
Selection of our books indexed in the Book Citation Index

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us?
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

185,000 200M

TOP 1%154

6,900

8

Real-Time Concurrency Control Protocol
Based on Accessing Temporal Data

Qilong Han
College of Computer Science and Technology,

Harbin Engineering University Harbin,
China

1. Introduction

Concurrency control is one of the main issues in the studies of real-time database systems.

On the one hand, it is related closely to active real-time database and real-time application.

Concurrency control algorithm seriously affect the performance of the system in real-time,

may cause unpredictable consequences. On the other hand, updating data in active real-time

database may trigger a new transaction and to further increase the difficulty of the

concurrency control. How ensures both the consistency of the database and the finish of the

transactions before deadline; it is an important problem to the concurrency control research

in the active real-time database systems. In the most literature, the existing research more

focuses on the transactions deadline and lack of attention the data temporal constraint. This

is mainly due to the real-time data is obtained dynamically by sensors in real-time database,

and the transactions of real-time databases read the sensor data only, do not write the sensor

data. But the real-time data may miss deadline and become invalid before transaction which

reads it committed, most concurrency control algorithms are regardless of the sensor data

deadline and its invalid effect to systems. This chapter will further discuss the concurrency

control method that transactions access real-time sensor data.

Optimism concurrency control method is widely used in real-time database due to no dead-

lock and no-block characteristics, but delay conflicts detection brings with great restart

overhead. A dynamic adjustment serialization order method is proposed to reduce

unnecessary affairs restart number [Haritsa, Lindstrom], according to [Lindstrom, Wang] a

method is proposed by control the reading and writing data to reduce the transaction restart

number. In [Brad] discussed about the relation between real-time data and the derived data

validity, and [Kuo] proposed the concept of real-time data similarity. According to [Brad,

Xiong] proposed the concept of data-deadline, and the transaction scheduling strategy by

using mandatory waiting method. The [Liu] also discuss on data deadline and transaction

scheduling. A real-time transaction scheduling method is proposed based on the

combination of [Kuo, Son] improving real-time data similarity mechanism in [Xiong]. But

[Xiong, Son] only take account of single transaction scheduling the real data problems, not

consider the concurrency control problem that the transactions did not arrive at deadline

and its accessed data expired, which will increase the number of transactions restart.

www.intechopen.com

Real-Time Systems, Architecture, Scheduling, and Application

174

The chapter is organized as follows. Section 2 reviews concurrency control protocols
proposed in real-time database systems (RTDBSs) and describes our choice of concurrency
control algorithms for accessing temporal data. Section 3 analyzes the validity of active real-
time system model and the effects real-time data to the concurrent control. The relevant
definition and the effective examination mechanism of transaction reading data were given
in Section 4. In Section 5 based on Data temporal characteristics, concurrency control
algorithm RTCC-DD (Real-time Concurrency Control Algorithm Based on Data-deadline) is
put forward, and proved that the RTCC-DD was the correctness in theory. Section 6 carries
on the analysis comparison between our proposed method and the existed method through
experiment. Finally, Section 7 gives summary and conclusions of this chapter and future
directions for the work.

2. Concurrency control in Real-Time Database Systems

A Real-Time Database Systems (RTDBS) processes transactions with timing constraints such
as deadlines [Ramamritham]. Its primary performance criterion is timeliness, not average
response time or throughput. The scheduling of transactions is driven by priority order.
Given these challenges, considerable research has recently been devoted to designing
concurrency control methods for RTDBSs and to evaluating their performance (e. g. [Kuo,
Fishwick, Haritsa]). Most of these methods are based on one of the two basic concurrency
control mechanisms: locking [Lam] or optimistic concurrency control (OCC) [Kung].

In real-time systems transactions are scheduled according to their priorities. Therefore, high
priority transactions are executed before lower priority transactions. This is true only if a
high priority transaction has some database operation ready for execution. If no operation
from a higher priority transaction is ready for execution, then an operation from a lower
priority transaction is allowed to execute its database operation. Therefore, the operation of
the higher priority transaction may conflict with the already executed operation of the lower
priority transaction. In traditional methods a higher priority transaction must wait for the
release of the resource. This is the priority inversion problem presented earlier. Therefore,
data conflicts in concurrency control should also be based on transaction priorities or
criticalness or both. Hence, numerous traditional concurrency control methods have been
extended to the real-time database systems. In the following sections recent and related
work in this area is presented.

2.1 Locking-based algorithms

In classical two-phase locking protocol, transactions set read locks on objects that they read,
and these locks are later upgraded to write locks for the data objects that are updated. If a
lock requested is denied, the requesting transaction is blocked until the lock is released.
Read locks Call be shared. while write locks are exclusive.

For real-time database Systems, two-phase locking needs to be augmented with a priority
based conflict resolution scheme to ensure that higher priority transactions are not delayed
by lower priority transactions. In High Priority scheme, all data conflicts are resolved in
favour of the transaction with the higher priority. When a transaction requests a lock on an
object held by other transactions in a conflicting lock mode, if the requester's priority is
higher than that of all the lock holders, the holders are restarted and the requester is granted

www.intechopen.com

Real-Time Concurrency Control Protocol Based on Accessing Temporal Data

175

the lock; if the requester's priority is lower, it waits for the lock holders to release the lock. In
addition, a new read lock requester can join a group of read lock holders only if its priority
is higher than that of all waiting write lock operations. This protocol is referred to as 2PL-
HP. It is important to note that 2PL-HP loses some of the basic 2PL algorithm's blocking
factor due to the partially restart-based nature of the High Priority scheme.

Note that High Priority scheme is similar to Wound-Wait scheme, which is added to two-

phase locking for deadlock prevention. The only difference is that High Priority scheme uses

priority order decided by transaction timing constraints for conflict resolution decisions,

while Wound-Wait employs timestamp order usually decided by transaction arrival time. It

is obvious that High Priority serves as a deadlock prevention mechanism, if the priority

assignment mechanism assigns unique priority value to a transaction and does not

dynamically change the relative priority ordering of concurrent transactions. Also, note that

2PL-HP is free from priority inversion problem, because a higher priority transaction never

waits for a lower priority transaction, but restarts it.

In 2PL-WP (2PL Wait Promote) [Huang] the analysis of concurrency control method is

enhanced from [Lindstrom]. The mechanism presented uses shared and exclusive locks.

Shared locks permit multiple concurrent readers. A new definition is made – the priority of

a data object, which is defined to be the highest priority of all the transactions holding a lock

on the data object. If the data object is not locked, its priority is undefined.

A transaction can join in the read group of an object only if its priority is higher than the

maximum priority of all transactions in the write group of an object. Thus, conflicts arise

from incompatibility of locking modes as usual. Particular care is given to conflicts that lead

to priority inversions. A priority inversion occurs when a transaction of high priority

requests and blocks for an object which has lesser priority. This means that all the lock

holders have lesser priority than the requesting transaction. This same method is also called

2PL-PI (2PL Priority Inheritance) [Stankovic].

Sometimes High Priority may be too strict policy. If the lock holding transaction Th can

finish in the time that the lock requesting transaction Th can afford to wait, that is within the

slack time of Tr, and let Th proceed to execution and Tr B wait for the completion of Th. This

policy is called 2PL-CR (2PL Conditional Restart) or 2PL-CPI (2PL Conditional Priority

Inheritance) [Lam, Menasce].

In Priority Ceiling Protocol [Sha] the aim is to minimize the duration of blocking to at most
one elementary lower priority task and prevent the formation of deadlocks. A real-time
database can often be decomposed into sets of database objects that can be modelled as
atomic data sets. For example, two radar stations track an aircraft representing the local
view in data objects O1 and O2. These objects might include e. g. the current location,
velocity, etc. Each of these objects forms an atomic data set, because the consistency
constraints can be checked and validated locally. The notion of atomic data sets is especially
useful for tracking multiple targets.

A simple locking method for elementary transactions is the two-phase locking method; a
transaction cannot release any lock on any atomic data set unless it has obtained all the locks
on that atomic data set. Once it has released its locks it cannot obtain new locks on the same
atomic data set, however, it can obtain new locks on different data sets. The theory of

www.intechopen.com

Real-Time Systems, Architecture, Scheduling, and Application

176

modular concurrency control permits an elementary transaction to hold locks across atomic
data sets. This increases the duration of locking and decreases preemptibility. In this study
transactions do not hold locks across atomic data sets.

Priority Ceiling Protocol minimizes the duration of blocking to at most one elementary
lower priority task and prevents the formation of deadlocks. The idea is that when a new
higher priority transaction preempts a running transaction its priority must exceed the
priorities of all preempted transactions, taking the priority inheritance protocol into
consideration. If this condition cannot be met, the new transaction is suspended and the
blocking transaction inherits the priority of the highest transaction it blocks.

The priority ceiling of a data object is the priority of the highest priority transaction that may
lock this object [Sha, Rajkumar, Son]. A new transaction can preempt a lock-holding
transaction only if its priority is higher than the priority ceilings of all the data objects locked
by the lock-holding transaction. If this condition is not satisfied, the new transaction will
wait and the lock-holding transaction inherits the priority of the highest transaction that it
blocks. The lock-holder continues its execution, and when it releases the locks, its original
priority is resumed. All blocked transactions are alerted, and the one with the highest
priority will start its execution.

The fact that the priority of the new lock-requesting transaction must be higher than the
priority ceiling of all the data objects that it accesses, prevents the formation of a potential
deadlock. The fact that the lock-requesting transaction is blocked only at most the execution
time of one lower priority transaction guarantees, the formation of blocking chains is not
possible [Sha, Rajkumar, Son].

The Priority Ceiling Protocol is further worked out in [Sha, Rajkumar, Son], where the
Read/Write Priority Ceiling Protocol is introduced. It contains two basic ideas. The first idea
is the notion of priority inheritance. The second idea is a total priority ordering of active
transactions. A transaction is said to be active if it has started but not completed its
execution. Thus, a transaction can execute or wait caused by preemption in the middle of its
execution. Total priority ordering requires that each active transaction execute at a higher
priority level than the active lower priority transaction, taking priority inheritance and
read/write semantics into consideration.

A protocol called Real-Time Locking (RTL) that uses locking and dynamic adjustment of
serialization order for priority conflict resolution was proposed. The basic idea of
serialization order adjustment is to delay the decision of final serialization order among
transactions, and to adjust the temporary serialization order dynamically in favour of
transactions with high priority. Thus, this scheme can avoid blocking and aborts resulting
from a mismatch between serialization order and priority order of transactions. In order to
implement the dynamic adjustment of serialization order, in RTL, the execution of a
transaction is phase-wise as in OCC. In the first phase called read phase, a transaction reads
from database and writes to its local workspace as in OCC. However, unlike OCC where
conflicts are resolved only in the validation phase, RTL resolves conflicts in the read phase
using transaction priority. In the write phase of RTL, the final serialization order is
determined, and updates are made permanent to the database. The use of the phase-
dependent control and local workspace for transactions also provides potential for a high
degree of concurrency.

www.intechopen.com

Real-Time Concurrency Control Protocol Based on Accessing Temporal Data

177

2.2 Optimistic Concurrency Control-based algorithms

Optimistic Concurrency Control (OCC), is based on the assumption that conflict is rare, and

that it is more efficient to allow transactions to proceed without delays to ensure

serializability. When a transaction wishes to commit, a check is performed to determine

whether a conflict has occurred. There are three phases to an optimistic concurrency control

method:

• Read phase: The transaction reads the values of all data items it needs from the
database and stores them in local variables. In some methods updates are applied to a
local copy of the data and announced to the database system by an operation named
pre-write.

• Validation phase: The validation phase ensures that all the committed transactions have
executed in a serializable fashion. For a read-only transaction, this consists of checking
that the data values read are still the current values for the corresponding data items.
For a transaction that has updates, the validation consists of determining whether the
current transaction leaves the database in a consistent state, with serializability
maintained.

• Write phase: This follows the successful validation phase for update transactions.
During the write phase, all changes made by the transaction are permanently stored
into the database.

In optimistic concurrency control, transactions are allowed to execute unhindered until they

reach their commit point, at which time they are validated. Thus, the execution of a

transaction consists of three phases: read, validation, and write. The key component among

these is the validation phase where a transaction’s destiny is decided. Validation comes in

several flavours, but it can carry out basically in either of two ways: backward validation

and forward validation. While in backward scheme, the validation process is done against

committed transactions, in forward validation, validating of a transaction is carried out

against currently running transactions.

As explained above, in RTDBSs, data conflicts should be resolved in favor of higher priority

transactions. In backward validation, however, there is no way to take transaction priority

into account in serialization process, since it is carried out against already committed

transactions. Thus backward scheme is not applicable to real-time database systems.

Forward validation provides flexibility for conflict resolution such that either the validating

transaction or the conflicting active transactions may be chosen to restart, so it is preferable

for real-time database systems. In addition, forward scheme generally detects and resolves

data conflicts earlier than backward validation, and hence it wastes less resources and time.

All the optimistic algorithms used in the previous studies of real-time concurrency control

in [Haritsa] are based on the forward validation. The broadcast mechanism in the algorithm,

OPT-BC used in [Haritsa] is an implementation variant of the forward validation. We refer

to the optimistic algorithm using forward validation as OCC-FV.

A point to note is that unlike 2PL-HP, OCC-FV does not use any transaction priority
information in resolving data conflicts. Thus, under OCC-FV, a transaction with a higher
priority may need to restart due to a committing transaction with a lower priority. Several
methods to incorporate priority information into OCC-FV were proposed and studied in

www.intechopen.com

Real-Time Systems, Architecture, Scheduling, and Application

178

[Lindstrom] using priority-driven wait or abort mechanism. However, more work is needed
to ensure if these methods have any significant impact on improving OCC-FV performance,
because the effect of increased waiting time or increased number of aborts in these methods
may overshadow the performance gain due to the preferential treatment of transactions.

In the OPT-SACRIFICE [Haritsa] method, when a transaction reaches its validation stage, it

checks for conflicts with other concurrently running transactions. If conflicts are detected

and at least one of the conflicting transactions has a higher priority, then the validating

transaction is restarted, i. e. sacrificed in favour of the higher priority transaction. Although

this method prefers high priority transactions, it has two potential problems. First, if a

higher priority transaction causes a lower priority transaction to be restarted, but fails in

meeting its deadline, the restart was useless. This degrades the performance. Second, if

priority fluctuations are allowed, there may be the mutual restarts problem between a pair

of transactions. These two drawbacks are analogous to those in the 2PL-HP method [Lee].

When a transaction reaches its validation stage, it checks if any of the concurrently running

other transactions have a higher priority. In the OPT-WAIT [Lee] case the validating

transaction is made to wait, giving the higher priority transactions a chance to make their

deadlines first. While a transaction is waiting, it is possible that it will be restarted due to the

commit of one of the higher priority transactions. Note that the waiting transaction does not

necessarily have to be restarted. Under the broadcast commit scheme a validating

transaction is said to conflict with another transaction, if the intersection of the write set of

the validating transaction and the read set of the conflicting transaction is not empty. This

result does not imply that the intersection of the write set of the conflicting transaction and

the read set of the validating transaction is not empty either [Lee].

The WAIT-50 method is an extension of the OPT-WAIT - it contains the priority wait

mechanism from OPT-WAIT method and a wait control mechanism. This mechanism

monitors transaction conflict states and dynamically decides when and for how long a low

priority transaction should be made to wait for the higher priority transactions. In WAIT-50,

a simple 50 percent rule is used - a validating transaction is made to wait while half or more

of its conflict set is composed of transactions with higher priority. The aim of the wait

control mechanism is to detect when the beneficial effects of waiting are outweighed by its

drawbacks [Lee].

We can view OPT-BC, OPT-WAIT and WAIT-50 as being special cases of a general WAITX

method, where X is the cut-off percentage of the conflict set composed of higher priority

transactions. For these methods X takes the values infinite, 0 and 50 respectively.

In [Lee and Son] a lock based WAIT-50 concurrency control method, OCCL-PW, is

presented. The physical implementation of this method uses locks. If the priority of the

validating transaction is not highest among the conflicting transactions, the validating

transaction waits if at least 50% of the conflicting transactions have higher priority.

The OCC-TI method resolves conflicts using the timestamp intervals of the transactions.

Every transaction must be executed within a specific time slot. When an access conflict

occurs, it is resolved using the read and write sets of the transaction together with the

allocated time slot. Time slots are adjusted when a transaction commits.

www.intechopen.com

Real-Time Concurrency Control Protocol Based on Accessing Temporal Data

179

In this method, every transaction in the read phase is assigned a timestamp interval (TI).

This timestamp interval is used to record a temporary serialization order during the

execution of the transaction. At the start of the execution, the timestamp interval of the

transaction is initialized as [0, ∞], i. e., the entire range of timestamp space. Whenever the

serialization order of the transaction is changed by its data operation or the validation of

other transactions, its timestamp interval is adjusted to represent the dependencies.

OCC-DA is based on the Forward Validation scheme. The number of transaction restarts is

reduced by using dynamic adjustment of the serialization order. This is supported with the

use of a dynamic timestamp assignment scheme. Conflict checking is performed at the

validation phase of a transaction. No adjustment of the timestamps is necessary in case of

data conflicts in the read phase. In OCC-DA the serialization order of committed

transactions may be different from their commit order.

A new optimistic concurrency control method, called OCC-DATI (Optimistic Concurrency

Control with Dynamic Adjustment of Serialization Order using Timestamp Intervals), is

proposed to reduce the number of transaction restarts in [Lindstrom], which uses

information about the criticality of the transactions in the conflict resolution. The main idea

behind this method is to offer better chances for critical transactions to complete according

to their deadlines. This is achieved restarting transaction with lower criticality if the critical

transaction should be restarted because of a data conflict. The proposed method is

demonstrated to produce the correct results and the feasibility of the proposed method in

practice is tested.

3. System model and real-time data

3.1 System model

Active real-time database consists of a set of objects and ECA (Event-Condition-Action) rule.

Each object represents a real world entity; the status of entity is usually monitored by

sensors. The entire data object is divided into two categories in database:

1. temporal objects and non-temporal objects

The temporal object is possible to be invalid for expired temporal validity; it can be divided

into the absolute validity and the relative validity. Non-temporal object have not temporal

validity. Temporal object absolute validity expresses as (value (Xi) , avi (Xi)) , value (Xi)

describes the current status of data object X, avi(Xi)＝[avib(Xi), avie(Xi)], avib(Xi)≤avie(Xi) is

the absolute validity of value (Xi), Xi shows the ith versions of data objects X, avib(Xi)

denotes the beginning of the absolute validity of Xi , avie(Xi) denotes the end of the absolute

validity of Xi , after avie(Xi), value (Xi) is effective no longer.

Temporal object relative validity denotes rvi(R), R is relatively consistent set, each element is

the version temporal data objects. When t>0, R is correct status, if and only if

- Xi∈R, value(Xi)is logical consistent, satisfying all the integrity constraints
- R is temporal consistent:
i. Xi∈R, value(Xi) is absolute consistent, avib(Xi) ≤ t ≤ avie(Xi).
ii. R is relatively consistent, Xi, Yj∈R, |avib(Xi)-avib(Yj)| ≤ rvi(R).

www.intechopen.com

Real-Time Systems, Architecture, Scheduling, and Application

180

2. the basic objects and derived objects

The basic objects update the database by the sensor and reflect specific entity in the real
environment. Derived objects are composed by the new derived data from basic object and
others. In Active real-time database, it can trigger transactions according to ECA rules when
basic object is updated by sensor. Triggered transactions may update the status from the
basic derived objects. In this chapter, the basic object take need scheduling strategy, until
transactions need call, it was called by sensor. Transactions T call temporal data X at time t,
absolute validity for the start time is t.

Active real-time database system had sensor transaction, which are used to update basic
objects, only writing transaction; triggered updating transaction, which are updated and
triggered transaction by the basic objects, and used to update derived object; user
transaction, which have user transactions of the deadline. When transaction satisfies only
the following conditions in system, it commits successfully:

1. Transaction is consistent logically.
2. Transaction satisfies the deadline.
3. The data that transaction read is temporal consistent, and the data still effective when

the transaction read it commits.

3.2 Real-time data

In [Kuo, Mok], relative sensor transaction and trigger who used to update the derived object
are discuss in detail, this chapter studies only concurrency control related users transaction,
similar with [Liu, Son]. User transactions T have the following attributes:

- a(T) : Arrival time of transaction T;

- s(T) : Start time of transaction T;

- d(T) : Deadline of transaction;

- tdd (T) : Data-deadline of transaction T at time t;

- L(T) : The number of data objects which transaction T access;

- to
tL (T) : The number of temporal data objects that transaction T will access after time t;

- nto
tL (T) : The number of non-temporal data objects that transaction T will access after

time t;
- tL (T) : The number of data objects which transaction T will access after time

t; to nto
t t tL (T) L (T) L (T)= + ;

- tE (T) : Estimated execution time of transaction T at time t;

- tC (T) : Estimated finished time of transaction T at time t;

- t tC (T) t E (T)= + ;

- to
tRS (T) : Temporal data object sets which transaction T access at time t ;

- tP (T) : The transaction priority at time t.

In active real-time database, temporal data have lots of features; this section give only
related properties which presented algorithm in this chapter. First of all, according to [Son]
this article introduces the concept of the data-deadline.

www.intechopen.com

Real-Time Concurrency Control Protocol Based on Accessing Temporal Data

181

Definition1. Data-deadline of transaction T is the minimum data time validity which

transaction T access to the temporal data objects at time t, denote it as tdd (T) ,

to
t

t e
X RS (T)

dd (T) min avi (X)
∈

=

The temporal relationship between temporal data and transaction is presented by data-
deadline. The data-deadline increased the difficulty of transaction scheduling and
concurrent control, because no achieving deadline to the transactions may restart or abort
due to the data deadline. Example 1 shows that the data-deadline of transactions influences
the concurrent control.

Example 1. Transaction T1: w1(x)r1(y); T2:w2(y)r2(z).

The deadline of transaction T1 is t7, and its estimated time of completion is t6. The deadline

of transaction T2 is t8; and its estimated time of completion is t6. The validity of temporal

data z is [t4, t6].

As shown in Fig. 1, transaction T2 enter into validation phase at time t5, according to

literature [Lindstrom, Wang], WS(Tv)∩RS(Ta)={y}≠Ø, transactions execution sequence is

T1→T2, T2 will delay to submit. If transaction T1 submits after t6, transaction T2 will die for

the temporal data z exceed deadline.

Fig. 1. Execution of Transactions

Do not consider real-time of data, we will succeed scheduling T1, T2 , according to the

traditional optimistic method[Lindstrom]; But it increases the real-time nature of data,

transaction T2 will die because it can't satisfy data-deadline. Example1 shows the temporal

characteristics of the data influence the concurrency control, while the existing concurrency

control method is no consideration to the conflict which access temporal data.

In addition to data-deadline, there is another important characteristic is the stability of the

data. Real-time data has different rate of change, some change frequently and others not.

If |avie (X) －avib (X) | < k , we denoted temporal data as changeful, otherwise stable.

According to the different time limit of transactions, the value k dynamic changes along

with the transaction access to temporal data, it will be discussed in detail in the next

section.

www.intechopen.com

Real-Time Systems, Architecture, Scheduling, and Application

182

4. Related definition and validation mechanism

As another temporal limit of transaction, data-deadline, if it is less than transaction-

deadline, we must consider it; otherwise transactions may read inconsistent temporal data

when transactions commit. In order to ensure temporal consistency and the data which

transaction read to be effective, we must inspect and estimate the execution time.

Definition2. Transaction-deadline is d(T) , estimated time of completion is tC (T) , so delay

time is t tsd (T) d(T) C (T)= − . Because validation transaction has been completed all

operation reading and writing, delay time is t tsd (T) d(T) C (T)= − .

Definition3. If to
tL (T) φ= , we denoted tsdt(T) as temporal delay time of transaction T.

() (), () ()
()

() (), () ()

t t

t

t t t

d T C T dd T d T
tsd T

dd T C T dd T d T

− ≥
= 

− <

Definition4. At time t, the starting time of transaction T is s(T) , the deadline of transaction

T is d(T) ; we denoted tTFD (T) t s(T) d(T) s(T)= − − as the completeness of transaction T.

Definition5. Suppose the conflict transaction set of validation transaction Tv is CTS(T),

validation factor of Tv shows the ratio between the completeness of Tv and the

completeness of CTS(T), denoted t v t v tVF (T) TFD (T) TFD (T)= , T CTS(T)∈ . If t vVF (T) 1> at

time t , it shows validation transaction is easier to complete t than conflict transaction.

Definition6. Minimum running time of transaction was described from the current time t to

the required execution time of transaction.

If the deadline which transaction read temporal data objects is less than minimum running

time, transaction can't commit in validity, so the validity is impossibility. Before transaction

read data, we use a validation mechanism to check the validity of the data. It is used to

prevent transaction from reading invalid data, or the data which has not validity.

Before transaction executing, we declare that transaction access temporal data set to
s(T)RS (T) in

advance, the number of temporal data is to
s(T)L (T) . After transaction executing, we access

temporal data successively and check the validity of data dynamically in the process.

If tdd (T) d(T)> , and to
tL (T) φ= , data-deadline would be longer than transaction-deadline,

and transaction can’t access other temporal data, so it can’t affect the scheduling and

concurrency control. If tdd (T) d(T)> , but to
tL (T) φ≠ , transaction will access other temporal

data, so we must check whether satisfy tdd (T) d(T)> or not, when access all the temporal

data. CHECKING Algorithm was described as follows.

CHECKING Algorithm ():

INPUT: to 1 2 m
s(T)RS (T) {X ,X ...X }=

OUTPUT: k, to
tL (T)

{ k = ∞ ; to
s(T)N L (T)= ; i=1;

While (to
tRS (T) ≠ ∅)

{T accesses Xi from RS(T) ;

www.intechopen.com

Real-Time Concurrency Control Protocol Based on Accessing Temporal Data

183

to 1 2 m i
tRS (T) {X ,X ...X } {X }= − ;

if(| avie (Xi) －avib (Xi) |<k)

then if t tdd (T) C (T)<

then Abort(T);

else
i

j j
e b

j 1

k k |avi (X) avi (X)|
=

= − ;}

to
tL (T) N 1= − ;

i=i+1;
}

Before transaction access each temporal data, we call CHECKING Algorithm to ensure the
effectiveness of temporal data. At the same time, through dynamically adjusting value k, we
make the variable data consistency.

Lemma1. CHECKING Algorithm can ensure the consistency of variable temporal data.

If | avie (X) －avib (X) | < k , we denoted temporal data as changeful, otherwise stable.

Value k denoted the length of absolute validity; it changed dynamically along with the

transaction access to temporal data, and the smaller the k value is shows the more unstable

temporal data is. If temporal data which transaction access the next is more changeful than

the current, | avie (Xi) －avib (Xi) |<k , we restart to check whether the data can submit

before the deadline, if it can satisfy the temporal consistency, value k will be changed the

absolute valid length of temporal data. So CHECKING Algorithm check the consistency of

each of variable data to ensure transaction to submit correctly.

Theorem1. CHECKING Algorithm can ensure the consistency of transaction scheduling
temporal data.

Prove. Induce the number of temporal data n(T) which transaction T need access, When
n(T)=1, proposition was established obviously, otherwise transaction will abort. Supposed
n(T)=m, proposition was established. When n(T)=m+1, it can be divided into two cases:

1. When | avie (Xi) －avib (Xi) | ≥ k , it must satisfy the consistency of temporal data.

Supposed that transaction T access temporal data Xi at time t, according to the need of

the scheduling strategy, avib (Xi) = t, so i
e tavi (X) dd (T)≥ . Supposed n(T)=m,

proposition was established, t tdd (T) C (T)≥ , so i
e tavi (X) C (T)≥ . So before transactions

complete, all the data can satisfy the time limit proposition was established.

2. When| avie (Xi) －avib (Xi) |<k , the length of the absolute valid which transaction read

the next temporal data is less than k. Showing the accessing data is changeful, and

compute the value tdd (T) , on the basis of Lemma1, it satisfies temporal consistency of

data. Proposition was established. Sum up(1), (2), the proposition is established.

5. Real-Time concurrency control protocol based on accessing temporal data
(RTCC-DD)

The concurrency control mechanism in the database must guarantee the consistency of the
database; serializability is one correctness standard of concurrency control in the database.

www.intechopen.com

Real-Time Systems, Architecture, Scheduling, and Application

184

Methods discussed in this chapter are based on the optimistic concurrency control strategy,
when the transactions reading stage we use CHECKING Algorithm to guarantee access
temporal data consistency. When transactions come into the verify stage, we make the
reading and writing adjustment detection, at this stage the changes of the transactions of the
database is readable and effective, conflict transactions can read the private cache of
transactions to get the change. The transactions submit if all conflicts transactions are
serializable. Specific adjustment rules are as follows.

Rule1 At time t, when Lt(T)=0, assigned serial number for the transaction T ser(T) and enter
the validation phase, the scope of ser (T) is 1, 2 to n. The number of the first transaction
access the validation phase is 1, transactions access later cumulative.

Rule2 At time t, avie(Xi)<Ct(T) and the value of the ith version of X is similar with the next
version, then adjust the X temporal period to the next version, that temporal object is (value
(Xi) , avi (Xi)) , avi(Xi)＝[avib(Xi), avie(Xi＋1)].

Rule3 At time t, VFt(T)<1 and tsdt(Tv) > tsdt(Ti), i vT CTS(T)∈ adjust the serialization order

of transactions, ser(Ti)=ser(Tv), ser(Tv)=ser(Tv)+1. If RS(Tv)∩WS(Ti)≠Ø, Tv read the data of

Ti from private cache.

Rule4 At time t, submit transaction T, if only iT CTS(T)∀ ∈ , iser(T) ser(T)< .

Rule1 ensures transactions enter into validation phase and distribute serial number after
complete to access data. Rule2 ensures to extend the validity of temporal data valid
interval if next version data similar with the current version, and reduces unnecessary
transaction to restart. Rule3 ensures to run conflict transaction when the conflict of

transaction is more nearer completion than validation transaction, and validation
transaction can delay after the conflict transaction committed, and adjust the executive
order, when verification transaction is conflict with other transaction, allow validation

transaction to read data which conflict transaction update. Rule4 ensures that the
submitted transactions are serializability.

To ensure the effectiveness of the temporal data, RTCC-DD method adopts the checking
algorithm to check the access data set before transactions executing. And then, using an
optimistic approach, adjust the rules of the transaction validation phase. When verify
transaction and other transaction are conflict, to judge by the factor of authentication,
priority to scheduling the transaction which will be finished; taking consider the state that
verify the transaction when the delay time dynamic adjustment of transaction execution in
order to ensure the transactions of temporal data scheduling to satisfy the temporal
consistency. While it ensured the limit of the data and transaction, minimizing the
unnecessary transaction restarts. RTCC-DD concurrency control methods are described
below:

if Tv conflicts with Ti, i vT CTS(T)∈

if RS(Tv)∩WS(Ti)≠Ø then

if t v t v t i(VF (T) 1) (tsd (T) tsd (T))< ∧ >

then adjusts the execute order to Ti, Tv
else the execute order is Tv, Ti;

else if RS(Ti)∩WS(Tv)≠Ø then

www.intechopen.com

Real-Time Concurrency Control Protocol Based on Accessing Temporal Data

185

 if t v t i t v(VF (T) 1) (tsd (T) tsd (T))≥ ∧ >

then adjusts the excute order to Tv, Ti
else the execute order is Ti, Tv;

else if WS(Ti)∩WS(Tv)≠Ø then

 if t v t v t i(VF (T) 1) (tsd (T) tsd (T))< ∧ >

 then adjusts the execute order to Ti, Tv

else the execute order is Tv, Ti;
endif

endif

RTCC-DD method dynamically adjusts the data by checking the value of k, for each variable

temporal data are calculated to ensure that the scheduling of variable data; For the next

version of similar state cannot meet the time limit to extend the data deadline for its validity;

at the same time we using the optimistic concurrency control method, this method won’t

produce priority inversion and congestion; And it is the first time to solve the problem

about temporal data of concurrency control. Improved the problem of which is discussed in

the literature about the transaction scheduling problems of access to temporal data.

Example 2. The transaction and implementation in example 2 is the same with example 1,

transaction T1: w1(x)r1(y); T2: w2(y) r2(z). The period of validity of T1 is t7, the period of

validity of temporal data z is [t4, t6].

At time t5 when T2 access to validation phase, there is WS(Tv)∩RS(Ta)={y}≠Ø, according to

the RTCC-DD,

t v

84 2
VF (T) 1

7 4 7
= = > ,

5t 1 7 6tsd (T) t t= − ,
5t 2 6 6tsd (T) t t= − ,

thus satisfying the conditions t v t i t v(VF (T) 1) (tsd (T) tsd (T))≥ ∧ > , Adjust the order of

transaction execution to T2, T1. After the submit of T2, T1 can also meet the constraint of the

period of validity, scheduling T2, T1 successfully, so use method RTCC-DD, can avoid

transaction unnecessary restarts.

Serializability is one standard of correctness of concurrency control in the database. RTCC-

DD can guarantee the concurrency control of temporal data, at the same time satisfy the

serializability. We discuss the superiority and accuracy problems of RTCC-DD method as

below.

Lemma2 The traditional optimistic concurrency control methods can use RTCC-DD to

schedule.

Because the time constraint of access to transaction will influence the scheduling and

concurrency control, The traditional optimistic concurrency control methods only consider

the case of the transaction deadline, not discuss the deadline for data on the effect to

transaction concurrency control. In order to solve the problem, RTCC-DD take the optimistic

method; if the scheduling data is not temporal constrain, RTCC-DD will degenerate to the

traditional optimistic concurrency control methods, so the traditional optimistic concurrency

control methods can use RTCC-DD to scheduling.

www.intechopen.com

Real-Time Systems, Architecture, Scheduling, and Application

186

Theorem 2 RTCC-DD can guarantee the serializability of the transactions scheduling

Proof, according to the rule 1, if tL (T) 0= , assigned serial number for the transaction T

ser(T), guarantee only when the transaction access into the validation phase we assigned

serial number, and the serial number is only, according to rule 3 we dynamic adjust the

conflict transaction, and guarantee the least serial number first submit. According to the rule

4, only when all the conflict transactions serialize after this transaction, submit this

transaction, so submitting the transactions is constrain by serializability number, ensure the

serializability.

6. Experiment

A set of experiments have been carried out in order to examine the feasibility of the

algorithms in practice. The RTCC-DD method and the OCC-DA, OCC-DATI method are

implemented using C++ and compiled with gcc. All tests were performed on a Dell

OptiPlex GX270 PC with 2GB of RAM. The database is composed of pages with a number of

records and the records meet uniform distribution; the main performance criteria are the

transaction miss percentage.

parameter value

Database size

Transaction execute time

CPU computation time

Disk access time

Page hit rate

Operation number per transaction

Restart overhead

Mean transaction arrive time

400

100ms

10ms

20ms

80%

5~50

10

10~200ms

Table 1. Simulation Parameter

The traditional optimistic concurrency control methods (OCC-DA, OCC-DATI) and the

RTCC-DD method are compared in the experiment. The experiment results are shown in

Fig. 2. In Fig. 2a, the average temporal data number of transactions accesses changing from 0

to 25, the performance of RTCC-DD is better than OCC-DA and OCC-DATI. The reason is

that transactions scheduling considers the deadline of data in RTCC-DD method. If the

submitted time exceeds the deadline, the transaction will be restarted. And the methods of

OCC-DA and OCC-DATI do not consider the constraint of temporal data. When transaction

accesses a little temporal data, the difference of the performance are small, but as shown in

Fig. 2b, if there are a lots of temporal data, RTCC-DD method is obvious better than the

traditional concurrency control methods. With increasing the temporal data numbers in

system, the influence of the time constrain will increase. The more transactions will miss its

deadlines because of not satisfy the data deadline.

www.intechopen.com

Real-Time Concurrency Control Protocol Based on Accessing Temporal Data

187

a

b

a. Little Number of Temporal Data b. Much Number of Temporal Data

Fig. 2. Transactions Miss Percentage

7. Conclusion

The concurrency control method is one of the key problems in the database systems. The
optimistic methods are widely used in database system because it is not exists deadlock and
block. Unnecessary transactions restarting and nearing completing transactions missing its
deadline are the key factor effecting optimistic concurrency control method performances.

www.intechopen.com

Real-Time Systems, Architecture, Scheduling, and Application

188

Most of the research about the optimism concurrency control method are focus on how
reduces unnecessary transactions restarts and the transactions near to completed missing its
deadline. The most research is based on dynamic adjustment serialization method. When
the transactions access temporal data with time limit, the traditional concurrency control
method cannot schedule effectively because it is not consider data-deadline. This chapter
improved the validation phase rules and proposed an optimistic concurrency control
method based on temporal data (RTCC-DD), which considered the influence between
temporal data time limit and the transaction deadline. Theoretical analysis and experimental
results demonstrate that the RTCC-DD method can outperform the previous ones for
reducing effectively unnecessary restart number of transactions and more suitable for real-
time database system.

8. Acknowledgment

The chapter is sponsored by the National Natural Science Foundation of China under Grant

No. 41176082, 61073182; Heilongjiang Natural Science Foundation under Grant No. F201024;

The Fundamental Research Funds for the Central Universities No. HEUCFZ1010,

HEUCF100602.

9. References

A. Brad, K. Ben and G. M. Hector. Database support for efficiently maintaining derived data.

Technical Report, Stanford University, 1995: 223~240.

A. Fishwick. SIMPACK: Getting started with simulation programming in C and C++.

Department of Computer & Information Science, University of Florida, 1992. IEEE

Computer Society Press

D. Menasce and T. Nakanishi. Optimistic versus pessimistic concurrency control

mechanisms in database management systems. Information Systems, 7(1):13–27,

1982.

H. T. Kung and J. T. Robinson. On optimistic methods for concurrency control. ACM

Transactions on Database Systems, 6(2):213–226, June 1981.

J. Huang, J. A. Stankovic, K. Ramamritham, and D. Towsley. Experimental evaluation of

real-time optimistic concurrency control schemes. In Proceedings of the 17th VLDB

Conference, pages 35–46, Barcelona, Catalonia, Spain, September 1991. Morgan

Kaufmann.

J. Huang, J. A. Stankovic, K. Ramamritham, and D. Towsley. On using priority inheritance

in real-time databases. In Proceedings of the 12th IEEE Real-Time Systems

Symposium, pages 210–221, San Antonio, Texas, USA, 1991. IEEE Computer

Society Press.

J. Lee and S. H. Son. Using dynamic adjustment of serialization order for real-time database

systems. In Proceedings of the 14th IEEE Real-Time Systems Symposium, pages 66–

75, Raleigh-Durham, NC, USA, 1993. IEEE Computer Society Press.

J. Lee. Concurrency Control Algorithms for Real-Time Database Systems. PhD thesis,

Faculty of the School of Engineering and Applied Science, University of Virginia,

January 1994.

www.intechopen.com

Real-Time Concurrency Control Protocol Based on Accessing Temporal Data

189

J. Lindstrom and K. Ratikainen. Dynamic adjustment of serialization order using timestamp

intervals in real-time databases. In Proceedings of the 6th International Conference

on Real-Time Computing Systems and Applications, pages 13–20, Hong Kong,

China, 1999. IEEE Computer Society Press.

J. Lindstrom. Optimistic concurrency control methods for real-time database systems. Ph. D.

dissertation. University of Helsinki, FINLAND, 2003.

J. R. Haritsa, M. J. Carey and M. Livny. Dynamic real-time optimistic concurrency control. In

Proceedings of the 11th real-time symposium, 1990. 94~103.

J. R. Haritsa, M. J. Carey, and M. Livny. Dynamic real-time optimistic concurrency

control. In Proceedings of the 11th IEEE Real-Time Systems Symposium,

pages 94–103, Lake Buena Vista, Florida, USA, 1990. IEEE Computer Society

Press.

J. R. Haritsa, M. J. Carey, and M. Livny. On being optimistic about real-time constraints. In

Proceedings of the 9th ACM Symposium on Principles of Database Systems, pages

331–343, Nashville, Tennessee, 1990. ACM Press.

K. Ramamritham. Real-time databases. Distributed and Parallel Databases, 1:199–226, April

1993.

K. W. Lam, K. Y. Lam, and S. Hung. An efficient real-time optimistic concurrency

control protocol. In Proceedings of the First International Workshop on Active

and Real-Time Database Systems, pages 209–225, Sk¨ovde, Sweden, 1995.

Springer.

K. W. Lam, S. H. Son, and S. Hung. A priority ceiling protocol with dynamic adjustment of

serialization order. In Preceedings of the 13th IEEE Conference on Data

Engineering, Birmingham, UK, 1997. IEEE Computer Society Press.

L. Sha, R. Rajkumar, and J. P. Lehoczky. Concurrency control for distributed real-time

databases. ACM SIGMOD Record, 17(1):82–98, March 1988.

L. Sha, R. Rajkumar, and J. P. Lehoczky. Priority inheritance protocols: An approach to real-

time synchronization. IEEE Transactions on Computers, 39(9):1175–1185,

September 1990.

L. Sha, R. Rajkumar, S. H. Son, and C. -H. Chang. A real-time locking protocol. IEEE

Transactions on Computers, 40(7):793–800, January 1991.

M. Xiong, R. M. Sivasankaran, J. A. Stankovic, K. Ramamritham and D. Towsley. Scheduling

transactions with temporal constraints: exploiting data semantics. 17th IEEE Real-

time Systems Symposium. 1996.

S. H. Son, K. J. Lin. Real-Time Database Systems: Issues and Applications. Kluwer Academic

Publishers, 1997. 167-191

T. Kuo and A. K. Mok. Real-time data semantics and similarity-based concurrency control.

IEEE Transactions on Computers. 2000, 49(11): 1241~1254.

T. Kuo, A. K. Mok, SSP: a semantics-based protocol for Real-time data access. 14th IEEE real-

time systems symposium. 1993.

Y. S. Liu, G. H. Li. The effect of real-time database data characteristics on transactions.

Journal of computer research & development. 1999, 36(3): 364~368.

www.intechopen.com

Real-Time Systems, Architecture, Scheduling, and Application

190

Y. Y. Wang, Q. Wang, H. A. Wang. Dynamic adjustment of execution order in real-time

database. In Proceedings of 18th International Parallel and Distributed Processing

Symposium, 2004. 1219~1225.

www.intechopen.com

Real-Time Systems, Architecture, Scheduling, and Application

Edited by Dr. Seyed Morteza Babamir

ISBN 978-953-51-0510-7

Hard cover, 334 pages

Publisher InTech

Published online 11, April, 2012

Published in print edition April, 2012

InTech Europe

University Campus STeP Ri

Slavka Krautzeka 83/A

51000 Rijeka, Croatia

Phone: +385 (51) 770 447

Fax: +385 (51) 686 166

www.intechopen.com

InTech China

Unit 405, Office Block, Hotel Equatorial Shanghai

No.65, Yan An Road (West), Shanghai, 200040, China

Phone: +86-21-62489820

Fax: +86-21-62489821

This book is a rich text for introducing diverse aspects of real-time systems including architecture, specification

and verification, scheduling and real world applications. It is useful for advanced graduate students and

researchers in a wide range of disciplines impacted by embedded computing and software. Since the book

covers the most recent advances in real-time systems and communications networks, it serves as a vehicle for

technology transition within the real-time systems community of systems architects, designers, technologists,

and system analysts. Real-time applications are used in daily operations, such as engine and break

mechanisms in cars, traffic light and air-traffic control and heart beat and blood pressure monitoring. This book

includes 15 chapters arranged in 4 sections, Architecture (chapters 1-4), Specification and Verification

(chapters 5-6), Scheduling (chapters 7-9) and Real word applications (chapters 10-15).

How to reference

In order to correctly reference this scholarly work, feel free to copy and paste the following:

Qilong Han (2012). Real-Time Concurrency Control Protocol Based on Accessing Temporal Data, Real-Time

Systems, Architecture, Scheduling, and Application, Dr. Seyed Morteza Babamir (Ed.), ISBN: 978-953-51-

0510-7, InTech, Available from: http://www.intechopen.com/books/real-time-systems-architecture-scheduling-

and-application/real-time-concurrency-control-protocol-based-on-accessing-temporal-data

© 2012 The Author(s). Licensee IntechOpen. This is an open access article

distributed under the terms of the Creative Commons Attribution 3.0

License, which permits unrestricted use, distribution, and reproduction in

any medium, provided the original work is properly cited.

