioned above are straightforward and exploit the input data directly, i.e.
in a data-driven manner. Involving additional assumptions on input data is possible, but can
be dangerous and will import more room for subjectivity inti the analysis. To illustrate the
drastic impact of subjectivity that can be introduced into analysis, we performed the following
simple experiment. The sample data (reservoir permeability and porosity) are distributed
to five different and independent experts. The task of each expert consisted in constructing
a theoretical probability density function for each parameter, which in their opinion would
describe the statistics of the raw data best. As a common way of data description, all
experts provided two-parametrical distributions for each input parameter (permeability and
porosity). All experts proposed very different assumptions and techniques to match the
permeability and porosity distributions. The responses of all experts were collected and used
as input for modeling the benchmark problem defined in Sections 4.3.1. The results of this
experiment are illustrated in Figure 5 using second-order polynomial chaos expansion. It
shows the resulting mean value (left plot) and standard deviation (right plot) of the CO2

leakage rate over time. Here, dashed lines correspond to the results based on subjective expert
opinions, and solid lines correspond to the results from our purely data-driven approach.
All test cases presented in Figure 5 were performed under the same conditions in all other
aspects. The differences in predicting leakage rates based on the different experts are a
consequence of their different interpretations and opinions on how to treat the data. This
example clearly demonstrates that the room for subjectivity (when assigning theoretical
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stochastic distributions to real data and thus modifying their higher-order moments) can lead
to significant differences in the predicted values.

The data-driven polynomial chaos expansion proposed here for stochastic analysis is based
directly on the moments of sampled data without intermediate steps of data re-interpretation.
This avoids the subjectivity usually introduced when choosing among a small limited number
of theoretical distributions to represent a natural phenomenon, and so avoids the problem
illustrated in Figure 5. Complex models often exhibit stronger non-linearity, which can
amplify the impact of subjectivity especially for assumptions on extreme value tails and
higher-order moments. Subjectivity within data interpretation can cause the same order of
magnitude in uncertainty or error as numerical, conceptual and stochastic approximation
error, see details in the paper by Oladyshkin, Class, Helmig & Nowak (2011a).

4.3.3 Efficient probabilistic risk assessment

The data-driven polynomial chaos expansion provides a simple but powerful tool for
stochastic modeling and, in this case study, for the probabilistic risk assessment of CO2

storage. The most integrative characteristic of the overall benchmark problem is the
total leakage of CO2. To compare a quantitative characteristic that is most important
in probabilistic risk assessment, we computed the cumulative probability function of the
CO2 leakage rate after 30 days (Figure 6). The cumulative density function represents
the probability that the CO2 leakage is less than or equal to a particular value. In the
current work, we also apply the conventional PCE approach for direct comparison with
the data-driven approach. The principal difference lies in constructing the polynomial
basis. The conventional approach is based on Hermite polynomials, which are optimal for
Gaussian random variables. Because the random variables ω are not distributed Gaussian in
compliance with the Hermite polynomial basis, an additional conversion is required. A large
number of methods are based on transformations of the model variables ωPh from physical
space to corresponding normal variables ωN via Gaussian anamorphosis (Wackernagel, 1998).
This would implicitly define an exact PDF, which once again is an unjustifiably strong
assumption. In contrast, the data-driven approach is based directly on the considered
moments of the distributions or raw data of the uncertain input variables ω in physical
space. The left plot in Figure 6 corresponds to the conventional approach, i.e. involving
Gaussian anamorphosis and Hermite polynomials. The right plot in Figure 6 corresponds to
the data-driven approach without additional transformation. The convergence of both types
of chaos expansions (dashed lines) was validated by traditional Monte Carlo simulations
(solid lines) with 1270 realizations, where we sampled directly from the available data sets.
We repeated the comparison study for different degrees of the chaos expansion, such as
first order (4 evaluations), second order (10 evaluations), third order (20 evaluations) and
fourth order (35 evaluations). Figure 6 demonstrates that the data-driven approach provides
fast convergence. Even small degrees of the data-driven expansion (even the linear one in
our specific case study) ensure adequate representation of the stochastic processes in the
considered multiphase flow system. This fact can be very useful for fully resolved and
complex real-world application challenges, where computational costs are very high even for
a single model evaluation.

Convergence with the conventional approach (here: based on Hermite polynomials) strongly
depends on the non-linearity of the required transformation from ωPh to ωN (Oladyshkin &
Nowak, 2011). There are two sources of slow convergence (or errors) for chaos expansions
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based on non-data-driven polynomial bases. First, the transformation from physical space to
normal space introduces additional non-linear behavior into the overall problem, which will
require a higher order of expansion to obtain comparable accuracy. Second, for non-intrusive
methods that rely on numerical integration to obtain the coefficients ci, the accuracy of
numerical integration strongly depends on the choice of integration or collocation points.
For example, in Gauss-Hermite integration (Abramowitz & Stegun, 1965), the polynomial
basis of degree d defines the positions of integration points by the roots of the polynomial of
degree d + 1. These integration points are optimal only if the weighting function (here: the
probability measure) and the polynomial basis are in direct correspondence. Any non-linear
transformation from ωPh to ωN destroys this direct relation. Thus, using a non-data-driven
polynomial basis leads to a non-optimal placement of integration points, which causes a
reduced accuracy of the integration (see Oladyshkin & Nowak (2011)). As a consequence,
in comparison with the classical PCE, the same order of precision can be achieved with a
smaller degree of expansion.

4.4 Conclusions to section 4

In this Section, we presented a data-driven approach for uncertainty quantification and
risk assessment, based on polynomial chaos expansion (PCE). The data-driven approach
provides a response surface based on a global orthonormal polynomial basis for arbitrary
distributions. Thus, the data-driven approach provides freedom for modeling even physical
systems with unknown probability distribution functions, when only data sets of very
limited size or only little prior knowledge is available. It offers a new approach to
defining parameter uncertainty in stochastic analysis that avoids the subjectivity of assigning
theoretical probability distributions. In a small fictitious example, we asked independent
experts to select and fit parametric distributions to two raw data sets. The example
demonstrated that subjectivity in data interpretation can easily lead to prediction bias.
Modeling is a chain of many tasks. Like any chain, it is only as strong as its weakest link.
Modeling results indicate clearly that the statistical treatment of input data is part of the chain,
and that the subjectivity in assuming theoretical curves can weaken that link immensely.
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Fig. 6. Cumulative distribution function of CO2 leakage rate after 30 days: conventional
approach (left plot) and data-driven (right plot)
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The data-driven stochastic approach was validated on the basis of Monte Carlo simulation
using a common 3D benchmark problem. The proposed approach yields a significant
computational speed-up compared with Monte Carlo, and provides faster convergence
than conventional polynomial chaos expansions. Even for small degrees of expansion, the
data-driven expansion can be very accurate, which can save a lot of computational power for
probabilistic risk analysis.

Data-driven polynomial chaos expansion is based directly on raw data or other arbitrary
sources of information without auxiliary assumptions. This increases the efficiency of chaos
expansion and minimizes subjectivity, providing valuable support for risk-informed decision
making as well as for robust design and control, allowing a better assessment and reduction
of risk.

5. Robust design under uncertainty

The task of finding optimal system design while accounting for uncertainty leads to robust
designs. In specific, risk can be controlled to stay below a given risk acceptance level,
if robust design is performed under corresponding constraints. Obviously, the system
performance and failure probability depends on uncertain parameters, but also depends on
design variables. Evidently, the decision making will depend on the interplay between the
response to design parameters, system uncertainty and, finally, the probability of failure or
some statistical expectation of benefit. We propose to combine the model response to all
design variables and uncertain parameters into a single approach based on an integrative
(joint) response surface (obtained via PCE), which allows to reflect the non-linear dependence
of the original model on all these parameters. This integrates the design task into the
reduced stochastic model, allowing us to find robust designs with controlled risks at low
computational costs. For example, designing system behaviors for maximum load at a
guaranteed specific safety level can be achieved by quick Monte-Carlo methods on the
resulting polynomials.

5.1 Integrative response surface

Fig. 7. Integrative response surface
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Stochastic response surface methods (Isukapalli et al., 1998) deal with the characterization of
uncertainties in systems describing the dependence of model output on the uncertain input
parameters. Usually in many applied tasks, the model parameters can be classified in two
classes: design or control variables that can be chosen by the operator of a system, and
uncertain parameters that describe our (incomplete) knowledge of the system properties.
On the other hand, the system’s performance and failure probability will also depend on
design parameters. Evidently, the decision-making for design parameters will depend on
the interplay between the response to design parameters, system uncertainty and, finally, the
probability of failure. In terms of system response, sensitivity and expansion, this distinction
is artificial. Therefore, we drop the distinction between uncertain and design parameters.
Instead, we project the model response to all design and uncertain parameters onto a single
integrative model response surface. It is a multidimensional surface and contains the integral
information about the system behavior under all possible conditions at all points in space and
time. Thus, the notion of stochastic response surfaces introduced by Isukapalli et al. (1998) is
expanded to integrative response surfaces forming an effective basis for robust design under
uncertainty.

We investigate the influence of uncertain and design parameters ω on the model output
Ω (integrative response surface approach). This means that the considered model has a
multivariable input ω for the expansion Eq. (1):

ω1, ..., ωNU
, ωNU+1, ...ωNU+ND

(16)

where NU is the number of uncertain parameters and ND is the number of design parameters.
The total number of input parameters is N = NU + ND.

Of course design parameters do not have probabilistic distributions, but suitable weighting
functions for such parameters can be described by user-defined feasibility functions that select
the feasible range or preferences of the designing engineer concerning the values of design
parameters. Feasibility functions provide a freedom for scenario analysis and can be used as
an entry point for monetary punishment terms.

5.2 Illustration: robust design for carbon dioxide storage

5.2.1 Problem formulation

We again consider the problem of CO2 leakage (Class et al., 2009) presented in Section 4.3. In
the current Section we will consider the design task of finding an optimal injection regime.
As in the Section 4.3 we consider three uncertain parameters: reservoir absolute permeability,
reservoir porosity and permeability of the leaky well. For the current case study we also
included two design parameters for describing the injection strategy: the CO2 injection rate
(fluctuating around 8.87 kg/s) and the size of the screening interval (up to 30m), see details
in the paper by Oladyshkin, Class, Helmig & Nowak (2011b). The choice of the design
parameters in this study is only exemplary and serves to demonstrate how engineering
decision-making can be supported by the approach presented here. Both the injection rate
and the screening interval directly affect the ratio of forces in the reservoir during the injection.
The choice of feasibility functions is arbitrary, and modelers have full freedom to introduce
feasibility functions and to weight them according to their personal experience or preferences.
For example, we chose a beta distribution for the size of the screening interval with lower
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and upper bounds of z=0[m] and z=30[m], respectively, reflecting the physical bounds of the
reservoir.

5.2.2 Design under uncertainty vs. conventional design

The greatest challenge to modeling consists of finding a healthy and reasonable compromise
between an accurate system representation and computational efforts. Unfortunately,
neglecting uncertainty in design tasks can be a strong simplification for modeling, and the
consequences can be stronger than when neglecting several physical phenomena.

Fig. 8. Influence of design parameters on prediction of CO2 leakage rate after 1000 days: top
surface (robust design) - expected CO2 leakage rate (average over uncertain parameters);
bottom surface (conventional design) - CO2 leakage rate evaluated deterministically with
expected values of parameters

Figure 8 demonstrates how the injection rate and screening interval influence the leakage
rate of CO2. An important advantage of the integrative response surface approach is that
parameter uncertainty is easily included in such predictions. The top surface in Figure 8 is the
CO2 leakage rate expected after 100 days as a function of the design parameters, averaged over
the uncertain parameters (robust design). The bottom surface in Figure 8 is the CO2 leakage
rate using the expected values of the uncertain parameters, i.e. as in deterministic simulations
(conventional design). It is easy to see that the impact can be extremely important for
non-linear systems (here, a factor of about two), especially in long-term simulations. Instead
of looking at mean values, robust design can also look at failure probability (see below).
Thus, designs hat admit uncertainty are much more robust than design under deterministic
assumptions.

5.2.3 Robust design of failure probability

The integrative response surface approach provides a constructive solution to the problem
of robust design under uncertainty and provides valuable support for risk-informed decision
making.

In a similar fashion as in the previous Section 5.2.2, the dependence of the leakage probability
or any other statistical characteristics on design parameters can be evaluated, so that the
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Fig. 9. Choice of design parameters based on caprock pressure after 1000 days: critical
pressure 330 bar at a significance level of 5 %

injection regime can be chosen according to a maximum allowable failure probability. Figure
9 illustrates the choice of design parameters based on the caprock pressure after 1000 days. In
this test case, a critical caprock pressure equal to 330 bar was chosen at a significance level of
5%, i.e. the maximal acceptable probability of failure is set to 0.05 (solid black line on surface).
Figure 9 demonstrates acceptable strategies of injection where the caprock pressure does not
exceed the limit of 330 bar, which corresponds to an injection-induced pressure build-up of
about 40 bar.

5.3 Conclusions to section 5

This Section explores a massive stochastic model reduction via polynomial chaos expansion
for robust design. This approach offers fast evaluation for statistical quantities and their
dependence on design or control parameters. In particular, we map the response of a model
to changes in all the design parameters and uncertain parameters onto one single integrative
response surface. Based on this integrative concept, the design task explicitly includes
uncertainty, which leads to robust designs with minimum failure probability.

We demonstrated that neglecting parametric uncertainty in design can be a strong
simplification for modeling. Due to the non-linearity of processes, including uncertainty can
lead to a systematic and significant shift of the predicted values, affecting both risk estimates
and the design of injection scenarios. Thus, design under uncertainty, that openly admits
uncertainty and seeks for roust solutions is much reliable in comparison to conventional
design.
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