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1. Introduction 

Insects are considered pests if they threaten a resource that is valued by humans, such as 
human health. The protection of a resource from a pest is usually achieved by poisoning the 
pest with a toxic pesticide, but protection can also be achieved by manipulating a behavior of 
the pest. Manipulation is defined as the use of stimuli that either stimulate or inhibit a 
behavior, thereby changing its expression. This definition excludes some areas in which 
changes in pest behavior are advantageous to pest management, notably those resulting from 
the sublethal effects of toxic chemicals or substances that induce a gross change in physiology 
(Gould, 1991) and those that merely consider the pest’s behavior, such as planting a crop out of 
synchronization with the pestilential behavior. Intuitively, one might expect that the 
manipulation of a pestilential behavior (e.g., feeding on the resource) or a behavior closely 
related to the pestilential behavior (e.g., finding the resource) is more likely to be useful for 
pest management than the manipulation of behaviors unrelated to the resource (e.g., mating). 
The attract-annihilate method is by far the most widely used behavioral manipulation for pest 
management. The strategy of this method is simple: attract the pests to a site where as many of 
the pests as possible can be removed from the environment (Lanier, 1990). 

The principle of using a pest’s own communication system as a weapon against it is not 
new, nor is it restricted to the control of fruit pests. A similar idea is at the heart of a number 
of initiatives to control a range of stock pests and to control a range of insects that present a 
risk to human health, either directly or as a result of the agents of disease that they 
transport. Once chemists learned that communication among a variety of organisms 
depends on chemical substances termed pheromones, they isolated, identified and 
synthesized hundreds of pheromones for such practical applications as pest control. 
Pheromones are a class of semiochemicals that insects and other animals release to 
communicate with other individuals of the same species. The key to all of these behavioral 
chemicals is that they leave the body of the first organism, pass through the air (or water) 
and reach the second organism, where they are detected by the receiver. 

In insects, these pheromones are detected by the antennae on the head. The signals can be 
effective in attracting faraway mates and, in some cases, can be persistent, remaining in 
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place and active for days. Long-lasting pheromones allow the marking of territorial 
boundaries or food sources. Other signals are notably short-lived and are intended to 
provide an immediate message, such as a short-term warning of danger or a brief period of 
reproductive readiness.  

Pheromones can be of many different chemical types, which serve different functions. As 
such, pheromones can range from small hydrophobic molecules to water-soluble peptides. 
Pheromones regulate many types of insect behavior. Sex pheromones are produced by one 
sex (usually the female) to attract the other sex for mating. Mass attacks by certain bark 
beetles are coordinated by aggregation pheromones that attract other beetles to the same 
tree. Alarm pheromones are produced by honey bees and aphids to help in colony defense. 
Trail pheromones are produced by ants to help other worker ants find food sources. 

Despite the discovery and characterization of ant trail pheromones over the past few 

decades (El-Sayed, 2010), surprisingly few investigations of these compounds have been 

undertaken for pest management. Research on the potential for using odorants in this way 

has targeted the control of leaf cutting ants and the red imported fire ant (Vander Meer, 

1996), but the current paradigm remains largely confined to improving the performance of 

toxic baits (Rust et al., 2004). New application technologies that deliver pheromones against 

invasive pest ants could help reduce our reliance on the use of insecticides for ant pest 

control in sensitive ecosystems or where insecticides are undesirable. Trail pheromone 

disruption that affects recruitment is an example of a novel tactic for ant pest management. 

A synthetic trail pheromone has been applied in combination with insecticidal bait 

(hereafter ‘bait’) in an attempt to develop a novel strategy for controlling invasive ants in a 

small treatment area. 

Trail pheromones are species-specific chemical compounds that affect insect behavior and 
bioactivity. These pheromones are active (e.g., attractive) in extremely low doses (one 
millionth of an ounce) and are used to bait traps or confuse a mating population of insects. 
Pheromones can play an important role in integrated pest management for structural, 
landscape, agricultural, or forest pest problems. In this chapter, we introduce certain principal 
aspects of trail pheromones, including source, optimum dose, longevity, and specificity. We 
also discuss synthetic trail pheromones and the possibility of applying them in pest control. 

2. Pheromones 

Pheromones were originally defined as ‘substances secreted to the outside by an individual 
and received by a second individual of the same species in which they release a specific 
reaction, for instance, a definite behavior [releaser pheromone] or developmental process 
[primer pheromone]. The word pheromone comes from the Greek pherein, meaning to carry 
or transfer, and hormon, meaning to excite or stimulate. The action of pheromones between 
individuals is contrasted with the action of hormones as internal signals within an 
individual organism. 

Pheromones are often divided by function, such as sex pheromones, aggregation 
pheromones and trail pheromones.  

The main methods for utilizing an understanding of pheromones to control pests are 

monitoring, mating disruption, ‘lure and kill’ or mass trapping, and other manipulations 
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of pest behavior. Some of these techniques have been applied to control other animal 

pests, including vertebrate herbivores, such as deer. A major strength of pheromones is 

their effectiveness as part of integrated pest management (IPM) schemes because of their 

compatibility with biological control agents and other beneficial invertebrates, such as 

bees and spiders. Pheromones fit neatly into the virtuous spiral, for example, in 

greenhouse IPM, where the use of one biological control agent, such as a predatory spider 

mite, encourages (or requires) moving away from conventional pesticides for other pests 

(Lenteren & Woets 1988). 

2.1 Sex pheromones 

Sex pheromones have been identified for a large number of insect pests, particularly 
Lepidoptera. These chemicals have a number of useful attributes for the attract-annihilate 
method, including specificity, eliciting long-distance responses and longevity in the field. 
However, because most sex pheromones are produced by females and elicit responses from 
males, they have been used primarily in the mating disruption method, or for monitoring, 
rather than for the attract-annihilate method. The removal of adult males, unless at a very high 
proportion of the population, is unlikely to have a large impact on the size of subsequent 
generations compared with the removal of females (Lanier, 1990). Sex pheromones have also 
been used as attractants to facilitate contact with and the dispersal of pathogens in pest 
populations (Pell et al., 1993). Pheromones have been identified for many insect pests. The 
website ‘Pherolist’, for example, cites more than 670 genera from nearly 50 families of 
Lepidoptera in which female sex pheromones have been identified (Arn et al., 1995). 

2.2 Aggregation pheromones 

Aggregation pheromones lead to the formation of animal groups near the pheromone 

source, either by attracting animals from a distance or by stopping (‘arresting’) passing 

conspecifics (Wyatt, 2003). In contrast to sex pheromones (which attract only the opposite 

sex), aggregation pheromones, by definition, attract both sexes (and/or, possibly, larvae).. 

The pheromones’ ability to attract females makes them well suited for the attract-

annihilate method (Lanier, 1990). Aggregation pheromones have been used successfully 

for controlling various Coleoptera, including the cotton boll weevil Anthonomus grandis in 

the United States (Hardee, 1982) and bark beetles in North America and Europe (Lanier, 

1990). Innocenzi et al. (2001) characterized a male-produced aggregation pheromone of 

An. rubi as a 1:4:1 blend of grandlure I, grandlure II and lavandulol (note: ‘grandlure’ is 

the name given to four components in the aggregation pheromone lure of the cotton boll 

weevil, An. grandis Boh.). A blend of the synthetic compounds was shown to attract both 

male and female beetles. 

2.3 Alarm pheromones 

Alarm pheromones have been identified most frequently from social insects (Hymenoptera 

and termites) and aphids, which usually occur in aggregations. In many cases, these 

pheromones consist of several components. The function of this type of pheromone is to 

raise an alert in conspecifics, to raise a defense response, and/or to initiate avoidance 

(Rechcigl & Rechcigl, 1998). Weston et al. (1997) showed a dose response of attraction and 
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repellence for several pure volatiles from the venom of the common wasp Vespula vulgaris 

and the German wasp V. germanica. The compounds are usually highly volatile (low 

molecular weight) compounds, such as hexanal, 1-hexanol, sesquiterpenes (e.g., (E)- β - 

farnesene for aphids), spiroacetals, or ketones (Francke et al., 1979). The alarm pheromones 

of aphids have been used commercially to increase the effectiveness of conventional 

pesticides or biological control agents, such as the fungal pathogen Verticillium lecanii 

(Howse et al., 1998). Synthetic alarm pheromones and the increased activity of the aphids in 

response to their alarm pheromones increases mortality because they come in contact more 

often with insecticide or fungal spores (Pickett et al., 1992). 

2.4 Host marking pheromones 

Spacing or host marking (epidietic) pheromones are used to reduce competition between 

individuals and are known from a number of insect orders. One of the best studied is 

from the apple maggot Rhagoletis pomonella (Tephritidae), where females ovipositing in 

fruit mark the surface to deter other females. This behavior has also been studied in the 

related cherry fruit fly (R. cerasi). Egg laying is a key stage determining subsequent 

population density; therefore, it is perhaps unsurprising that there is considerable 

evidence of such pheromones affecting gravid females of herbivores. There is also 

exploitation of prey host marking and sex pheromones by parasitoids, which use the 

signal persistence of these intraspecific cues to find their hosts. Mating-deterrent 

pheromones are also known from a number of insects, including tsetse flies, houseflies, 

and other Diptera. These pheromones are released by unreceptive females to deter males 

from continuing mating attempts (Rechcigl & Rechcigl, 1998). 

2.5 Trail pheromones  

Chemical trail communication allows group foragers to exploit conspicuous food sources 

efficiently, and it is the most prevalent form of recruitment behavior. Trail communication is 

commonly based on a multicomponent system, in which the secretions of different glands 

(or a blend of pheromones produced by the same gland) may contribute to the structure of 

the trail and regulate different behaviors in the process of recruitment (Hölldobler & Wilson 

1990; Jackson et al. 2006).  

Trail pheromones are used by animals as navigational aids in directing other members of 

the colony to a distant location, varying in length from hundreds of meters in bees to meters 

in terrestrial insects. The reasons for orienting members of the colony to a distant point may 

vary. In most cases, trails are laid by foraging workers as they return from a food source. 

These trails are then used by other foragers (Wilson & Pavan, 1959). In other cases, however, 

trails may be laid to recruit workers for slave raids, colony emigration, or the repair of a 

breach in the nest wall (Wilson, 1963). Different types of trail marking are found in 

terrestrial insects and flying insects. The terrestrial insects appear to lay a continuous or 

nearly continuous trail between points. Wilson (1962) showed that the fire ant (Solenopsis 

saevissima) drags its stinger and lays a trail in a manner similar to a pen inking a line. If the 

food source is of good quality, other workers choose to reinforce this trail, and a highway 

several centimeters wide may be formed.  
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2.5.1 Trail pheromones in bees 

To ensure a sufficient food supply for all colony members, the stingless bee Trigona corvine 

has evolved various mechanisms to recruit workers for foraging or even to communicate the 

location of particular food sites. In certain species, foragers deposit pheromone marks 

between food sources and their nest, and these marks are used by recruited workers to 

locate the food (Jarau et al., 2010). 

Honeybees have one of the most complex pheromonal communication systems found in 

nature, possessing 15 known glands that produce an array of compounds (Free, 1987). The 

stingless bee Trigona subterranean deposits scent marks from the mandibular glands every 

few meters between the nest and food to form a trail that alerts nest mates to follow it. When 

a scout bee has discovered a food source, it usually makes several trips between its nest and 

food before it lays down a trail pheromone. Scent marks are deposited on leaves, branches, 

pebbles and even clumps of earth. 

The Dufour secretions of bee workers are similar to those of a healthy queen. The secretions 
of workers in queen right colonies are long-chain alkenes with odd numbers of carbon 
atoms, but the secretions of egg-laying queens and egg-laying workers of queenless colonies 
also include long chain esters (Soroker & Hefetz, 2002). Jarau et al. (2004) recorded that in T. 
recursa, the trail pheromone is produced in the labial glands and not in the mandibular 
glands. Hexyl decanoate was the first component of a trail pheromone identified, and it 
proved to be behaviorally active in stingless bees (Jarau et al., 2006).  

2.5.2 Trail pheromones in termites 

Foraging termites produce a variety of chemicals, known as pheromones that influence their 

behavior. While tunneling underground, foraging termites lay down a trail of pheromones, 

which they secrete from glands on their abdomen. When a food source is located, the odor 

trail is intensified to recruit other termites to the feeding site (Miller, 2002). However, the 

intensity of the recruitment effort (odor trail) is influenced by soil temperature, moisture 

and compaction, as well as the size and quality of the food source. Sillam-Dussès et al. (2007) 

studied the trail pheromone in the most basal extant termite, Mastotermes darwiniensis 

(Mastotermitidae), and two other basal termites, the Termopsidae Porotermes adamsoni 

(Porotermitinae) and Stolotermes victoriensis (Stolotermitinae). Although workers of M. 

darwiniensis do not walk in single file when exploring a new environment under 

experimental conditions and are unable to follow artificial trails in ‘open field’ experiments, 

they do secrete a trail-following pheromone from their sternal glands. The major component 

of the pheromone appears to be the same in the three basal species: the norsesquiterpene 

alcohol (E)-2, 6, 10-trimethyl-5, 9-undecadien-1-ol. The quantity of the pheromone was 

estimated as 20 pg / individual in M. darwiniensis, 700 pg / individual in P. adamsoni, and 

4 pg / individual in S. victoriensis. The activity threshold was 1 ng/cm in M. darwiniensis and 

10 pg / cm in P. adamsoni. 

2.5.3 Trail pheromones in ants 

Ants deploy a pheromone trail as they walk; this trail attracts other ants to walk the path 
that has the most pheromones. This reinforcement process results in the selection of the 
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shortest path: the first ants coming back to the nest are those that took the shortest path 
twice (to go from the nest to the source and to return to the nest); therefore, more 
pheromone is present on the shortest path than on longer paths immediately after these ants 
have returned, stimulating the nest mates to choose the shortest path (Jackson & Ratnieks, 
2006). Nicolis (2003) suggested that the modulation of trail laying is determined not only by 
food quality but also by the intrinsic capacity of individuals to lay a certain quantity of 
pheromone. Furthermore, small colonies (or small groups of ants specialized in trail laying) 
are less capable of taking advantage of the trail recruitment than large colonies (or large 
groups of trail-laying foragers). The trail is deposited on the ground by dragging the tip of 
the abdomen along the ground or by touching the surface with the anal hairs or the tip of 
the lancet of the sting (Wilson, 1963). In Crematogaster species, the trail is deposited on the 
ground by placing the hind legs close together and drumming on the surface with the tips of 
the tarsi (Fletcher & Brand, 1968).  

In Componotus socius (Hölldobler, 1971) and in Formica fusca L. (Möglich & Hölldobler, 1975), 

workers lay trail contents from the food sources to the nest, but the trail is followed by 

worker ants only if they are preceded by a "waggle" display of the recruiting ant. In 

Aphaenogaster (Novomessor) and Messor, stridulation enhances the effectiveness of 

recruitment pheromones (Hahn & Maschwitz, 1985). Some Polyrhachis species employing 

leader-independent trail communication do not follow artificial trails without being 

mechanically invited first (P. arachne, and P. bicolor) (Liefke et al., 2001). The accumulation of 

fire ants in electrical equipment is the result of a foraging worker finding and closing 

electrical contacts followed by releasing exocrine gland products that attract other workers 

to the site, who, in turn, are electrically stimulated (Vander Meer et al., 2002). 

In ants, the different recruitment mechanisms include tandem running in which the scout ant 
leads one nest mate to the resource; group recruitment, which recruits tens of nest mates; and 
mass communication, which uses pheromones to recruit large numbers of nest mates (Wyatt 
2003). Jackson & Châline (2007) found that pheromone trails are self-organized processes, 
where colony-level behavior emerges from the activity of many individuals responding to 
local information. The Pharaoh's ant is an important model species for investigating 
pheromone trails. Pharaoh's ant foragers mark their path with trail pheromones using their 
stinger on both the outgoing and return leg of foraging trips. An examination of trail markings 
showed that 10.5% of returning fed ants simply made marks by dragging their engorged 
gaster, as stinger marks were absent. After discounting gaster-dragging hair marks, fed ants 
(42.5%) did not mark significantly more than unfed ants (36.0%). However, the trail-marking 
fed ants marked pheromone trails with a significantly greater intensity compared with trail-
marking unfed ants if the food source was high quality (1.0 M sucrose). When the food quality 
was low (0.01 M sucrose) there was no significant difference in marking intensity between fed 
and unfed trail-marking ants. In Pharaoh's ants, individual trail marking occurs at a frequency 
of 40% among fed and unfed foragers, but the frequency of individuals marking with high 
intensity (continuous marking) is significantly greater when a food source is high quality. This 
behavior contrasts with another model species, Lasius niger, where trail strength is modulated 
by an all-or-nothing individual response to food quality. The reason for this fundamental 
difference in mechanism is that the Pharaoh's ant is highly reliant on pheromone trails for 
environmental orientation; therefore, it must produce trails, whereas L. niger is proficient at 
visually based orientation. 
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Robinson et al. (2008) reported that Pharaoh’s ants (Monomorium pharaonis) use at least three 

types of foraging trail pheromones: a long-lasting attractive pheromone and two short-lived 

pheromones, one attractive and one repellent. They measured the decay rates of the 

behavioral response of ant workers at a trail bifurcation to trail substrate marked with either 

repellent or attractive short-lived pheromones. The results show that the repellent 

pheromone effect lasts more than twice as long as the attractive pheromone effect (78 min 

versus 33 min). Although the effects of these two pheromones decay at approximately the 

same rate, the initial effect of the repellent pheromone on branch choice is almost twice that 

of the attractive pheromone (48% versus 25% above the control). These researchers 

hypothesize that the two pheromones have complementary but distinct roles, with the 

repellent pheromone specifically directing ants at bifurcations, while the attractive 

pheromone guides ants along the entire trail. 

2.5.3.1 Source of trail pheromones 

The sources of trail pheromones are the venom gland, Dufour's gland and the hind tibia in 

Myrmicinae; the pygidial gland in Ponerinae; Pavan's gland in Dolichoderinae; the 

postpygidial gland in Aenictinae; and the hindgut in Formicinae (Fig. 1) (Billen & Morgan, 

1998). The Dufour glands of at least a portion of myrmicine, formicine, poneromorph, 

myrmeciine, pseudomyrmecine and dolichoderine ants contain a mixture of straight–chain 

hydrocarbons from approximately C9 to C27 (Morgan, 2008).   

The Dufour gland contains the trail pheromone in a few species; in several others, it has 

been shown to have a homemarking effect (Cammaerts et al., 1981); and in Pogonomyrmex 

species, it provides longer-lasting trunk route markers (Hölldobler et al., 2004), and its 

secretion confuses or repels potential slaves of slave-making species. Dufour’s gland is the 

source of trail pheromone in Solenopsis species (Robert, et al., 1989), in Pheidole fallax Mayr 

(Wilson 1963), in M. destructor (Ritter et al., 1980), in Gnamptogenys menadensis (subfamily 

Ponerinae) (Gobin et al., 1998), in the slave-making ant Polyergus rufescens (Visicchio et al., 

2001), in M. mayri (Mashaly, 2010), in the samsum ant Pachycondyla sennaarensis (Mashaly et 

al., 2011) and in Messor meridionalis and M. foreli (Mashaly, 2011). 

The poison gland is the source of the trail pheromone in genus Atta, such as A. sexdens 

arbropilosa Forel (Cross et al., 1979); in genus Monomorium, such as M. niloticum and M. 

najrane (Mashaly, 2010) and M. lepineyi and M. bicolor (Mashaly et al., 2010); and in genus 

Tetramorium, such as T. simillimum (Ali & Mashaly, 1997a). Cammaerts et al. (1994) found, in 

T. aculeatum, that the trail pheromone contained a complex mixture of substances. Two of 

these components are secreted by the poison gland: the most volatile component is an 

attractant that increases the ants linear speed; the other is the trail pheromone. A third 

component, present on the last abdominal sternite, acts as an attractant, a locostimulant and 

a synergist for the trail pheromone. The activity of these substances increases with the age of 

the workers. The poison gland of Leptothorax distinguenda contains two pheromone 

components: one elicits a strong short-term attraction to prey items; the other guides 

workers from foraging sites to the colony but only weakly. The poison gland of each minor 

and major worker is the source of the trail pheromone in Ph. jordanica Saulcy and Ph. sinatica 

Mayr (Ali & Mashaly, 1997b). In Ph. embolopyx (Jackson & Ratnieks, 2006), the trail 

pheromone is secreted from the poison gland of only minor workers.  
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Fig. 1. Schematic drawing of a typical ant worker, showing the location of the various 
exocrine glands. The inset shows an enlargement of the abdominal tip, with the position of 
the cloacal gland, venom gland and Dufour`s gland indicated (Wenseleers et al., 1998). 
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Hindgut is found throughout the Formicinae, in Eciton and Neivamyrmex of the Ecitoninae 
and in Diacamma in the Ponerinae (Hölldobler & Wilson, 1990; Morgan, 2008). Wilson & 
Pavan (1959) found that the dolichoderine ant Iridomyrmex humilis Myer uses Pavan`s gland 
(sternal gland) as a source of the trail pheromone, with the trail substance being secreted via 
the posterior border of the sixth sternite. Also, the sternal gland is recorded as the source of 
the trail pheromone in the ant Dolichoderus thoracicus Smith (Attygalle et al., 1998) and in P. 
tarsata (Janssen et al., 1999).  

The pygidial gland can be found in all subfamilies except the Formicinae. In the 

Dolichoderinae, the pygidial gland (also known as the anal gland) is usually very large, and 

is used in defense and alarm (Morgan, 2008). Termite predation by the ponerine ant 

Pachycondyla laevigata is regulated by a recruitment trail pheromone that originates from the 

pygidial gland and not, as previously assumed, from the hindgut. The pygidial gland opens 

between the 6th and 7th abdominal terga and is associated with a distinct cuticular structure 

that obviously serves as a glandular applicator (Hölldobler et al., 1980). The existence of a 

trail pheromone in a postpygidial gland of an Aenictus species has been demonstrated, and 

the substances have been identified as methyl anthranilate and methyl nicotinate. The 

pheromone consists of two parts: a primer effect, caused by methyl nicotinate, which 

prepares workers to follow trails but is not itself followed, and a releaser effect, caused by 

methyl anthranilate, which causes trail-following only in conjunction with the primer 

substance (Oldham et al., 1994). 

The anatomy of the gaster of Crematogaster ants prevents them from laying trails from 

abdominal glands; therefore, they have adopted another system in which they use glands in 

the hind tibia with a duct to the tarsi to lay the secretion by the feet (Leuthold 1968). The 

same results were found by Fletcher & Brand (1968); Ayre (1969); Ali & Mashaly (1997a); 

and Morgan et al. (2004) while working with C. peringueyi Emery, C. lineolata, C. inermis and 

C. castanea, respectively. 

Hölldobler & Palmer (1989) discovered special exocrine glands in the distal tarsomere of the 

hindlegs of Amblyopone australis workers, whereas foragers of Amblyopone mark their trails 

by setting "footprints" with secretions from these tarsal glands. Workers of the ant Am. 

reclinata employ solitary prey retrieval when the prey is small, but they recruit nestmates to 

large prey. In the latter case, the scout forager paralyses the prey with its powerful sting and 

quickly returns to the nest. During this homeward journey, the scout deposits a trail 

pheromone, which originates from the well-developed footprint glands (pretarsal gland) in 

its hindlegs. Recruited workers follow this trail to reach the prey, which is later jointly 

dragged to the nest (Billen et al., 2005). 

2.5.3.2 Optimum dose 

It is well established that a specific concentration of trail pheromones is important because 

concentrations that are too high or too low elicit either no response or repellency (Barlin et 

al., 1976). Ants are able to optimize their foraging behavior by selecting the most rewarding 

source, due only to a modulation of the quantity of pheromone laid on a trail (Traniello & 

Robson, 1995). 

Using extract of whole gasters, Van Vorhis et al. (1981) demonstrated for I. humilis Mayer 
that the optimum activity was found in response to a trail containing 0.1 – 1.0 ant equivalent 
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per 50 cm. The activity dropped when the concentration was lower or higher than the 
optimal concentration. When the concentration was increased to 5 ant equivalents per 5 cm 
trail, not only did the trail-following activity decrease but also the mean lateral distance 
from the trail at which ants exhibited trail following increased. Myrmica rubra L. workers 
responded actively to a synthetic pheromone concentration ranging from 10⎯²– 10²ng per 30 
cm trail (one poison gland produced 508 ng 3-ethyle-2,5dimthylepyrazine), whereas at 
concentrations lower than 10⎯²ng, the workers had difficulty detecting the trail.  

Morgan et al. (1990) found that the highest activity in T. impurum Foerster was at a 
concentration of 0.1 poison gland equivalent / 30 cm trail. The activity decreased at a 
concentration of 1 and 0.01 poison gland / 30 cm trail and subsequently completely 
disappeared at the concentration of 0.001 gland. In Ph.jordanica, Ph. sinaitica and Ph. sp., the 
workers induced the highest activity between one and 5 gaster equivalent/30 cm trail (Ali & 
Mashaly, 1997b). In Paratrechina longicornis and P. vividula, the optimum dose of the trail- 
following was found to be 1 gaster equivalent / 30 cm trail (Mashaly et al., 2008). In M. 
lepineyi and M. bicolor, the optimal dose s was found to be 1.0 and 0.1 poison gland 
equivalent/30 cm trail, respectively (Mashaly et al., 2010). The optimum concentration was 
1.0 and 0.1 gaster equivalent (GE)/30 cm trail in M. niloticum, 1.0 GE in M. najrane and 5.0 
GE in M. mayri (Mashaly, 2010). In M. meridionalis and M. foreli, the optimum concentration 
of trail pheromone was found to be 1 gland equivalent/30 cm trail (Mashaly, 2011). In P. 
sennaarensis, the optimum concentration of trail pheromone was found to be 0.1 gland 
equivalent/40 cm trail (Mashaly et al., 2011). 

2.5.3.3 Trail longevity 

Pheromones are released mainly from exocrine glands as liquids that evaporate into the 
surrounding air. The distance through which a pheromone may transmit a message is a 
function of the volatility of the compound, its chemical stability in air, the rate of diffusion, 
the olfactory efficiency of the receiver, and wind speed and direction (Fitzgerald & 
Underwood, 1998). In ants, trail longevity varies from minutes in Aphaenogaster albisetosus 
(Hölldobler et al., 1995), to 2 h in M. lepineyi and M. bicolor (Mashaly et al., 2010), to 1 h in M. 
niloticum, M. mayri, and M. najrane (Mashaly, 2010), to 105 mins in P. longicornis and P. 
vividula (Mashaly et al., 2008), to 1 hr in M. meridionalis and M. foreli (Mashaly, 2011) and to 
several weeks in some Eciton species (Torgerson & Akre, 1970). Short-lived trails can rapidly 
modulate recruitment to ephemeral food sources, whereas long-lived trails will be more 
suited to persistent, or recurrent, food sources (Fitzgerald & Underwood, 1998). The activity 
of the optimal dose trail pheromone in P. sennaarensis decreased to half of the original 
activity level after approximately 30 min, and it completely disappeared after 1 h (Mashaly 
et al., 2011).  

2.5.3.4 Specificity of trail pheromones 

No matter which gland they use, the myrmicines investigated to date show a strong 
variability of intra- and intergeneric trail specificity, ranging from a total or a partial 
specificity to a complete anonymity of signals (Traniello & Robson, 1995). For example, odor 
trail pheromones are completely species-specific between T. caespitum Linne, 1758, and T. 
guineense Bernard, 1953, but the latter could follow trails of other myrmicine genera (Blum & 
Ross., 1965). Workers of C. scutellaris Olivier, 1792 follow the trails of C. laestrygon Emery, 
1869, but the latter always prefer their own trace (Gobin & Billen., 1994). A partial specificity 
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was also found within the genus Solenopsis Westwood, 1840, with some species following 
each other’s artificial trails and others being highly selective in their response (Barlin et al., 
1976). Interspecific trail-following tests in three sympatric species, M. capitatus, M. minor and 
M. wasmanni, showed that workers of each species are able to recognize and follow artificial 
trails obtained from the Dufour’s gland secretions of the others (Grasso et al., 2002). There is 
no species specificity among M. niloticum, M. najrane and M. mayri in their trail pheromones 
(Mashaly, 2010). Also, the response of the two Messor ants M. meridionalis and M. foreli to 
extracts of their trail pheromones, presented as a point source, is clearly non species-specific 
(Mashaly, 2011). P. sennaarensis and Tapinoma simrothi each respond to the trail pheromones 
of the other species, as well as their own (Mashaly et al., 2011). 

2.5.3.5 Trail pheromone structures 

Tumlinson et al. (1971) identified methyle, 4-methylepyrrole-2-carboxylate, a poison gland 

substance of A. texana. This compound was the first ant trail pheromone to be identified. The 

trail pheromone in A. sexdens arbropilosa Forel was identified as 3-ethyl-2,5-

dimethylepyrazine and methyl 4-methylpyrrole-2-carboxylate (Cross et al., 1979). The same 

substance was identified as the pheromone in Acromyrmex octospinosus (Cross et al., 1982). 

However, 3-ethyl-2,5-dimethylpyrazine (EDMP) (B) was identified as the trail pheromone of 

A. sexdens rubropilosa (Cross et al., 1979) and Atta sexdens sexdens (Evershed & Morgan, 1983). 

Using older gas chromatographic techniques with packed columns, Evershed & Morgan 

(1983) showed only M4MPC was found in A. octospinosus but that both EDMP and M4MPC 

were present in workers of A. cephalotes, A. sexdens sexdens and A. sexdens rubropilosa, 

although the ratio differed considerably, with the compound that had been identified as the 

trail pheromone in that species being present in a much larger proportion. A ratio for 

EDMP:M4MPC of 14:1 was found for A. sexdens sexdens. 

M. pharaonis has been found to produce two trail substances from the poison gland, which 
were identified to be Monomorine I (3-butyl-5-methyl-octahydroindolyzine) and 
Monomorine III [2-(5-hexenyl) 5-pentylbyrrollidine] (Ritter et al., 1973). However, the true 
pheromone was identified as faranal [(3S, 4R)-(6E, 10Z)-3, 4, 7, 11-tetramethyl-6,10-
tridecadienal], which was secreted from the Dufour’s gland and was shown to be much 
more active than the monomorines (Ritter et al., 1980). M. niloticum and M. najrane both 
contain mixtures of alkyl- and alkenyl-pyrrolidines and -pyrrolines in their venom glands, 
but no Dufour gland volatile compounds have been detected. M. mayri showed neither 
Dufour gland compounds nor venom components detectable by gas chromatography 
(Mashaly et al., 2010). 

The trail pheromone of T. caaspitum was found to be secreted from the poison gland and was 

identified as a mixture of 2,5-dimethylpyrazine and 3-ethyl-2,5-dimethylpyrazine (7:3). 

Morgan et al. (1990) stated that T. impurum Foerster used methyl-2-hydroxy-6-

methylbenzoate (methyl 6-methyl salicylate) as a trail pheromone secreted from the poison 

gland. Morgan et al. (2004) identified (R)-2-dodecanol as the major component of the trail 

pheromone secreted from the tibial gland of the ant C. castanea. The major compounds in the 

poison gland of Pogonomyrmex vermiculatus were found to be the alkylpyrazines, 2,5-

dimethylpyrazine, 2,3,5-trimethylpyrazine, and 3-ethyl-2,5-dimethylpyrazine. In behavioral 

bioassays, poison gland extracts and the mixture of pyrazines produced a trail pheromone 

effect (Torres-Contreras et al., 2007).  

www.intechopen.com



 
New Perspectives in Plant Protection 

 

132 

Ali et al. (2007) stated that four Old World species of Pheidole ants contain different mixtures 
of farnesene-type hydrocarbons in their poison apparatus, and the mixture is different 
between the minor and major workers within a species. The poison glands of minor workers 
of Ph. pallidula contain 3-ethyl-2,5-dimethylpyrazine. No pyrazine compounds were found 
in the major workers of Ph. pallidula or the minor workers of Ph. sinaitica. The poison glands 
of the major workers of Ph. sinaitica contained larger amounts of tetra-substituted pyrazines. 
No pyrazines were found in the poison reservoirs of the major or minor workers of Ph. 
teneriffana or Ph. megacephala. 

2.5.3.6 Trail pheromones and ant control 

Ant control often relies on contact insecticides that are used as barrier treatments (Klotz et al., 
2002). These chemical sprays provide only partial ant control because they kill or repel 
foragers but have little impact on the queens (Rust et al., 1996). Foragers constitute only a small 
fraction of the worker force and are quickly replaced by nest mates that reach maturity during 
the treatment period. Additionally, the degradation of these chemicals commonly occurs 
within 30 days of application, negating any residual effects (Rust et al., 1996) and increasing 
the need for reapplication. Granular treatments for ant control are commercially available for 
use in agricultural systems, especially nursery operations (Costa et al., 2001). Solid baits, 
typically targeting protein-feeding ants, have been somewhat successful (Tollerup et al., 2005). 
However, many pest species, including the Argentine ant, primarily forage for sugars (Klotz et 
al., 2002), which necessitates the development of liquid baits (Rust et al., 2004). For these 
reasons, more effective and environmentally sound ant control practices are needed for 
vineyards, especially for managers developing sustainable farming practices.  

Three Thai herbs, namely, tuba root (Derris elliptica Benth.), yam bean seeds (Pachyrhizus 
erosus L.) and tea seed cake (Camellia sp.), were found to be an efficient control against adult 
workers of the Pharaoh ant (M. pharaonis L.). The results showed that the tuba root extracts 
exhibited LC50 against adult workers at approximately 0.22 % w/v; yam bean seed extracts 
showed LC50 against adult workers of approximately 0.35 % w/v; and tea seed cake extracts 
showed LC50 against adult worker of approximately 0.55 % w/v after 24 hours of exposure 
(Tangchitphinitkan et al., 2007). 

In a study to develop a novel control method of the invasive Argentine ant Linepithema 
humile (Mayr). A year-long treatment of small areas (100 m2 plots of urban house gardens) 
with synthetic trail pheromone, insecticidal bait or both was conducted. The ant population 
could be maintained at lower than or similar to the initial level only by combined treatment 
with synthetic trail pheromone and insecticidal bait. In fact, the ant population was nearly 
always lowest in the combination treatment plots. Throughout the study period, the ant 
population in the plots treated with either the synthetic trail pheromone or insecticidal bait 
remained similar to that of the no-treatment plots (Sunamura et al., 2011). 

3. Conclusion 

Trail-following investigations may improve our understanding of the chemical 
communication system employed by pest species. Except for sex pheromones, the use of 
pheromones in pest management has been largely unexplored. A high concentration of trail 
pheromone disrupts trail following and foraging in ants; therefore, synthetic trail 
pheromones could be a novel control agent for pest ants. 
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