
Selection of our books indexed in the Book Citation Index

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us?
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

186,000 200M

TOP 1%154

6,900

0

Handling Overload Conditions
in Real-Time Systems

Giorgio C. Buttazzo
Scuola Superiore Sant’Anna

Italy

1. Introduction

This chapter deals with the problem of handling overload conditions, that is, those critical
situations in which the computational demand requested by the application exceeds the
processor capacity (Buttazzo, 2011). If not properly handled, an overload can cause an abrupt
performance degradation, or even a system crash. Therefore, a real-time system should be
designed to anticipate and tolerate unexpected overload situations through specific kernel
mechanisms.

Overload conditions can occur for different causes, including bad system design,
simultaneous arrival of events, operating system exceptions, malfunctioning of input devices,
and unpredicted variations of the environmental conditions.

In the following, we consider a set of n periodic or sporadic tasks, Γ = {τ1, . . . , τn}, each
characterized by a worst-case execution time (WCET) Ci, a relative deadline Di, and a period
(or minimum inter-arrival time) Ti. Each task τi is initially activated at time Φi (denoted as the
task phase) and generates an infinite sequence of jobs τi,k (k = 1, 2, . . .). If a task τi is periodic,
a generic job τi,k is regularly activated at time ri,k = Φi + (k − 1)Ti. In general, the activation
time of job τi,k+1 is:

⎧

⎨

⎩

ri,k+1 = ri,k + Ti if τi is periodic
ri,k+1 ≥ ri,k + Ti if τi is sporadic
ri,k+1 > ri,k if τi is aperiodic.

Also, each job τi,k is characterized by an absolute deadline di,k = ri,k + Di . For a set of periodic
tasks, the hyperperiod H denotes the minimum interval of time after which the schedule
repeats itself. For a set of periodic tasks synchronously activated at time t = 0 (Φi = 0,
for all i), the hyperperiod is equal to the least common multiple of all the periods, that is
H = lcm(T1, . . . , Tn).

In a real-time system, the computational load depends on the temporal characteristics of the
executing activities. For example, for a set of n periodic tasks, the system load is equivalent to
the processor utilization factor (Liu & Layland, 1973):

U =
n

∑
i=1

Ci

Ti
. (1)

7

www.intechopen.com

2 Will-be-set-by-IN-TECH

A value U > 1 means that the total computation time requested by the task set in the
hyperperiod exceeds the available time on the processor (i.e, the length H); therefore, the task
set cannot be scheduled by any algorithm.

For a generic set of real-time jobs that can be dynamically activated, the system load varies at
each job activation and it is a function of the current time and the job deadlines. In general,
if there are n active jobs at time t, with absolute deadlines d1, d2, . . . , dn, the instantaneous load
ρ(t) can be defined as follows (Buttazzo & Stankovic, 1995):

ρ(t) = max
i

⎧

⎪

⎨

⎪

⎩

∑
dk≤di

ck(t)

di − t

⎫

⎪

⎬

⎪

⎭

, (2)

where ck(t) denotes the remaining worst-case computation time of the k-th job. Figure 1
shows how the instantaneous load varies as a function of time for a set of three real-time
jobs {J1, J2, J3} having activation times (ri: 3, 1, 2), computation times (Ci: 2, 3, 1), and relative
deadlines (Di: 3, 6, 7).

t

J1

J2

J3

0 2 4 6 81 3 5 7 109

ρ (t)

0.2

0.4

0.6

0.8

1.0

0.0

0 2 4 6 81 3 5 7 109

Fig. 1. Instantaneous load as a function of time for a set of three real-time jobs.

When dealing with computational load, it is important to distinguish between overload and
overrun:

• A computing system is said to experience an overload when the computation time
demanded by the task set in a certain interval of time exceeds the available processing
time in the same interval.

• A task is said to experience an overrun when it exceeds its expected utilization. An
overrun may occur either because the next job is activated before its expected arrival

150 Real-Time Systems, Architecture, Scheduling, and Application

www.intechopen.com

Handling Overload Conditions

in Real-Time Systems 3

time (activation overrun), or because the job computation time exceeds its expected value
(execution overrun).

Note that, while the overload is a condition related to the processor, the overrun is a condition
related to a single job. A job overrun does not necessarily cause an overload. However, a large
unexpected overrun or a sequence of overruns on multiple jobs can cause very unpredictable
effects on the system, if not properly handled.

In this chapter, two types of overload conditions will be analyzed:

• Transient overload due to task overruns. This type of overload is due to periodic or
aperiodic tasks that sporadically execute (or are activated) more than expected. Under
fixed priority scheduling, an overrun in a task τi does not affect tasks with higher priority,
but any of the lower priority task could miss its deadline. Under the Earliest Deadline First
(EDF) scheduling algorithm (Liu & Layland, 1973), a task overrun can potentially affect all
the other tasks in the system. Figure 2 shows an example of an execution overrun under
EDF scheduling. In this example, task τ3 experiences an overrun of 7 units of time (shown
in light gray), since its expected execution time was C3 = 3.

τ 1

τ 2

τ 3

0 2 4 6 8 10 12 14 16 18

deadline miss

deadline miss

Fig. 2. Effect of an execution overrun in an EDF schedule.

• Permanent overload in periodic task systems. This type of overload occurs when the
total utilization of the periodic task set is greater than one. This can happen either because
the execution requirement of the task set was not correctly estimated, or because of some
unexpected activation of new periodic tasks, or because some of the current tasks increased
their activation rate to react to some change in the environment. In such a situation, tasks
start accumulating in the system’s queues (which tend to become longer and longer, if
the overload persists), and their response times tend to increase indefinitely. Figure 3
shows the effect of a permanent overload condition in a Rate Monotonic schedule, where
computation times are Ci: (2, 3, 2), and periods are Ti: (4, 6, 8). Note that, since Up = 1.25,
τ2 misses its deadline and τ3 can never execute.

2. Handling transient overloads

If not properly handled, task overruns can cause serious problems in the real-time system,
jeopardizing the guarantee performed for the critical tasks and causing an abrupt performance
degradation.

To prevent an overrun to introducing unbounded delays on tasks’ execution, the system could
either decide to abort the current job experiencing the overrun or let it continue with a lower
priority. The first solution is not safe, because the job could be in a critical section when
aborted, thus leaving a shared resource with inconsistent data (very dangerous). The second
solution is much more flexible, since the degree of interference caused by the overrun on the

151Handling Overload Conditions in Real-Time Systems

www.intechopen.com

4 Will-be-set-by-IN-TECH

τ 1

τ 2

τ 3

0 2 4 6 8 10 12 14 16 18

deadline miss

Fig. 3. Example of a permanent overload under Rate Monotonic: τ2 misses its deadline and
τ3 can never execute.

other tasks can be tuned acting on the priority assigned to the “faulty” task for executing
the remaining computation. Such a solution can be efficiently implemented through the
resource reservation approach, which is a general kernel technique for limiting the inter-task
interference and isolating the temporal behavior of a task subset.

2.1 Resource reservation

Resource reservation is a general technique used in real-time systems for limiting the effects
of overruns in tasks with variable computation times. According to this method, each task is
assigned a fraction of the processor bandwidth, just enough to satisfy its timing constraints.
The kernel, however, must prevent each task to consume more than the requested amount to
protect the other tasks in the systems (temporal protection). In this way, a task receiving a
fraction Ui of the total processor bandwidth behaves as it were executing alone on a slower
processor with a speed equal to Ui times the full speed. The advantage of this method is that
each task can be guaranteed in isolation, independently of the behavior of the other tasks.

A resource reservation technique for fixed priority scheduling was first presented by Mercer,
Savage and Tokuda (Mercer et al., 1994). According to this method, a task τi is handled by a
server, which is a kernel mechanism capable of controlling the execution of the task assigned
to it through a pair of parameters (Qs, Ps) (denoted as a CPU capacity reserve). The server
enables τi to execute for Qs units of time every Ps. In this case, the bandwidth reserved to
the task is Us = Qs/Ps. When the task consumes its reserved quantum Qs, it is blocked until
the next period, if the reservation is hard, or it is scheduled in background as a non real-time
task, if the reservation is soft. If the task is not finished, it is assigned another time quantum
Qs at the beginning of the next period and it is scheduled as a real-time task until the budget
expires, and so on. In this way, the execution of τi is reshaped to be more uniform along the
timeline, so avoiding long intervals of time in which τi prevents other tasks to run.

Under EDF scheduling, resource reservation can be efficiently implemented through the
Constant Bandwidth Server (CBS) (Abeni & Buttazzo, 1998; 2004), which is a service
mechanism also controlled by two parameters, (Qs, Ps), where Qs is the server maximum budget
and Ps is the server period. The ratio Us = Qs/Ps is denoted as the server bandwidth. At each
instant, two state variables are maintained: the server deadline ds and the actual server budget
qs. Each job handled by a server is scheduled using the current server deadline and whenever
the server executes a job, the budget qs is decreased by the same amount. At the beginning
ds = qs = 0. Since a job is not activated while the previous one is active, the CBS algorithm
can be formally defined as follows:

152 Real-Time Systems, Architecture, Scheduling, and Application

www.intechopen.com

Handling Overload Conditions

in Real-Time Systems 5

1. When a job τi,j arrives, if qs ≥ (ds − ri,j)Us, it is assigned a server deadline ds = ri,j + Ps

and qs is recharged at the maximum value Qs, otherwise the job is served with the current
deadline using the current budget.

2. When qs = 0, the server budget is recharged at the maximum value Qs and the server
deadline is postponed at ds = ds + Ps. Note that there are no finite intervals of time in
which the budget is equal to zero.

As shown in (Abeni & Buttazzo, 2004), if a task τi is handled by a CBS with bandwidth Us, it
will never demand more than Us, independently of the actual execution time of its jobs. As a
consequence, possible overruns occurring in the served task do not create extra interference
in the other tasks, but only affect τi.

To properly implement temporal protection, however, each task τi with variable computation
time should be handled by a dedicated CBS with bandwidth Usi

, so that it cannot interfere
with the rest of the tasks for more than Usi

. Figure 4 illustrates an example in which two tasks
(τ1 and τ2) are served by two dedicated CBSs with bandwidth Us1 = 0.15 and Us2 = 0.1,
a group of two tasks (τ3, τ4) is handled by a single CBS with bandwidth Us3 = 0.25, and
three hard periodic tasks (τ5, τ6, τ7) with utilization Up = 0.5 are directly scheduled by EDF,
without server intercession, since their execution times are not subject to large variations. In
this example, the total processor bandwidth is shared among the tasks as shown in Figure 5.

CBS 1
τ 1

τ 3

τ 4

CBS 3

τ 2 CBS 2

τ 5

τ 6

τ 7

CPU

Us1 = 0.15

Us2 = 0.1

Us3 = 0.25

EDF

Fig. 4. Achieving temporal protection using the CBS mechanism.

Us2 = 0.1

Us3 = 0.25

Us1

HARD

tasks

= 0.15

Fig. 5. Bandwidth allocation for a set of task.

The properties of the CBS guarantee that the set of hard periodic tasks (with utilization Up) is
schedulable by EDF if and only if

Up + Us1 + Us2 + Us3 ≤ 1. (3)

153Handling Overload Conditions in Real-Time Systems

www.intechopen.com

6 Will-be-set-by-IN-TECH

Note that if condition (3) holds, the set of hard periodic tasks is always guaranteed to use 50%
of the processor, independently of the execution times of the other tasks. Also observe that
τ3 and τ4 are not isolated with respect to each other (i.e., one can steals processor time from
the other), but they cannot interfere with the other tasks for more than one-fourth of the total
processor bandwidth.

The CBS version presented in this book is meant for handling soft reservations. In fact, when
the budget is exhausted, it is always replenished at its full value and the server deadline is
postponed (i.e., the server is always active). As a consequence, a served task can execute more
than Qs in each period Ps, if there are no other tasks in the system. However, the CBS can be
easily modified to enforce hard reservations, just by postponing the budget replenishment to
the server deadline.

2.2 Schedulability analysis

Although a reservation Rk is typically implemented using a server characterized by a budget
Qk and a period Tk, there are cases in which temporal isolation can be achieved by executing
tasks in a static partition of disjoint time slots.

To characterize a bandwidth reservation independently on the specific implementation, Mok
et al. (Mok et al., 2001) introduced the concept of bounded delay partition that describes
a reservation Rk by two parameters: a bandwidth αk and a delay ∆k. The bandwidth
αk measures the fraction of resource that is assigned to the served tasks, whereas the
delay ∆k represents the longest interval of time in which the resource is not available. In
general, the minimum service provided by a resource can be precisely described by its supply
function (Lipari & Bini, 2003; Shin & Lee, 2003), representing the minimum amount of time the
resource can provide in a given interval of time.

Definition 1. Given a reservation, the supply function Zk(t) is the minimum amount of time
provided by the reservation in every time interval of length t ≥ 0.

The supply function can be defined for many kinds of reservations, as static time
partitions (Feng & Mok, 2002; Mok et al., 2001), periodic servers (Lipari & Bini, 2003; Shin
& Lee, 2003), or periodic servers with arbitrary deadline (Easwaran et al., 2007). Consider, for
example, that processing time is provided only in the intervals [0,3], [6,8], and [9,10], with a
period of 12 units. In this case, the minimum service occurs when the resource is requested
at the beginning of the longest idle interval; hence, the supply function is the one depicted in
Figure 6.

For this example we have αk = 0.5 and ∆k = 3. Once the bandwidth and the delay
are computed, the supply function of a resource reservation can be lower bounded by the
following supply bound function:

sbfk(t)
def
= max{0, αk(t − ∆k)}. (4)

represented by the dashed line in Figure 6. The advantage of using such a lower bound instead
of the exact Zk(t) is that a reservation can be expressed with just two parameters. In general,
for a given supply function Zk(t), the bandwidth αk and the delay ∆k can be formally defined
as follows:

154 Real-Time Systems, Architecture, Scheduling, and Application

www.intechopen.com

Handling Overload Conditions

in Real-Time Systems 7

0

Zk(t)

t

∆k

αk

Fig. 6. A reservation implemented by a static partition of intervals.

αk = lim
t→∞

Zk(t)

t
(5)

∆k = sup
t≥0

{

t −
Zk(t)

αk

}

. (6)

If a reservation is implemented using a periodic server with unspecified priority that allocates
a budget Qk every period Tk, then the supply function is the one illustrated in Figure 7, where

αk = Qk/Tk (7)

∆k = 2(Tk − Qk). (8)

It is worth observing that reservations with smaller delays are able to serve tasks with shorter
deadlines, providing better responsiveness. However, small delays can only be achieved
with servers with a small period, condition for which the context switch overhead cannot
be neglected. If σ is the runtime overhead due to a context switch (subtracted from the budget
every period), then the effective bandwidth of reservation Rk is

αeffk =
Q − σ

Tk
= αk

(

1 −
σ

Qk

)

.

Expressing Qk and Tk as a function of αk and ∆k we have

Qk =
αk∆k

2(1 − αk)

Pk =
∆k

2(1 − αk)
.

Hence,

αeffk = αk +
2σ(1 − αk)

∆k
. (9)

155Handling Overload Conditions in Real-Time Systems

www.intechopen.com

8 Will-be-set-by-IN-TECH

0

Q

2Q

3Q

Q

Z(t)

t∆

α

2(P − Q)

Fig. 7. A reservation implemented by a periodic server.

Within a reservation, the schedulability analysis of a task set under fixed priorities can be
performed through the following Theorem (Bini et al., 2009):

Theorem 1 (Bini et al., 2009). A set of preemptive periodic tasks with relative deadlines less than or
equal to periods can be scheduled by a fixed priority algorithm, under a reservation characterized by a
supply function Zk(t), if and only if

∀i = 1, . . . , n ∃t ∈ (0, Di] : Wi(t) ≤ Zk(t). (10)

where Wi(t) represents the Level-i workload, computed as follows:

Wi(t) = Ci + ∑
h:Ph>Pi

⌈

t

Th

⌉

Ch. (11)

Similarly, the schedulability analysis of a task set under EDF can be performed using the
following theorem (Bini et al., 2009):

Theorem 2 (Bini et al., 2009). A set of preemptive periodic tasks with utilization Up and relative
deadlines less than or equal to periods can be scheduled by EDF, under a reservation characterized by a
supply function Zk(t), if and only if Up < αk and

∀t > 0 dbf(t) ≤ Zk(t). (12)

where dbf(t) is the Demand Bound Function (Baruah et al., 1990) defined as

dbf(t)
def
=

n

∑
i=1

⌊

t + Ti − Di

Ti

⌋

Ci. (13)

In the specific case in which Zk(t) is lower bounded by the supply bound function, the test
becomes only sufficient and the set of testing points can be better restricted as stated in the
following theorem (Bertogna et al., 2009):

156 Real-Time Systems, Architecture, Scheduling, and Application

www.intechopen.com

Handling Overload Conditions

in Real-Time Systems 9

Theorem 3 (Bertogna et al., 2009). A set of preemptive periodic tasks with utilization Up and relative
deadlines less than or equal to periods can be scheduled by EDF, under a reservation characterized by a
supply function Zk(t) = max[0, αk(t − ∆k)], if Up < αk and

∀t ∈ D dbf(t) ≤ max[0, αk(t − ∆k)]. (14)

where
D = {dk | dk ≤ min[H, max(Dmax, L∗)]}

and

L∗ =
αk∆k + ∑

n
i=1(Ti − Di)Ui

αk − Up
.

2.3 Handling wrong reservations

Although resource reservation is essential for achieving predictability in the presence of tasks
with variable execution times, the overall system performance becomes quite dependent on a
correct bandwidth allocation. In fact, if the CPU bandwidth allocated to a task is much less
than its average requested value, the task may slow down too much, degrading the system’s
performance. On the other hand, if the allocated bandwidth is much greater than the actual
needs, the system will run with low efficiency, wasting the available resources. This problem
can be solved by using capacity sharing mechanisms that can transfer unused budgets to the
reservations that need more bandwidth.

Capacity sharing algorithms have been developed both under fixed priority servers (Bernat
et al., December 5-8, 2004; Bernat & Burns, 2002) and dynamic priority servers (Caccamo et al.,
2000). For example, the CASH algorithm (Caccamo et al., 2005) extends CBS to include a
slack reclamation. When a server becomes idle with residual budget, the slack is inserted in a
queue of spare budgets (CASH queue) ordered by server deadlines. Whenever a new server
is scheduled for execution, it first uses any CASH budget whose deadline is less than or equal
to its own.

The bandwidth inheritance (BWI) algorithm (Lamastra et al., December 3-6, 2001) applies
the idea of priority inheritance to CPU resources in CBS, allowing a blocking low-priority
process to steal resources from a blocked higher priority process. IRIS (Marzario et al., 2004)
enhances CBS with fairer slack reclaiming, so slack is not reclaimed until all current jobs have

been serviced and the processor is idle. BACKSLASH (Lin & Brandt, December 5Ű8, 2005) is
another algorithm that enhances the efficiency of the reclaiming mechanism under EDF.

Wrong reservations can also be handled through feedback scheduling. If the operating system
is able to monitor the actual execution time ei,k of each task instance, the actual maximum
computation time of a task τi can be estimated (in a moving window) as

Ĉi = max
k

{ei,k}

and the actual requested bandwidth as Ûi = Ĉi/Ti. Hence, Ûi can be used as a reference
value in a feedback loop to adapt the reservation bandwidth allocated to the task according
to the actual needs. If more reservations are adapted online, we must ensure that the
overall allocated bandwidth does not exceed the processor utilization; hence, a form of global
feedback adaptation is required to prevent an overload condition. Similar approaches to

157Handling Overload Conditions in Real-Time Systems

www.intechopen.com

10 Will-be-set-by-IN-TECH

achieve adaptive reservations have been proposed by Abeni and Buttazzo (Abeni & Buttazzo,
May 30 - June 1, 2001) and by Palopoli et al. (Palopoli et al., December 3-5, 2002).

3. Handling permanent overloads

This section presents some methodologies for handling permanent overload conditions
occurring in periodic task systems when the total processor utilization exceeds one. Basically,
there are three methods to reduce the load:

• Job skipping. This method reduces the total load by properly skipping (i.e., aborting)
some job execution in the periodic tasks, in such a way that a minimum number of jobs per
task is guaranteed to execute within their timing constraints.

• Period adaptation. According to this approach, the load is reduced by enlarging task
periods to suitable values, so that the total workload can be kept below a desired threshold.

• Service adaptation. According to this method, the load is reduced by decreasing the
computational requirements of the tasks, trading predictability with quality of service.

3.1 Job skipping

The computational load of a set of periodic tasks can be reduced by properly skipping a few
jobs in the task set, in such a way that the remaining jobs can be scheduled within their
deadlines. This approach is suitable for real-time applications characterized by soft or firm
deadlines, such as those typically found in multimedia systems, where skipping a video
frame once in a while is better than processing it with a long delay. Even in certain control
applications, the sporadic skip of some job can be tolerated when the controlled systems is
characterized by a high inertia.

To understand how job skipping can make an overloaded system schedulable, consider the
following example, consisting of two tasks, with computation times C1 = 2 and C2 = 8 and
periods T1 = 4 and T2 = 12. Since the processor utilization factor is Up = 14/12 > 1,
the system is under a permanent overload, and the tasks cannot be scheduled within their
deadlines. Nevertheless, Figure 8 shows that skipping a job every three in task τ1 the overload
can be resolved and all the remaining jobs can be scheduled within their deadlines.

 0 2 6 8 10 12 14 4 1816 20 22 24 26

 0 2 6 8 10 12 14 4 1816 20 22 24 26

τ 1

τ 2

skipskip

Fig. 8. Overload condition resolved by skipping one job every three in task τ1.

In order to control the overall system load, it is important to derive the relation between
the number of skips (i.e., the number of aborted jobs per task) and the total computational
demand. In 1995, Koren and Shasha (Koren & Shasha, 1995) proposed a new task model
(known as the firm periodic model) suited to be handled by this technique. According to this
model, each periodic task τi is characterized by the following parameters:

τi(Ci, Ti, Di, Si)

158 Real-Time Systems, Architecture, Scheduling, and Application

www.intechopen.com

Handling Overload Conditions

in Real-Time Systems 11

where Ci is the worst-case computation time, Ti its period, Di its relative deadline (assumed
to be equal to the period), and Si a skip parameter, 2 ≤ Si ≤ ∞, expressing the minimum
distance between two consecutive skips. For example, if Si = 5 the task can skip one instance
every five. When Si = ∞ no skips are allowed and τi is equivalent to a hard periodic task. The
skip parameter can be viewed as a Quality of Service (QoS) metric (the higher Si, the better the
quality of service).

Using the terminology introduced by Koren and Shasha (Koren & Shasha, 1995), every job of
a periodic task can be red or blue: a red job must be completed within its deadline, whereas a
blue job can be aborted at any time. To meet the constraint imposed by the skip parameter Si,
each scheduling algorithm must have the following characteristics:

• if a blue job is skipped, then the next Si − 1 jobs must be red.

• if a blue job completes successfully, the next job is also blue.

The authors showed that making optimal use of skips is NP-hard and presented two
algorithms (one working under Rate Monotonic and one under EDF) that exploit skips to
schedule slightly overloaded systems. In general, these algorithms are not optimal, but they
become optimal under a particular condition, called the deeply-red condition.

Definition 2. A system is deeply-red if all tasks are synchronously activated and the first Si − 1
instances of every task τi are red.

Koren and Shasha showed that the worst case for a periodic skippable task set occurs when
tasks are deeply-red. For this reason, the feasibility tests are derived under this condition, so
that, if a task set is schedulable under the deeply-red condition, it is also schedulable in any
other situation.

3.1.1 Schedulability analysis

The feasibility analysis of a set of firm tasks can be performed through the Processor Demand
Criterion (Baruah et al., 1990) under the deeply-red condition, assuming that in the worst case
all blue jobs are aborted. In such a worst-case scenario, the processor demand of τi due to the
red jobs in an interval [0, t] can be obtained as the difference between the demand of all the
jobs and the demand of the blue jobs:

dbf
skip
i (t) =

(⌊

t

Ti

⌋

−

⌊

t

TiSi

⌋)

Ci. (15)

Hence, the feasibility of the task set can be verified through the following theorem.

Theorem 4 (Koren and Shasha, 1995). A set of firm periodic tasks is schedulable by EDF if

∀t ≥ 0
n

∑
i=1

(⌊

t

Ti

⌋

−

⌊

t

TiSi

⌋)

Ci ≤ t. (16)

A necessary condition can be easily derived by observing that a schedule is certainly infeasible
when the utilization factor due to the red jobs is greater than one.

Theorem 5 (Koren and Shasha, 1995). Necessary condition for the schedulability of a set of firm
periodic tasks is that

n

∑
i=1

Ci(Si − 1)

TiSi
≤ 1. (17)

159Handling Overload Conditions in Real-Time Systems

www.intechopen.com

12 Will-be-set-by-IN-TECH

To better clarify the concepts mentioned above, consider the task set shown in Figure 9 and the
corresponding feasible schedule, obtained by EDF. Note that the processor utilization factor
is greater than 1 (Up = 1.25), but both conditions (16) and (17) are satisfied.

Task Ci Ti Di Si

τ1 1 3 3 4
τ2 2 4 4 3

τ3 5 12 12 ∞

240

1

12

skip

skip skip

skip

15

4 8 16 2012 240

12 2118 27240 963

3τ

2τ

τ

Fig. 9. A set of firm periodic tasks schedulable by EDF.

If skips are permitted in the periodic task set, the spare time saved by rejecting the blue
instances can be reallocated for other purposes. For example, for scheduling slightly
overloaded systems or for advancing the execution of soft aperiodic requests.

Unfortunately, the spare time has a “granular” distribution and cannot be reclaimed at any
time. Nevertheless, it can be shown that skipping blue instances still produces a bandwidth
saving in the periodic schedule. Caccamo and Buttazzo (Caccamo & Buttazzo, 1997) identified
the amount of bandwidth saved by skips using a simple parameter, the equivalent utilization

factor U
skip
p , which can be defined as

U
skip
p = max

t≥0

{

∑i dbf
skip
i (t)

t

}

(18)

where dbf
skip
i (t) is given in Equation (15).

Using this definition, the schedulability of a deeply-red skippable task set can be also verified
using the following theorem (Caccamo & Buttazzo, 1997):

Theorem 6 (Caccamo and Buttazzo, 1997). A set Γ of deeply-red skippable periodic tasks is
schedulable by EDF if

U
skip
p ≤ 1.

Note that the U
skip
p factor represents the net bandwidth really used by periodic tasks, under

the deeply-red condition. It is easy to show that U
skip
p ≤ Up. In fact, according to Equation

160 Real-Time Systems, Architecture, Scheduling, and Application

www.intechopen.com

Handling Overload Conditions

in Real-Time Systems 13

(18) (setting Si = ∞), Up can also be defined as

Up = max
t≥0

⎧

⎨

⎩

∑i

⌊

t
Ti

⌋

Ci

t

⎫

⎬

⎭

.

Thus, U
skip
p ≤ Up because

(⌊

t

Ti

⌋

−

⌊

t

TiSi

⌋)

≤

⌊

t

Ti

⌋

.

The bandwidth saved by skips can also be exploited by an aperiodic server to advance the
execution of aperiodic tasks.

3.2 Period adaptation

There are several real-time applications in which timing constraints are not rigid, but depend
on the system state. The possibility of varying tasks’ rates increases the flexibility of the system
in handling overload conditions, providing a more general admission control mechanism. For
example, if the total utilization of the task set is greater than one, the system could reduce the
utilizations of some tasks (by increasing their periods in a controlled fashion) to decrease the
total load.

The elastic model presented in this section (originally introduced Buttazzo et al. (Buttazzo
et al., 1998) and later extended by the same authors to deal with resource constraints (Buttazzo
et al., 2002)), provides a novel theoretical framework for flexible workload management in
real-time applications.

3.2.1 The elastic model

The basic idea behind the elastic model is to consider each task as flexible as a spring with
a given rigidity coefficient and length constraints. In particular, the utilization of a task is
treated as an elastic parameter, whose value can be modified by changing the period within
a specified range. Each task is characterized by four parameters: a computation time Ci, a

minimum period Tmin
i , a maximum period Tmax

i , and an elastic coefficient Ei ≥ 0, which
specifies the flexibility of the task to vary its utilization for adapting the system to a new
feasible rate configuration. The greater Ei, the more elastic the task. Thus, an elastic task is
denoted as

τi(Ci, Tmin
i , Tmax

i , Ei).

In the following, Ti denotes the actual period of task τi, which is constrained to be in the

range [Tmin
i , Tmax

i]. Any task can vary its period according to its needs within the specified
range. Any variation, however, is subject to an elastic guarantee and is accepted only if there is
a feasible schedule in which all the other periods are within their range.

It is worth noting that the elastic model is more general than the classical Liu and Layland’s
task model (Liu & Layland, 1973), so it does not prevent a user from defining hard real-time

tasks. In fact, a task having Tmax
i = Tmin

i is equivalent to a hard real-time task with fixed
period, independently of its elastic coefficient. A task with Ei = 0 can arbitrarily vary
its period within its specified range, but it cannot be varied by the system during load
reconfigurations.

161Handling Overload Conditions in Real-Time Systems

www.intechopen.com

14 Will-be-set-by-IN-TECH

Under the elastic model, given a set of n periodic tasks with utilization Up > 1, the objective
of the elastic guarantee is to compress tasks’ utilization factors to achieve a new desired
utilization Ud ≤ 1 such that all the periods are within their ranges.

The following definitions are also used in this section:

Umin
i = Ci/Tmax

i ;

Umin =
n

∑
i=1

Umin
i ;

Umax
i = Ci/Tmin

i ;

Umax =
n

∑
i=1

Umax
i .

Clearly, a solution can always be found if Umin ≤ Ud; hence, this condition has to be verified
a priori.

To understand how an elastic guarantee is performed in this model, it is convenient to
compare an elastic task τi having utilization Ui and elasticity Ei with a linear spring Si
characterized by a length xi and a rigidity coefficient ki, equivalent to the inverse of the task’s
elasticity (ki = 1/Ei). In this comparison, the nominal length xi0

of the spring is equivalent

to Umax
i , whereas the minimum length xmin

i is equivalent to Umin
i . Hence, a set of n periodic

tasks with total utilization factor Up = ∑
n
i=1 Ui can be viewed as a sequence of n springs with

total length L = ∑
n
i=1 xi .

In the special case in which Umin
i = 0 for all tasks, the compressed task utilizations can be

derived by solving a set of n spring linear equations, under the constraint that ∑
n
i=1 Ui = Ud.

The resulting expression is:

∀i Ui = Umax
i − (Umax − Ud)

Ei

Es
. (19)

where Es = ∑
n
i=1 Ei.

If each spring has a length constraint, in the sense that its length cannot be less than a

minimum value xmin
i , the problem of finding the values xi requires an iterative solution. In

fact, if during compression one or more springs reach their minimum length, the additional
compression force will only deform the remaining springs. Such a situation is depicted in
Figure 10.

Thus, at each instant, the set Γ can be divided into two subsets: a set Γ f of fixed springs
having minimum length (equivalent to tasks that reached their minimum utilization with the
maximum period), and a set Γv of variable springs that can still be compressed. If Umax

v is the
sum of the maximum utilizations of tasks in Γv, and U f is the total utilization factor of tasks
in Γ f , then, to achieve a desired utilization Ud ≤ 1, each task has to be compressed up to the
following utilization:

∀τi ∈ Γv Ui = Umax
i − (Umax

v − Ud + U f)
Ei

Ev
(20)

162 Real-Time Systems, Architecture, Scheduling, and Application

www.intechopen.com

Handling Overload Conditions

in Real-Time Systems 15

(a)

(b)

L0

x 40x 30x 20x 10

x
1−min

x
3−min

x
4−min

x
2−min

L0Ld Lmax

x 1 x 2 x 4x 3

L

L

F

Fig. 10. Springs with minimum length constraints (a); during compression, spring S2 reaches
its minimum length and cannot be compressed any further (b).

where
Umax

v = ∑
τi∈Γv

Umax
i (21)

U f = ∑
τi∈Γ f

Umin
i (22)

Ev = ∑
τi∈Γv

Ei. (23)

If there are tasks for which Ui < Umin
i , then the period of those tasks has to be fixed at its

maximum value Tmax
i (so that Ui = Umin

i), sets Γ f and Γv must be updated (hence, U f and Ev

recomputed), and Equation (20) applied again to the tasks in Γv. If there is a feasible solution,
that is, if Umin ≤ Ud, the iterative process ends when each value Ui computed by Equation (20)

is greater than or equal to its corresponding minimum Umin
i . The algorithm for compressing

a set Γ of n elastic tasks up to a desired utilization Ud is shown in Figure 11.

All tasks’ utilizations that have been compressed to cope with an overload situation can return
toward their nominal values when the overload is over.

The elastic compression algorithm can be efficiently implemented on top of a real-time kernel
as a routine (elastic manager) that is activated every time a new task is created, terminated, or
there is a request for a period change. When activated, the elastic manager computes the new
periods according to the compression algorithm and modifies them atomically.

To avoid any deadline miss during the transition phase, it is crucial to ensure that all the
periods are modified at opportune time instants. In particular, the period of a task τi can be
increased at any time, but can only be reduced at the next job activation. An earlier instant
at which a period can be safely reduced without causing any deadline miss in the transition
phase has been computed by Buttazzo et al. (Buttazzo et al., 2002) and later improved by
Guangming (Guangming, 2009).

3.2.2 Period rescaling

If the elastic coefficients are set equal to task nominal utilizations, elastic compression has the
effect of a simple rescaling, where all the periods are increased by the same percentage. In

163Handling Overload Conditions in Real-Time Systems

www.intechopen.com

16 Will-be-set-by-IN-TECH

Algorithm: Elastic_compression(Γ, Ud)
Input: A task set Γ and a desired utilization Ud ≤ 1
Output: A task set with modified periods such that Up = Ud

begin

(1) Umin := ∑
n
i=1 Ci/Tmax

i ;
(2) if (Ud < Umin) return(INFEASIBLE);

(3) for (i := 1 to n) Umax
i := Ci/Tmin

i ;

(4) do
(5) U f := 0; Umax

v := 0; Ev := 0;

(6) for (i := 1 to n) do
(7) if ((Ei == 0) or (Ti == Tmax

i)) then

(8) U f := U f + Umin
i ;

(9) else
(10) Ev := Ev + Ei;
(11) Umax

v := Umax
v + Umax

i ;
(12) end
(13) end

(14) ok := 1;
(15) for (each τi ∈ Γv) do
(16) if ((Ei > 0) and (Ti < Tmax

i)) then
(17) Ui := Umax

i − (Umax
v − Ud + U f)Ei/Ev;

(18) Ti := Ci/Ui;
(19) if (Ti > Tmax

i) then
(20) Ti := Tmax

i ;
(21) ok := 0;
(22) end
(23) end
(24) end

(25) while (ok == 0);
(26) return(FEASIBLE);

end

Fig. 11. Algorithm for compressing a set of elastic tasks.

164 Real-Time Systems, Architecture, Scheduling, and Application

www.intechopen.com

Handling Overload Conditions

in Real-Time Systems 17

order to work correctly, however, period rescaling must be uniformly applied to all the tasks,
without restrictions on the maximum period. This means having U f = 0 and Umax

v = Umax.
Under this assumption, by setting Ei = Umax

i , Equation (20) becomes:

∀i Ui = Umax
i − (Umax − Ud)

Umax
i

Umax
=

Umax
i

Umax
Ud

from which we have

Ti = Tmin
i

Umax

Ud
. (24)

This means that in overload situations (Umax > 1) the compression algorithm causes all task
periods to be increased by a common scale factor

η =
Umax

Ud
.

Note that after compression is performed, the total processor utilization becomes

U =
n

∑
i=1

Ci

Ti
=

n

∑
i=1

Ci

ηTmin
i

=
1

η
Umax =

Ud

Umax
Umax = Ud

as desired.

If a maximum period needs to be defined for some task, an online guarantee test can easily be
performed before compression to check whether all the new periods are less than or equal to
the maximum value. This can be done in O(n) by testing whether

∀i = 1, . . . , n ηTmin
i ≤ Tmax

i .

By deciding to apply period rescaling, we lose the freedom of choosing the elastic coefficients,
since they must be set equal to task maximum utilizations (Ei = Umax

i). However,
this technique has the advantage of leaving the task periods ordered as in the nominal
configuration, which simplifies the compression algorithm in the presence of resource
constraints and enables its usage in fixed priority systems, where priorities are typically
assigned based on periods.

3.3 Service adaptation

A third method for coping with a permanent overload condition is to reduce the load
by decreasing the task computation times. This can be done only if the tasks have been
originally designed to trade performance with computational requirements. When tasks
use some incremental algorithm to produce approximated results, the precision of results
is related to the number of iterations, and thus with the computation time. In this case, an
overload condition can be handled by reducing the quality of results, aborting the remaining
computation if the quality of the current results is acceptable.

The concept of imprecise and approximate computation has emerged as a new approach to
increasing flexibility in dynamic scheduling by trading computation accuracy with timing
requirements. If processing time is not enough to produce high-quality results within the
deadlines, there could be enough time for producing approximate results with a lower quality.
This concept has been formalized by many authors (Lin et al., 1987; Liu et al., 1987; 1991; 1994;

165Handling Overload Conditions in Real-Time Systems

www.intechopen.com

18 Will-be-set-by-IN-TECH

Natarajan, 1995; Shih et al., 1991) and specific techniques have been developed for designing
programs that can produce partial results.

In a real-time system that supports imprecise computation, every task τi is decomposed into
a mandatory subtask Mi and an optional subtask Oi. The mandatory subtask is the portion
of the computation that must be done in order to produce a result of acceptable quality,
whereas the optional subtask refines this result (Shih et al., 1989). Both subtasks have the
same activation time ri and the same deadline di as the original task τi; however, Oi becomes
ready for execution when Mi is completed. If Ci is the worst-case computation time associated
with the task, subtasks Mi and Oi have computation times mi and oi, such that mi + oi = Ci.
In order to guarantee a minimum level of performance, Mi must be completed within its
deadline, whereas Oi can be left incomplete, if necessary, at the expense of the quality of the
result produced by the task.

It is worth noting that the task model used in traditional real-time systems is a special case
of the one adopted for imprecise computation. In fact, a hard task corresponds to a task with
no optional part (oi = 0), whereas a soft task is equivalent to a task with no mandatory part
(mi = 0).

In systems that support imprecise computation, the error ǫi in the result produced by τi (or
simply the error of τi) is defined as the length of the portion of Oi discarded in the schedule.
If σi is the total processor time assigned to Oi by the scheduler, the error of task τi is equal to

ǫi = oi − σi .

The average error ǫ on the task set is defined as

ǫ =
n

∑
i=1

wiǫi,

where wi is the relative importance of τi in the task set. An error ǫi > 0 means that a portion
of subtask Oi has been discarded in the schedule at the expense of the quality of the result
produced by task τi, but for the benefit of other mandatory subtasks that can complete within
their deadlines.

In this model, a schedule is said to be feasible if every mandatory subtask Mi is completed
within its deadline. A schedule is said to be precise if the average error ǫ on the task set is
zero. In a precise schedule, all mandatory and optional subtasks are completed within their
deadlines.

For a set of periodic tasks, the problem of deciding the best level of quality compatible with
a given load condition can be solved by associating each optional part of a task a reward
function Ri(σi), which indicates the reward accrued by the task when it receives σi units
of service beyond its mandatory portion. This problem has been addressed by Aydin et al.
(Aydin et al., 2001), who presented an optimal algorithm that maximizes the weighted average
of the rewards over the task set.

Note that in the absence of a reward function, the problem can easily be solved by using a
compression algorithm like the elastic approach. In fact, once, the new task utilizations U′

i
are computed, the new computation times C′

i that lead to a given desired load can easily be
computed from the periods as

C′
i = TiU

′
i .

166 Real-Time Systems, Architecture, Scheduling, and Application

www.intechopen.com

Handling Overload Conditions

in Real-Time Systems 19

Finally, if an algorithm cannot be executed in an incremental fashion or it cannot be aborted
at any time, a task can be provided with multiple versions, each characterized by a different
quality of performance and execution time. Then, the value C′

i can be used to select the task
version having the computation time closer to, but smaller than C′

i .

4. Two case studies

This section describes two real-world applications to illustrate how the presented techniques
can be used to prevent the negative effects of the overload. The first example considers
a multimedia system and shows how resource reservation can isolate the timing behavior
of concurrent applications characterized by highly variable execution times, preventing a
performance degradation due to a reciprocal interference. The second example illustrates
how to handle a permanent overload in a robot system that activates a new task to cope with
obstacle avoidance.

4.1 Resource reservation in multimedia systems

Let us consider a multimedia device, like a cell phone, in which a phone call, a video player,
and a web browser can be concurrently executed, so that a user can simultaneously make a
phone call while watching a video and downloading a file from the web. These applications
are characterized by a highly variable computational demand and share common resources
(e.g., processor, memory, touch screen, audio codec, and graphic display). They are briefly
described below.

• Phone call (A1). This application consists at least of two periodic activities, executed with
a period of 20 ms. A task is in charge of receiving the incoming audio signal, decoding it,
and transferring the packets to the speaker buffer for reproduction. The processing time of
this task can vary from 1 ms (during silence) up to 3 ms. The second task is responsible for
sampling the voice from the microphone, performing data encoding, speech enhancement,
and packet transmission through the modem. The processing time of this task can vary
from 5 ms (during silence) up to 10 ms. Hence, overall, this application requires a processor
bandwidth that can vary from 30% to 65%.

• Video player (A2). The MPEG standard adopted for video compression is characterized
by highly variable execution times. For instance, Figure 12 shows the typical distribution
of frame decoding times for an MPEG player decoding a specific video on a given
platform (Abeni & Buttazzo, 2000; Isovic et al., 2005). Note that the processing time of
this task can vary from 6 ms to 30 ms, with an average decoding time of about 12 ms. If
using the PAL standard, the frame rate is set to 25 frames per second, meaning that each
frame has to be processed every 40 ms. Therefore, running an MPEG player requires an
average processor bandwidth of 30%, which can reach 75% in peak load conditions.

• Web browser (A3). This activity is also characterized by high load variations. In fact,
when loading a web page, there is a peak processing load to parse the input, taking about
one second. Then, a request is submitted to the server for sending a separate content, like
images and layout files. At this time, the processing pauses for about another second while
waiting for the new input. When full data arrive, there is another peak load, since they
should be processed (decoded/parsed and rendered) as quickly as possible (this phase
takes a few seconds depending on the content).

Note that, each of the considered applications is typically implemented as a set of tasks
with different priorities. Hence, when they are concurrently executed on the same processor,

167Handling Overload Conditions in Real-Time Systems

www.intechopen.com

20 Will-be-set-by-IN-TECH

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0 5 10 15 20 25 30 35

P
ro

b
a
b
ili

ty

Execution Time (ms)

Fig. 12. Distribution of frame decoding times for an MPEG video player.

tasks are subject to reciprocal interference and can experience long blocking delays and jerky
behavior. As a consequence, the user could experience a temporary motion stop on the
movie, or perceive an annoying jitter in the sound. Although these applications are not
safety critical, the unpleasant effects of such interferences on the user perception are taken
in a serious consideration by the developers, since they can make a difference with another
device produced by a competitor.

Resource reservation can be effectively used in this system to isolate the temporal behavior
of the applications and limit their reciprocal interference (Bini et al., 2011). To do that, the
processor should be partitioned into three reservations, with bandwidth Us1 , Us2 , and Us3 ,
each behaving as a slower processor running at speed Usi

. The advantage of this approach
is that an overrun occurring in an application does not affect the other applications, but has
only the effect of postponing the execution of those tasks in which the overrun is generated.
Moreover, an application can be designed and analyzed independently of the others, because
its execution behavior only depends on its own computational demand and the allocated
bandwidth.

In our system, allocating each bandwidth for satisfying the worst-case processing demand of
the application would waste resources and would lead to an infeasible schedule. For instance,
the maximum bandwidth requirements of the first two applications already exceed the full
processor capacity. To achieve a feasible schedule, the bandwidth can be reserved to satisfy
a processing demand slightly higher than the average value, handling sporadic overruns
through resource reservation. In the considered example, 40% of the processor can be reserved
to the phone call, 50% to the video player, and, the remaining 10% to the web browser, which
has less stringent timing constraints.

When the amount of allocated bandwidth results to be quite different from the real application
needs, adaptive approaches based on feedback mechanisms can be applied at runtime to
adjust the allocated bandwidth to the real resource needs (Abeni & Buttazzo, 1999; Bini et al.,
2011).

168 Real-Time Systems, Architecture, Scheduling, and Application

www.intechopen.com

Handling Overload Conditions

in Real-Time Systems 21

4.2 Overload handing in robot control systems

Let us consider a mobile robot system whose goal is to explore an unknown environment
to localize given targets through a dedicated sensor, while avoiding obstacles along the path
using proximity sensing. Note that, by equipping the robot with suitable sensors, the system
could be used for very different applications; for instance, to discover electrical sockets in a
room, using a video camera, or to localize unexploded mines in a field, using a georadar. For
the purpose of this chapter, we consider a robot equipped with two motors to move in two
directions on a flat surface, two encoders to measure the angular rotation of the wheels and
reconstruct the traveled path, a sensor to detect the target (target sensor), a proximity sensor
(e.g., based on ultrasound transducers) to detect the distance from possible obstacles along
the path, and an electronic compass to orient the trajectory in desired directions.

From the software point of view, the application consists of the following periodic tasks:

• Motor Control Task (MCT or τ1): it performs the low-level motor control loop to drive the
robot in a desired direction (θ) at a given speed (v);

• Obstacle Detection Task (ODT or τ2): it reads the proximity sensor to detect a possible
obstacle along the path;

• Target Detection Task (TDT or τ3): it reads the target sensor and stores the target location
in a buffer when it is detected;

• Exploration Task (EXT or τ4): it generates the proper set points (exploring direction and
speed) for the Motor Control Task;

• Obstacle Avoidance Task (OAT or τ5): it is activated when an obstacle is detected and
computes a sequence of set points to be followed to avoid the obstacle and return to the
planned path.

To illustrate the use of an overload management technique, we assume that in normal
operating conditions (i.e., in the absence of obstacles) the first four tasks (τ1, . . . , τ4) generate
a load equal to Unorm = 0.9, while the fifth task has a utilization U5 = 0.3. Hence, when τ5

is activated together with the other tasks, the total system utilization becomes Umax = 1.2. In
this example, the elastic approach is applied to bring the load back to a desired value Ud = 0.9
(equal to the normal load condition).

The tasks are organized as shown in Figure 13, where hardware components are represented
by rounded boxes, tasks by circles, and shared buffers by rectangles.

To apply the elastic method, each task τi must specify a range of valid periods [Tmin
i , Tmax

i]
and an elastic coefficient Ei. Task parameters are reported in Table 1 and are expressed in
milliseconds. Note that, when the OAT task is not active, the utilization of the task set is

Task name Task ID Ci Tmin
i Tmax

i Ei

MCT τ1 3 10 10 0

ODT τ2 6 20 30 1

TDT τ3 20 100 200 2
EXT τ4 20 200 500 1

OAT τ5 6 20 40 2

Table 1. Task parameters of the robot application.

169Handling Overload Conditions in Real-Time Systems

www.intechopen.com

22 Will-be-set-by-IN-TECH

Obstacle

Detected

Sensor

Target

Proximity

Sensor

Target

Data

Motors

Encoders

Compass

MCT

ODT

TDT

OAT

EXT
Set points

θ, v

Fig. 13. Task interaction in the robot application.

Unorm =
4

∑
i=1

Ci

Ti
= 0.9

whereas, when OAT is active, the system becomes overloaded, being

Umax =
5

∑
i=1

Ci

Ti
= 1.2.

By applying the elastic approach, with a desired utilization Ud = 0.9 (to keep a safety
margin), tasks utilizations are compressed according to Equation (19) and then enforced by
re-computing the periods as Ti = Ci/Ui. The new tasks utilizations and periods derived by
the elastic algorithm are reported in Table 2.

Task name Task ID Ui Ti

MCT τ1 3/10 10
ODT τ2 1/4 24

TDT τ3 1/10 200

EXT τ4 1/20 400
OAT τ5 1/5 30

Table 2. Task utilizations and periods derived by the elastic compression, with a desired
utilization Ud = 0.9.

When the obstacle is overcome, task OAT can be suspended and the remaining tasks can
return to their original condition, running with their minimum periods.

5. References

Abeni, L. & Buttazzo, G. (1998). Integrating multimedia applications in hard real-time
systems, Proceedings of the 19th IEEE Real-Time Systems Symposium (RTSS’98), Madrid,
Spain.

Abeni, L. & Buttazzo, G. (1999). Adaptive bandwidth reservation for multimedia computing,
Proceedings of the 6th IEEE International Conference on Real-Time Computing Systems and
Applications (RTCSA’99), Hong Kong, China, pp. 70–77.

170 Real-Time Systems, Architecture, Scheduling, and Application

www.intechopen.com

Handling Overload Conditions

in Real-Time Systems 23

Abeni, L. & Buttazzo, G. (2000). Support for dynamic qos in the hartik kernel, IEEE Proceedings
of the 7th International Conference on Real-Time Computing Systems and Applications
(RTCSA’00), Cheju Island, South Korea.

Abeni, L. & Buttazzo, G. (2004). Resource reservations in dynamic real-time systems, Real-Time
Systems 27(2): 123–165.

Abeni, L. & Buttazzo, G. (May 30 - June 1, 2001). Hierarchical qos management for time
sensitive applications, Proceedings of the IEEE Real-Time Technology and Applications
Symposium (RTAS’01), Taipei, Taiwan.

Aydin, H., Melhem, R., Mossé, D. & Alvarez, P. M. (2001). Optimal reward-based scheduling
for periodic real-time tasks, IEEE Transactions on Computers 50(2): 111–130.

Baruah, S., Rosier, L. & Howell, R. (1990). Algorithms and complexity concerning the
preemptive scheduling of periodic, real-time tasks on one processor, Journal of
Real-Time Systems 2.

Bernat, G., Broster, I. & Burns, A. (December 5-8, 2004). Rewriting history to exploit gain time,
Proceedings of the 25th IEEE Real-Time Systems Symposium (RTSS’04), Lisbon, Portugal.

Bernat, G. & Burns, A. (2002). Multiple servers and capacity sharing for implementing flexible
scheduling, Real-Time Systems 22: 49–75.

Bertogna, M., Fisher, N. & Baruah, S. (2009). Resource-sharing servers for open environments,
IEEE Transactions on Industrial Informatics 5(3): 202–220.

Bini, E., Buttazzo, G., Eker, J., Schorr, S., Guerra, R., Fohler, G., Arzen, K.-E., Segovia, V. R.
& Scordino, C. (2011). Resource management on multicore systems: The ACTORS
approach, IEEE Micro 31(3): 72–81.

Bini, E., Buttazzo, G. & Lipari, G. (2009). Minimizing cpu energy in real-time systems
with discrete speed management, ACM Transactions on Embedded Computing Systems
8(4): 31:1–31:23.

Buttazzo, G. (2011). Hard Real-Time Computing Systems and Applications - Third Edition, Springer,
pp. 287–292.

Buttazzo, G., Abeni, L. & Lipari, G. (1998). Elastic task model for adaptive rate control, IEEE
Real Time System Symposium, Madrid, Spain.

Buttazzo, G., Lipari, G., Caccamo, M. & Abeni, L. (2002). Elastic scheduling for flexible
workload management, IEEE Transactions on Computers 51(3): 289–302.

Buttazzo, G. & Stankovic, J. (1995). Adding robustness in dynamic preemptive scheduling, in
D. Fussel & M. Malek (eds), Responsive Computer Systems: Steps Toward Fault-Tolerant
Real-Time Systems, Kluwer Academic Publishers.

Caccamo, M. & Buttazzo, G. (1997). Exploiting skips in periodic tasks for enhancing aperiodic
responsiveness, IEEE Real-Time Systems Symposium, San Francisco, California, USA,
pp. 330–339.

Caccamo, M., Buttazzo, G. & Sha, L. (2000). Capacity sharing for overrun control, Proceedings
of the IEEE Real-Time Systems Symposium, Orlando, Florida, USA.

Caccamo, M., Buttazzo, G. & Thomas, D. (2005). Efficient reclaiming in reservation-based
real-time systems with variable execution times, IEEE Transactions on Computers
54(2): 198–213.

Easwaran, A., Anand, M. & Lee, I. (2007). Compositional analysis framework using

EDP resource models, Proceedings of the 28th IEEE International Real-Time Systems
Symposium, Tucson, AZ, USA, pp. 129–138.

Feng, X. & Mok, A. K. (2002). A model of hierarchical real-time virtual resources, Proceedings

of the 23rd IEEE Real-Time Systems Symposium, Austin, TX, USA, pp. 26–35.
Guangming, Q. (2009). An earlier time for inserting and/or accelerating tasks, Real-Time

Systems 41(3): 181–194.

171Handling Overload Conditions in Real-Time Systems

www.intechopen.com

24 Will-be-set-by-IN-TECH

Isovic, D., Fohler, G. & Steffens, L. F. (2005). Real-time issues of mpeg-2 playout in resourse
constrained systems, Journal of Embedded Computing 1: 239–256.

Koren, G. & Shasha, D. (1995). Skip-over: Algorithms and complexity for overloaded systems
that allow skips, Proceedings of the IEEE Real-Time Systems Symposium.

Lamastra, G., Lipari, G. & Abeni, L. (December 3-6, 2001). A bandwidth inheritance algorithm
for real-time task synchronization in open systems, IEEE Proceedings of the 22nd
Real-Time Systems Symposium (RTSS’01), London, UK.

Lin, C. & Brandt, S. A. (December 5Ű8, 2005). Improving soft real-time performance through
better slack management, Proc. of the IEEE Real-Time Systems Symposium (RTSS 2005),
Miami, Florida, USA.

Lin, K., Natarajan, S. & Liu, J. (1987). Concord: a system of imprecise computation, Proceedings
of the 1987 IEEE Compsac.

Lipari, G. & Bini, E. (2003). Resource partitioning among real-time applications, Proceedings

of the 15th Euromicro Conference on Real-Time Systems (ECRTS’03), Porto, Portugal,
pp. 151–158.

Liu, C. & Layland, J. (1973). Scheduling algorithms for multiprogramming in a hard-real-time
environment, Journal of the Association for Computing Machinery 20(1).

Liu, J., Lin, K. & Natarajan, S. (1987). Scheduling real-time, periodic jobs using imprecise
results, Proceedings of the IEEE Real-Time System Symposium.

Liu, J., Lin, K., Shih, W., Yu, A., Chung, C., Yao, J. & Zhao, W. (1991). Algorithms for scheduling
imprecise computations, IEEE Computer 24(5): 58–68.

Liu, J., Shih, W. K., Lin, K. J., Bettati, R. & Chung, J. Y. (1994). Imprecise computations,
Proceedings of the IEEE 82(1): 83–94.

Marzario, L., Lipari, G., Balbastre, P. & Crespo, A. (2004). Iris: A new reclaiming algorithm for
server-based real-time systems, Proc. of the IEEE Real-Time and Embedded Technology
and Applications Symposium, Toronto, Canada.

Mercer, C. W., Savage, S. & Tokuda, H. (1994). Processor capacity reserves for multimedia
operating systems, Proceedings of IEEE international conference on Multimedia
Computing and System.

Mok, A. K., Feng, X. & Chen, D. (2001). Resource partition for real-time systems, Proceedings

of the 7th IEEE Real-Time Technology and Applications Symposium, Taipei, Taiwan,
pp. 75–84.

Natarajan, S. (ed.) (1995). Imprecise and Approximate Computation, Kluwer Academic
Publishers.

Palopoli, L., Abeni, L., Lipari, G. & Walpole, J. (December 3-5, 2002). Analysis of a
reservation-based feedback scheduler, Proceedings of the 23rd IEEE Real-Time Systems
Symposium (RTSS’02), Austin-Texas.

Shih, W., Liu, W. & Chung, J. (1991). Algorithms for scheduling imprecise computations with
timing constraints, SIAM Journal of Computing 20(3): 537–552.

Shih, W., Liu, W., Chung, J. & Gillies, D. (1989). Scheduling tasks with ready times and
deadlines to minimize average error, Operating System Review 23(3).

Shin, I. & Lee, I. (2003). Periodic resource model for compositional real-time guarantees,

Proceedings of the 24th Real-Time Systems Symposium, Cancun, Mexico, pp. 2–13.

172 Real-Time Systems, Architecture, Scheduling, and Application

www.intechopen.com

Real-Time Systems, Architecture, Scheduling, and Application

Edited by Dr. Seyed Morteza Babamir

ISBN 978-953-51-0510-7

Hard cover, 334 pages

Publisher InTech

Published online 11, April, 2012

Published in print edition April, 2012

InTech Europe

University Campus STeP Ri

Slavka Krautzeka 83/A

51000 Rijeka, Croatia

Phone: +385 (51) 770 447

Fax: +385 (51) 686 166

www.intechopen.com

InTech China

Unit 405, Office Block, Hotel Equatorial Shanghai

No.65, Yan An Road (West), Shanghai, 200040, China

Phone: +86-21-62489820

Fax: +86-21-62489821

This book is a rich text for introducing diverse aspects of real-time systems including architecture, specification

and verification, scheduling and real world applications. It is useful for advanced graduate students and

researchers in a wide range of disciplines impacted by embedded computing and software. Since the book

covers the most recent advances in real-time systems and communications networks, it serves as a vehicle for

technology transition within the real-time systems community of systems architects, designers, technologists,

and system analysts. Real-time applications are used in daily operations, such as engine and break

mechanisms in cars, traffic light and air-traffic control and heart beat and blood pressure monitoring. This book

includes 15 chapters arranged in 4 sections, Architecture (chapters 1-4), Specification and Verification

(chapters 5-6), Scheduling (chapters 7-9) and Real word applications (chapters 10-15).

How to reference

In order to correctly reference this scholarly work, feel free to copy and paste the following:

Giorgio C. Buttazzo (2012). Handling Overload Conditions in Real-Time Systems, Real-Time Systems,

Architecture, Scheduling, and Application, Dr. Seyed Morteza Babamir (Ed.), ISBN: 978-953-51-0510-7,

InTech, Available from: http://www.intechopen.com/books/real-time-systems-architecture-scheduling-and-

application/overload-handling

© 2012 The Author(s). Licensee IntechOpen. This is an open access article

distributed under the terms of the Creative Commons Attribution 3.0

License, which permits unrestricted use, distribution, and reproduction in

any medium, provided the original work is properly cited.

