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1. Introduction 

Losses in agricultural production due to pests and diseases have been estimated at 37% of 
total production worldwide, with 13% due to insect pests (Gatehouse, 1998). Over the last 
decades, the use of chemical compounds, such as pesticides has been rapidly increased. 
Thus, the harmful effects of insecticides on non target organisms and environment are well 
documented in order to limit their use. This fact justifies the necessity for research and 
development of alternative approach to balance agricultural, environmental and health 
issues, in crop protection. The new alternative to chemical compound was the use of 
bacteria, Bacillus thuringiensis (Berliner) (Bt) and several strains of this bacteria were 
introduced as biopesticide to a wide range of insect pests. In recent years, due to increasing 
resistance of some insect pests to Bt, new approaches including the use of entomotoxic 
proteins has been proposed for the insect pest control (Aronson, 1994; Ferre and Rie, 2002; 
Janmaat and Myers, 2003).  

To date, there are many proteins with insecticidal properties that have been identified. These 
are lectins, ribosome-inactivating proteins, protease inhibitors, α-amylase inhibitors, arcelin, 
canatoxin-like protein, ureases and chitinases. Among them, lectins, ribosome-inactivating 
proteins, α-amylase inhibitors and protease inhibitors, have shown greater potential effects on 
biological parameters to a wide range of important insect pests and for exploitation in 
transgenic-based pest control strategies (Carlini et al., 2002; Vasconcelos et al., 2004). Other 
classes of plant secondary compounds which have been implicated in protection against insect 
attack include the steroids, terpenoids, glucosinolates, cyanogenic glycosides, rotenoids, 
flavanoids, phenolics, saponins and nonprotein amino acids (Gatehouse, 1991). Production of 
some of these compounds imposes a demonstrable metabolic cost on the plants, indicated by a 
reduced fitness in the absence of predation; this suggests that their production in the plant is a 
selective response to insect feeding (Baldwin, 1990).  

Therefore, the new efficient strategy to control insect pest has been based on toxic proteins 
such as lectins. Thus, the focus of the current chapter is to introduce and highlight 
insecticidal activity of some important lectins from plants and especially fungal lectins. 
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2. General role and behavior of lectins 

They are one of the most important secondary metabolites in plants which are used as a 
defense tool against pathogens which attack plants. According to Peumans & Van Damme 
(1995) definition “Lectins are a class of proteins of non-immune origin that possess at least 
one non-catalytic domain that specifically and reversibly bind to mono-or oligosaccharides”. 
They are similar to antibodies in their ability to agglutinate red blood cells; however lectnis 
are not the product of immune system. They may bind to a soluble carbohydrate or to a 
carbohydrate moiety that is a part of a glycoprotein or glycolipid. These glycoproteins or 
glycolipid are multivalent and possess more than one sugar binding site (Lis & Sharon, 1998, 
Rudiger et al., 2001; Van Damme et al., 1998; Goldstein and Poretz, 1986). “Based on the 
overall domain architecture of plant lectins, four major groups can be distinguished: 
merolectins, hololectins, chimerolectins and superlectins” (Van Damme et al., 1998). 

They were first discovered more than 100 years ago by Stillmark (1888) and they are 
extensively distributed in nature and several hundred of these molecules have been isolated 
from different organisms (Peumans & Van Damme, 1995; Van Dam et al., 1998). They 
encompass different members that are diverse in their sequences, structures, binding site 
architectures, carbohydrate affinities and specificities as well as their larger biological roles 
and potential applications (Peumans & Van Damme, 1995; Van Dam et al., 1998; Chandra et 
al., 2006). Different roles and functions have been ascribed to lectins. The principal function 
of lectins are to act as recognition molecules within the immune system, storage proteins, 
cell surface adhesion and they have been implicated in defence mechanisms of plants 
against invading pathogens and pests (Peumans & Van Damme, 1995; Van Dam et al., 1998; 
Rudiger & Gabius, 2001; Trigueros et al., 2003).  

3. Principle of entomotoxic lectins 

Various lectins from different sources have already been found to be toxic towards 
important members of insect orders, including Lepidoptera (Czapla & Lang, 1990), 
Coleoptera (Gatehouse et al., 1984; Czapla & Lang, 1990) and Homoptera (Powell et al., 
1993; Sauvion et al., 1996). The harmful effects of lectins on biological parameters of insects 
are larval weight decrease, mortality, feeding inhibition, delays in total developmental 
duration, adult emergence and fecundity on the first and second generation (Powell et al., 
1993; Habibi et al., 1993). Also insecticidal activity of some lectins against many important 
pest insects has been well documented showing their ability to be used as bio-pesticides 
(Gatehouse et al., 1995; Powell, 2001; Carlini & Grossi-de-Sa´, 2002) (Table 1). Currently,  the 
promising methods for plant resistance against insects attack is exploiting the potential 
toxicity of plant and the other organisms including  fungal lectins towards some of the 
economically insect pests (Foissac et al., 2000; Carlini et al., 2002; Trigueros et al., 2003; 
Sauvion et al., 2004, karimi et al., 2007). Therefore our more attention on the ability of lectis 
as natural product of plants will be one of the good alternatives to chemical compound to 
control of insect pests.  

4. Plant lectins 

Lectins are a group of proteins that are found in plants and they discourage predation by 
being harmful to various types of insects and animals that eat plants. During the last two  
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Lectin (plant source) Insect Host Reference 
Mannose specific 
ASA (Allium sativum) 

 
Laodelpha striatellus (rice 
small brown planthopper); 
Nilaparvata lugens (rice 
brown planthopper); 
Myzus persicae (peachpotato 
aphid) 
Dysdercus cingulatus (red 
cotton bug); D. koenigii (red 
cotton bug) 

 
Rice  
 
 
 
Peach, potato 
 
Cotton, okra, maize, 
pearl 
 

  
Powell et al., 1995 
 
 
 
Sauvion et al., 1996 
 
Roy et al., 2002 

ASA I, II D. cingulatus; D. koenigii Cotton, okra, maize, 
millet 

Roy et al., 2002 

ASAL (Allium sativum--
leaf) 

D. cingulatus; Lipaphis erysimi 
(mustard aphid) 

Cotton, okra, maize, 
pearl  

Bandyopadhyay et 
al., 
2001 

CEA (Colocasia 
esculenta)  

D. cingulatus; D. Koenigii Cotton, okra, maize, 
pearl 

Roy et al., 2002 

DEA (Differenbachia 
sequina)  

D. Cingulatus; D. Koenigii Cotton, okra, maize, 
pearl 

Roy et al., 2002 

 
GNA (Galanthus nivalis)
 

Callosobruchus maculatus 
(bruchid weevil) 
Acyrthosiphon pisum (pea 
aphid)  
Antitrogus sanguineus 
(sugarcane whitegrub) 
Aulacorthum solani 
(glasshouse potato aphid) 
M. persiacae  
 
Lacanobia oleracea (tomato 
moth)  
 
 
Maruca vitrata (legume pod-
bore) 
 
Tarophagous proserpina 
(taro planthopper) 
L. striatellus  
 
N. lugens  

Cowpea 
 
Pea 
Sugarcane  
 
Potato  
 
Peach, potato  
 
Tomato  
 
 
Cowpea  
 
Taro  
 
Rice 
 
Rice 
 

Gatehouse et al., 
1991 
 
Rahbe´ et al., 1995  
Allsopp and 
McGhie, 
1996 
 Down et al., 1996  
 
Sauvion et al., 1996  
 
Fitches and 
Gatehouse, 
1998; Fitches et al., 
2001a  
 
Machuka et al., 1999 
 
Powell, 2001 
 
Loc et al., 2002  
 
Powell et al., 995,  
1998; Loc et al., 2002 

KPA (Koelreuteria  
paniculata)  

Anagasta kuehniella
(Mediterranean flour moth);  
C. maculatus 

Beans, grains, fruits, 
nuts 

Macedo et al., 2003 
 

LOA (Listera ovata) M. vitrata 
 

Cowpea Machuka et al., 1999 

NPA (Narcissus 
pseudonarcissus)  

N. lugens, 
M. persiacae  
 

Rice 
Peach, potato 

Powell et al., 1995 
Sauvion et al., 1996 
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Mannose/glucose 
specific 
ConA(Canavalia 
ensiformis) 

 
A. pisum 
 
A. pisum 
Aphis gossypii (cotton and 
melon aphid) 
Aulacorthum solani (glasshouse
and potato aphid) 
Macrosiphum albifrons 
(lupin aphid) 
Macrosiphum euphorbiae 
(potato aphid) 
 

 
Pea 
 
Pea 
Cotton, mellon 
 
Potato  
 
Lupin  
 
Apple, bean, broccoli, 
papaya  
 

 
Rahbe´ and Febvay, 
1993 
 
Rahbe´ et al., 1995 
Rahbe´ et al., 1995 
 
Rahbe´ et al., 1995  
 
Rahbe´ et al., 1995 
 
Rahbe´ et al., 1995  
 
 

 
 
 
 

 
M. persiacae 
 
 
L. oleracea 
 
 
T. proserpina 

 
Peach, potato  
 
 
Tomato  
 
 
Taro 

 
Rahbe´ et al., 1995; 
Sauvion et al., 1996; 
Gatehouse et al., 
1999 
Fitches and 
Gatehouse, 
1998; Gatehouse et al., 
1999; Fitches et 
al.,2001a 
Powell et al., 2001 

LCA (Lens culinaris)  A. pisum Pea Rahbe´ et al., 1995 
PSA (Pisum sativum)  
 

A. pisum 
Hypera postica (clover leaf weevil) 

Pea 
Alfafa, lucerne 

Rahbe´ et al., 1995  
Elden, 2000 

N-acetyl-D-
glucosamine specific 
ACA (Amaranthus 
caudatus)  

 
A. pisum 

 
Pea 

 
Rahbe´ et al., 1995 

BSA (Bandeiraea 
simplicifolia)  
 

Diabrotica undecimpunctata
(Southern corn rootworm);  
Ostrinia nubilaris 
(European corn borer) 

Corn Czapla and Lang, 
1990 
 

BSAII  A. pisum Pea Rahbe´ et al., 1995 
GSII (Griffonia 
simplicifolia)  
 

C. maculatus  Cowpea Zhu et al., 1996; 
Zhu-Salzman et al., 
1998; Zhu-Salzman 
and Salzman, 2001 

PAA (Phytolacca 
americana)  

D. undecimpunctata; O. 
nubilaris 

Corn Czapla and Lang, 
1990 

TEL (Talisia esculenta) 
 

C. maculatus; Zabrotes
subfasciatus 
(Mexican dry bean weevil) 

Beans Macedo et al., 2002 
 

WGA (Triticum 
aestivum)  

D. undecimpunctata; O. 
nubilaris 
Antitrogus sanguineus ( 
sugarcane whitegrub)  
H. postica  
L. erysimi  

Corn  
Sugarcane   
 
Alfafa 
Mustard 
 

Czapla and Lang, 
1990  
Allsopp and 
McGhie, 1996  
Elden, 2000  
Kanrar et al., 2002 
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Galactose specific 
AHA (Artocarpus 
hirsuta) 

 
Tribolium castaneum (red flour 
beetle) 

 
Large number of 
grains 

 
Gurjar et al., 2000 

AIA (Artocarpus 
integrifolia)  

D. undecimpunctata; O. 
nubilaris 

Corn Czapla and Lang, 
1990 

GHA (Glechoma 
hederacea - leaf)  
 

Leptinotorsa decemlineata
(colorado 
potato beetle) 

Potato Wang et al., 2003 
 

RCA120 (Ricinus 
communis)  

D. undecimpunctata; O. 
nubilaris 

Corn Czapla and Lang, 
1990 

YBA (Sphenostylis 
stenocarpa)  
 

Clavigralla tomentosicollis
(coreid bug) 
C. maculatus; M. vitrata  

Vigna spp  
 
Cowpea 

Okeola and 
Machuka, 
2001 
Machuka et al., 2000 

N-acetyl-D-
galactosamine specific 
ACA (Amaranthus 
caudatus)  

 
A. pisum 

 
Pea 

 
Rahbe´ et al., 1995 

BFA (Brassica 
fructiculosa)  
 

Brevicoryne brassicae (cabbage 
aphid) 

Broccoli, 
Brusselessprous, 
cauliflower, head 
cabbage 

Cole, 1994 
 

BPA (Bauhinia purpurea) D. undecimpunctata; O. 
nubilaris 

Corn Czapla and Lang, 
1990 

CFA (Codium fragile)  D. undecimpunctata; O. 
nubilaris 

Corn Czapla and Lang, 
1990 

EHA (Eranthis hyemalis) D. undecimpunctata  Corn Kumar et al., 1993 
MPA (Maclura pomifera) D. undecimpunctata; O. 

nubilaris 
Corn Czapla and Lang, 

1990 
PTA (Psophocarpus 
tetragonolobus)  

C. maculatus 
N. lugens 

Cowpea 
Rice  

Gatehouse et al., 
1991 
Powell, 2001 

SNA-II (Sambucus 
nigra) 

A. pisum Pea Rahbe´ et al., 1995 

VVA  D. undecimpunctata; O. 
nubilaris  

Corn Czapla and Lang, 
1990 

Complexb 
PHA (Phaseolus 
vulgaris)  

 
L. hesperus (Western tarnished 
plant bug)  

 
Cotton, alfafa, 
legumes 

 
Habibi et al., 2000 

a Sugar specificity is represented by the best monosaccharide inhibitor. 
b Complex carbohydrate structure bearing terminal galactose residues (Goldstein and Poretz, 1986). 

Table 1. Plant lectins with oral toxicity to insects (Adapted from Vasconcelos et al., 2004) 

decades, important progress has been made in the study of the activity of plant lectins 
against pathogens, nematodes and especially insect pests (Ma et al., 2010; Peumans and Van 
Damme, 1995; Vasconcelos and Oliveira, 2004). The best-characterized family of plants 
lectins are Fabaceae, Poaceae and Solanaceae; especially some of leguminous seeds have a 
remarkable amount of lectin. Different food crops such as tomato, wheat, rice, potato, 
soybean and bean contain lectins. The great majority of the plant lectins are present in seed 
cotyledons but a lot of them are also found in the protein bodies such as roots, leaf, stems, 
rhizomes, bark, bulbs, tubers, corms, fruits, flowers, ovaries, phloem sap, latex, nodule and 
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even in nectar (Van Damme et al., 1998). Plant lectins function as storage proteins and they 
have been implicated in defence mechanisms against phytophagus insects (Powell et al., 
1993; Peumans & Van Damme, 1995; Van Damme et al., 1998; Rudiger & Gabius, 2001; 
Gatehouse et al., 1995; Powell, 2001; Carlini & Grossi-de-Sa´, 2002; karimi et al., 2010). 
Various plants lectins have already been found to be toxic towards important members of 
insect orders, including Coleoptera (Gatehouse et al., 1984), Lepidoptera (Czapla & Lang, 
1990) and Homoptera (Powell et al., 1993; Sauvion et al., 1996) (Table 1). The first lectin to be 
purified on a large scale and was available on a commercial basis was Concanavalin A; 
which is now the most well- known lectin to control of some pest insects (Fig. 1A). Now a 
wide range of plant lectins have been successfully examined for their negative effects on the 
life parameters of some economically pest insects (Gatehouse et al., 1995; Powell, 2001; 
Foissac et al., 2000; Couty et al., 2001b; Sauvion et al., 2004; karimi et al., 2007; Shahidi-
Noghabi et al., 2008, 2009) (Table 1).  

   
Fig. 1. (A). Canavalia ensiformis, or Jack-bean (Common name), is a legume plant in the 
Fabaceae family of which is used for animal fodder and human nutrition, especially in Brazil. 
It is also the source of concanavalin A lectin. (B) Galanthus nivalis or snowdrop (Common 
name), is the best-known and most widespread representative plant in the Amaryllidaceae 
family. (Figures from Wikipedia, (A) Canavalia  ensiformis, (B) Galanthus nivalis) 

Three mannose-binding specific lectins include Galanthus nivalis (GNA), Narcissus 
pseudonarcissus (NPA) and Allium sativum(ASA) were assayed in artificial diets for their toxic 
and growth-inhibitory effects on nymphal development of the peach-potato aphid, Myzus 
persicae. Results showed that the snowdrop lectin (GNA) was the most toxic, with an 
induced nymphal mortality of 42% at 1500 μg/ml and an median insect toxicity value IC50 
(50% growth inhibition) of 630 μg/ml (Fig. 1B).  But daffodil lectin (NPA) and a garlic lectin 
(ASA) induced no significant mortality in the range of 10–1500 μg/ml (Sauvion et al., 1996). 

A B
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Obtained results from the effects of Canavalia ensiformis agglutinin (Con A) and Galantus 
nivalis agglutinin (GNA) on the developmental period and fecundity of the peach-potato 
aphid, Myzus persicae showed that adult survival was not significantly altered, but both 
lectins adversely affected total fecundity and developmental period (Sauvion et al., 1996). 
Later, the same assay was performed to evaluate the efficiency of Con A in pea aphid, 
Acyrthosiphon pisum. Results showed that Con A has highly significant toxic effects on A. 
pisum. It also induced remarkable effects on the structure of midgut epithelial cells of this 
aphid (Sauvion et al., 2004). These results clearly show that plants lectins play a crucial role 
in plant resistance against insect pests.  

5. Transgenic plants with insecticidal lectin gene 

Among plant lectins presented in table (1) as entomotoxic lectins some of which especially  
GNA, WGA, PSA, PHA and ConA were more successfully expressed in a range of crops such 
as Tomato, Rice, Sugarcane, Tobacco, Maize, Mustard and Arabidopsis (Table 1) and they have 
been shown to exert deleterious effects on a range of important pest insects (Maddock et al., 
1991; Kanrar et al., 2002; Boulter et al., 1990c; Bell et al., 1999, 2001; Down et al., 2001 ; Maqbool 
et al., 2001; Sun et al., 2002; Wu et al., 2002 ; Setamou et al., 2002;  Down et al., 1996; Fitches et 
al., 1997, 2001; Rao et al., 1998; Foissac et al., 2000). Currently, the two major groups of plant 
derived genes used to confer insect resistance on crops are lectins and inhibitors of digestive 
enzymes (proteases and amylase inhibitors). Lectins have been introduced into crops 
genomes and are now being tested in field conditions (Gatehouse et al., 1993; Hilder et al., 
1987; Hilder et al., 1999; Carlini et al., 2002; Schuler et al., 1998; Ranjeker et al., 2003; Schnepf & 
whitely, 1981; Smith & Boyko, 2006; Christou et al., 2006; Wang, 2006; Zhao, 2006; Ferry, 2006). 
Also, for the first time Jjanhong et al (2003) reported that transgenic tobacco expressing 
Pinellia ternata agglutinin (pta) gene induced enhance level of resistance to M. persicae. 
Additionally, crops have been engineered to express a range of insect-plant resistance (Table 
2), and have been shown to confer enhanced levels of resistance to different order of insect 
pests including lepidopteran (Gatehouse et al., 1997), and homopteran (Down et al., 1996; 
Gatehouse et al., 1996), when expressed in wheat. Transgenic plants technology or genetically 
modified (GM) crops can be a useful tool to produce resistant crops; by introducing novel 
resistance genes into plants thus it provides a sustainable alternative to the control of pest 
insects and pathogens by pesticides (Gatehouse et al., 1997; 1999; Gray et al., 2003). 

On the whole, transgenic plants expressing high levels of lectins exhibited some degree of 
resistance to the target insects. Some of lectins such as GNA, WGA and ConA have been 
succefuly expressed in plants to confer resistence pest insects (Table 2) (Powell et al., 1995; 
Down et al., 1996; Bandyopadhyay et al., 2001). 

6. Fungal lectins with insecticidal activity 

Mushrooms contain various potential interesting proteins, including lectins in their organs 
such as mycelium, spores and fruiting bodies (Wang et al., 1998; 2002; Ng, 2004; Nelson & 
Cox, 2005). For many years, all investigations were only focused on plant lectins with 
insecticidal activity. Even though lectins are found in many kinds of organisms such as 
fungi, but there is little information about their toxicity on phytophagus insects. Therefore, 
at present our knowledge about insecticidal activity of fungal lectins is limited. Due to lack 
of sufficient knowledge, one of the aims of this chapter is to introduce and highlight the 
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fungal lectins with insecticidal activity. Recently, important progress is made in the study of 
the fungal lectins against pathogens, especially pest insects (karimi et al., 2007 and 2008; 
Hamshou et al., 2010; Francis et al., 2011). Many lectins have been derived from different 
fungi and partially isolated and characterized for their effects on mammalian physiology as 
antitumor and anticancer, but there is little information on their role on phytophagous 
insects (Wang et al., 2002; Trigueros et al., 2003, Karimi et al., 2008). 
 

Transformed plant Lectina Target pest Reference 
Maize  WGA Ostrinia nubilaris;Diabrotica 

undecimpunctata 
Maddock et al., 1991 

Mustard (B. juncea)  WGA  Lipaphis erysimi Kanrar et al., 2002 

Arabidopsis thaliana  PHA-E, Lb Lacanobia oleracea Fitches et al., 2001b 

Potato  GNA  Aulacorthum solani Down et al., 1996 

Potato  GNA Myzus persicae Gatehouse et al., 1996; 
Couty et al., 2001b 

Potato  GNA  L. oleracea Fitches et al., 1997; 
Gatehouse et al., 1997 

Potato  GNA  L. oleracea Bell et al., 1999, 2001; 
Down et al., 2001 

Potato  GNA  Aphidius ervi (parasitoid of M. 
persicae) 

Couty et al., 2001b 

Potato  ConA  L. oleracea; M. persicae  Gatehouse et al., 1999 

Rice  GNA  Nilaparvata lugens Rao et al., 1998; Foissac et 
al., 2000; Tinjuangjun et 
al., 2000; Maqbool et al., 
2001; Tang et al., 2001; Loc 
et al., 2002 

Rice  GNA  Nephotettix virescens (green 
leafhopper) 

Foissac et al., 2000 

Rice  GNA  Cnaphalocrocis medinalis (rice
leaffolder); Scirpophaga 
incertulas(yellow stemborer) 

Maqbool et al., 2001 

Rice GNA  Laodelphax striatellus (rice small
brown planthopper) 

Sun et al., 2002; Wu et al., 
2002 

Sugarcane GNA Eoreuma loftini (Mexican rice borer);
Diatraea saccharalis (sugarcane borer) 

Setamou et al., 2002 
 

Sugarcane GNA  Parallorhogas pyralophagus (parasitoid 
of E. loftini) 

Tomov and Bernal, 2003 

Tobacco  PSA  Heliothis virescens (tobacco budworm) Boulter et al. 1990c 

Tobacco  GNA  M. persicae Hilder et al., 1995 

Tobacco  GNA  Helicoverpa zea (cotton bollworm)  Wang and Guo, 1999 

Wheat  GNA  Sitobion avenae (grain aphid)  Stoger et al., 1999 

a: For lectin abbreviations see Table 1.  
c: First demonstration of insect enhanced resistance of transgenic plants expressing a foreign lectin. 

Table 2. Transgenic plants with lectin genes to confer resistance against insects (Adapted 
from Vasconcelos et al., 2004) 

Some lectins from fungi including Xerocomus chrysenteron (XCL), Arthrobotrys oligospora 
(AOL) and Agaricus bisprous (ABL) have been isolated and all are well known for their 
reversible antiproliferative effects. But, only XCL has shown significant effects and exhibited 
a higher insecticidal activity on the some orders of insect pests, such as dipteran (Drosophila 
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melanogaster) and homopteran (Myzus persicae and Acyrthosipon pisum (Trigueros et al., 2003; 
Karimi et al., 2008). Later, effect of this edible wild mushroom (Fig. 1) was evaluated on  
M. persicae aphid by Karimi et al (2008) and obtained results showed that the sub lethal  
dose of XCL (<50 μg/ml) has significant effects on biological parameters (larval weight, 
developmental period and fecundity) of M. persicae in compare with sub lethal dose of Con A 
(<50 μg/ml) on biological parameters of this aphid under laboratory conditions (Abbott, 1925; 
Karimi et al., 2008), (Table 3 and Fig. 3A). 

Recently, the results from insecticidal properties of Sclerotinia sclerotiorum agglutinin (SSA) and 
its interaction with pea aphid, Acyrthosiphon pisum tissues and cells showed that this fungal 
lectin has high mortality on A. pisum with a median insect toxicity value (IC50) of 66 μg/ml. 
Also these results revealed that SSA has significant cell toxicity on A. pisum midgut tract and 
its brush border cells (Hamshou et al., 2010) (Fig. 2). Moreover, a purified lectin from 
Rhizoctonia solani agglutinin (RSA), which exhibits specificity towards N-acetyl/galactosamine, 
was shown to exert deleterious effects on the growth, developmental time, survival and the 
larval weight of the cotton leaf worm, Spodoptera littoralis (Hamshou et al., 2010). 

More recently, another new mannose- specific lectin with insecticidal activity has been 
successfully purified from Penicillum chrysogenum (PeCL). This lectin has high insecticidal 
activity on aphids, especially to M. persicae in comparison with well-known plant lectins, 
ConA. (Francis et al, 2011; karimi et al., 2006, 2007 and 2008), (Table 3 and Fig. 3B). 

Consequently until now, several mushroom lectins including, Xerocomus chrysenteron lectin 
(XCL), Penicillum chrysogenum lectin ((PeCL) and Sclerotinia sclerotium agglutinin (SSA) have 
shown greater potential effects on some important pest insects such as Myzus persicae, 
Acyrthosipon pisum and Spodoptera littoralis compare to well known lectins such as ConA and 
GNA (Trigueros et al., 2003; karimi et al., 2006, 2007, 2008; Hamshou et al., 2010; Francis et 
al., 2011). As a result, it is concluded that fungal lectin will be able to confer enhanced level 
of resistance in plants against their phytophagous insects.  

7. Action mechanism of lectin at the tissue level of insects 

Investigation on the  lectin toxicity at the cellular level in  insects were initiated 24 years ago, 
when Gatehouse et al. (1984) firstly reported the binding of Phaseolus vulgaris lectin (PHA) to 
midgut epithelial cells of the cowpea weevil, Callosobruchus maculatus. In fact, the mode of 
action for each lectin at the tissue level of ingested lectin organisms is depended on presence 
of appropriate carbohydrate moieties on the organ surface and the ability of lectin to bind  
them (Fitches et al., 2001a; 2001b). 

In general, the action mechanism of the lectin at cellular level of ingested lectin by insects 
showed that binding of the lectin to the  midgut tract  causing disruption of the epithelial 
cells including elongation of the striated border microvilli, swelling of the epithelial cells 
into the lumen of the gut lead to complete closure of the lumen, permeability of cell 
membrane to allow the harmful substances penetrations from lumen towards haemolymph 
and impaired nutrient assimilation by cells, allowing absorption of potentially harmful 
substances from lumen into circulatory system, fat bodies, ovarioles and throughout the 
haemolymph (Gatehouse et al., 1984; Powell et al., 1998; Habibi et al., 1998; 2000; Fitches et 
al., 1998; 2001b; Sauvion et al., 2004; Majumder et al., 2005). This information gave further 
support to previous suggestions that the XCL lectins disrupt midgut cells (Francis et al., 
2003; Karimi et al., 2008, 2009).  Lectins are highly specific for binding to oligosaccharides, 
hence if specific carbohydrate is in the surface of tissue it can bind to them and it is believed  
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Fig. 2. Effect of different concentrations of SSA on insect midgut CF-203 cells. Cells were 
incubated for 4 days at 27◦C. (A) Control, (B) Treated cells with 25 mg/ml SSA, (C) SSA 
toxicity towards CF-203 midgut cells. Cell toxicity was measured using an MTT assay after 4 
days of exposure to SSA at various concentrations. Data are presented as mean percentages 
of cell toxicity ± SEM compared to the control, and based on four repeats and the 
experiments were repeated two or three times. Values with a different letter are significantly 
different after a post hoc Tukey Kramer test (p ¼ 0.05) (Figure from Hamshou et al., 2010). 

 

Lectin (fungal source)        Insect     Host Reference 

N-acetyl-D-galactosamine 
specific  

    

XCL(Xerocomus chrysenteron)
 
 
SSA (Sclerotinia  sclerotium) 
 
 
 
RSA (Rhizoctonia solani 
agglutinin)  

 M. persicae, Acyrthosipon 
pisum 
Drosophila melanogaster  
 
Acyrthosipon pisum 
 
 
Spodoptera littoralis                

Peach, potato,  
Pea 
 
 
Pea 
 
 
cotton 

 Trigueros, et al., 
2003 ;            
Karimi et al., 2008 
 
Hamshou et al., 
2010b 
 
 Hamshou et al., 
2010a 

Mannose specific 
PeCL(penicillum 
chrysogenum ) 

 
M. persicae, Acyrthosipon 
pisum  

 
Peach, potato, 
Pea 

  
  Francis  et al., 
2011 

Table 3. Fungal lectins with insecticidal activity (Karimi et al., 2011) 
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Fig. 3. (A) Xercomus chrysenteron fungus naturally growth in forest. It is a small, edible wild 
mushroom in the Boletaceae family and has a cosmopolitan distribution, concentrated in 
cool-temperate to subtropical regions. (B) Penicillums chrysogenum fungus growth in 
medium culture. It can be found on salted food products as well as indoor environments, 
especially in damp or water damaged buildings. This fungus is in the Tricocomaceae family. 
To date is used as anti bacterial disease. (Figures from Wikipedia, (A) Xercomus chrysenteron, 

(B) Penicillums chrysogenum)  

that these cell-surface receptors are responsible for lectin binding. Thus, it could be 
concluded that the action mechanism of various lectins at the cellular levels of insects differs 
between different insect species (Habibi et al., 2000; Fitches et al., 2001a; Sauvion et al., 2004; 
Karimi et al., 2009). Consequently, the action mechanism of the lectin at the cellular level of 
insect are not clearly elucidated yet and the information is scarce.  

8. Indirect effects of lectins on pests control 

In some case lectin have an indirect remarkable effects; such as interaction with virus 
transmission and synergistic effects on the other proteins. 

8.1 Interaction with virus transmission  

In general some of insects such as aphids transmit virus from infected plant to non infected 
plants. Some lectins such as mannose-binding lectins are able to bind to carbohydrate on 
micro-organisms. Circulatory viruses contain numerous N-linked glycosylation sites on 
their surface cells. Many of these sites contain high-mannose glycans which could interact 
with mannose-binding lectin such as ConA (Gray et al., 1999; Brisson and Stern, 2006; 
Hogenhout et al., 2008; Desoignies, 2008; Thielens et al., 2002; Pereira et al., 2008; Naidu et 
al., 2004; Dimitrov, 2004; Garret et al., 1993; Wei, 2007). 

A B
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8.2 Synergistic effects on other proteins  

Sometimes the combinations effects of two or several entomotoxic proteins could be more 
efficient than the application of these proteins individually. For example, the insecticidal 
activity of protease inhibitor and α-amilase inhibitors were significantly increased when 
these inhibitors enzymes incorporated with lectin (Abdeen et al., 2005; Amirhusin et al., 
2004; Murdock & Shade, 2002). Maqbool et al. (2001) reported that rice transgenic plant 
carrying three insecticidal genes including lectin gene (encoding gene GNA), cry1A and cry 
2A, have enhanced levels of resistance to a wide range of different rice pests in comparison 
with non transgenic rice. Therefore, this approach will be one of the supplemented 
advantages to lectin applications in integrated pest management (IPM).   

9. Conclusion 

The aim of the current chapter was to present up to date information regarding effects of 
the lectins especially introducing the fungal lectins as natural agents to control insect 
pests. In recent years due to increasing the harmful effects of chemical compounds on non 
target organisms and our environment, a safe alternative to this approach is inevitable. 
Actually, lectins could be alternatives to chemical compounds for the pests control. 
Results from different investigations were shown that plant lectins as well as fungal 
lectins could be good candidates to be applied in the agriculture by biotechnologist in 
order to control insect pest. 
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