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1. Introduction  

Verification of real time software is facing two problems: (1) how we should manage to 
produce verification rules and (2) how we should apply the rules to specify the problem. In 
this chapter we provide a method by which we get down to these two problems. In the first 
step, we specify real time software using Timed Automata and then we state it in RTL, real time 
logic, propositions. Timed Automata address modeling systems in time (Alure & Dill, 1996). In 
the second step, we obtain the safety constraints from reachability graph of Timed Automata of 
the problem specification and after that we state it in real time logic propositions. These 
propositions showing safety constraints are used for verification of the propositions, i.e. the 
results of the specification obtained in the first step. To show the effectiveness of our method, 
we set forth it for the RCC (Rail Road Crossing Control) real time system. 

Software verification is an important process in constructing software and a main factor for 
obtaining safety from the quality of software. For verification of software we should deal 
with its verification against the expected behavior. The expected behavior is safe 
characteristics or prepositions that the software must always agree with. For this purpose, 
there are three main approaches: (1) static verification, (2) software testing and (3) run-time 
verification. Meanwhile one of the important and key approaches, essentially used for 
mission and safety critical systems, is the run-time verification; the existence of the problems 
in the first and second approaches is the reason of using run-time verification. For example, 
we can indicate the disability of the first method in proving the complicated and large 
specifications. Another instance is rapidly increasing the number of states (called state 
explosion) in the model checking method, which is a static verification one.  

Because Timed Automata are methods based on time and event, they are suitable for 
describing the behavior of real time systems and because Timed Automata are visual 
methods, their understanding is easy. But they have limitations for specification of some 
statuses and also they cannot specify some conditions very well. Therefore, we need especial 
methods for analysis and verification of Timed Automata behavior that increase safety in 
these systems and decrease the amount of the faults.  

There are different ways to verification of Timed Automata behavior. One of these ways is 
using reachability graph; however an especial method should be chosen to cover the 
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weakness of this method. We can use methods that are based on logic for reasoning and 
timing the Timed Automata. In this chapter, we suggest a framework for setting and 
executing Timed Automata using Real Time Logic (RTL) providing a reasoning framework 
based on First Order Logic (FOL). RTL reflects a different method for timed systems (Paneka 
et al, 2006). 

In this chapter, we show that Timed Automata per se is not able to show constraints of the 
systems, but if it is used with formal textual language such as RTL, expressing the 
constraints of the system would by more.  

This chapter includes four sections: (1) in the second section, we express a brief explanation 
about Timed Automata, (2) in the third one we address an explanation about Real Time 
Logic and (3) in fourth section we express our approach to simulate Timed Automata by 
means of Real Time logic. In this section, we propose a case study and specify it using 
Timed Automata and Real Time logic. Then, we discuss the system constraints to supervise 
unsafe states. 

2. Timed automata 

Timed Automata (Alur & Dill, 1994) was proposed by Alur and improved by Dill. Timed 

Automata are finite machines equipped with sorts of clocks. Clocks: (1) are real functions 

with continuous time that record the times between the events separately and (2) are 

increased equally. Timed Automata are introduced as a formal specification for modeling 

the behavior of real time systems. Timed Automata are: (1) general methods for exhibition 

of timed transition state diagrams that use a number of time variables having real amounts, 

(2) finite clocked automata to specify the timed systems and (3) suitable for verification of 

distributed systems, optimization, verification of multi-tasking programs, network analysis, 

planning and scheduling (Paneka et al, 1998).  

In Timed Automat, a safe path from the first state to a final state is a set of states in which 

actions are performed and timed requirements are satisfied. If such path is found, it is a 

solution for the problem. Timed Automata are stated in tuple M=(∑, S, S0, X, E) in which ∑ is 

a finite set of actions, S is a finite set of states, S0 is a finite set of initial states (S0 ⊂S), X is a 

finite set of clocks and E is a set of transitions. Every transition consists of <L, a, g, λ, L’>. A 

transition from present state L to the next state L’ is made when the action a is performed 

and clock g(x) having true amount is passed. Notation λ is a subset of X during which the 

transition will be reset. Relation 1 states that clock values or difference of two clock values 

are real numbers. 

 g::=x≤c|c≤x|x-y≤c|x<c|c<x|x-y<c|g∧g|true that x,y ∈X, c∈R  (1) 

2.1 Networks of timed automata 

In this section, we define networks of Timed Automata, consisting of several Timed 
Automata running in parallel and communicating with each other. 

Definition. A timed automaton (TA, for short) is a six-element tuple, 0(A,L,l ,E,X,I)ϑ =  

Where 
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• A is a finite set of actions, where 0A IR ϕ+∩ = , 

• L is a finite set of locations, 

• 
0l L∈ is an initial location, 

• X is a finite set of clocks, 

• 
X

XE L * A * C * 2 * Lθ⊆ is a transition relation, 

• XI : L Cθ→  is a (location) invariant.  

Each element e of E is denoted by a,cc,Xl l '⎯⎯⎯→  represents a transition from the location l to 

the location l ' , executes the action a , with the set X χ⊆ of the clocks to be reset, and with 

the clock constraint cc  defining an enabling condition. The function I assigns each location 

l L∈  a clock constraint defining the conditions under which ϑ  can stay in l . 

If the enabling conditions and the values of the location invariant are in the set XC only, then 

the automaton is called diagonal-free. Given the transition a,cc,Xe : l l '⎯⎯⎯→  , we write source(s), 

action(s), target(s), guard(s) and reset(s) for l,l ',a,cc  and X, respectively. The clocks in 

Timed Automata allow expressing the time properties. An enabling condition constrains the 

execution of a transition. An invariant condition permits an automaton to stay at the 

location l  as long as the clock constraint I(l) is satisfied.  

Real-time systems are usually represented by networks (sets) of Timed Automata. A typical 
example widely considered in the literature, is modeling an automated railroad crossing 
(known as the Train–Gate–Controller). 

A set of timed automata can be composed into a global (product) timed automaton as 
follows: the transitions of the timed automata that do not correspond to a shared action are 
interleaved whereas the transitions labeled with a shared action are synchronized. There are 

many different definitions for a parallel composition. One definition is determining the 
multi-way synchronization, i.e., each component that contains a communication transition 
(labeled with a shared action) has to perform this action (Penczek & Polrola, 2006).  

Definition. Let 1 n{i ,..., i }λλ = be a finite ordered set of indices, and i{ |i }ζ ϑ λ= ∈ where 
0

i i i i i i i(A ,L ,l ,E ,X ,I )ϑ = , is a set (network) of Timed Automata indexed with λ . The 

automata in ζ are called components. Let iA(a) {i |a A }λ= ∈ ∈  be a set of the indices of the 

components containing the action i ia Aλ∈∈ . A composition (product) of the Timed 

Automata 
1 ni i||...||

λ
ϑ ϑ is a timed automaton specified as: 0(A,L,l ,E,X,I)ϑ = , where 

• i iA Aλ∈=  , 

• i iL Lλ∈= ∏ , 

• 
1 n

0 0 0
i il (l ,..., l )= , 

• i iX Xλ∈=  , 

• 
1 ni i i i iI((l ,..., l )) I (l ),

λ λ∈= ∧  

And the transition relation is given as Relation 2. 

 1 n 1 ni i i A(a) i i A(a) i i i

i i i i i i i

(l ,..., l ),a, cc , X ,(l ' ,..., l ' ) E

( i A(a))(l ,a,cc ,X ,l ' ) E and( i \A(a))l ' l .

∈ ∈∧ ∈ ⇔

∀ ∈ ∈ ∀ ∈ =


λ λ

λ
  (2) 
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2.2 Semantics of timed automata 

Let 0(A,L,l ,E,X,I)ϑ =  be a timed automaton. A concrete state of A is defined as ordered 

pair (l,v) , where l L∈ and xn
0v IR +∈ is a valuation. The concrete (dense) state space ϑ  is a 

transition system, 0
c c

C ( ) (Q,q , )ϑ = ⎯⎯→  where 

• 
xn

0Q L * IR +=  is the set of all the concrete states, 

• 
0 0 0q (l ,v )=  with 0v (x) 0=  for all x X∈  is the initial state, and 

• 0c
Q * (E IR ) * Q+⎯⎯→ ⊆ ∪  is the transition relation, defined by an action  

A time successor is defined as Relation 3.  

 c0for IR ,(l,v) (l,v )iffδδ δ+∈ ⎯⎯→ + v,v I(l)δ+ ∈ (Time successor),  (3) 

• For a
c xa A,(l,v) (l ',v')iff( cc C )( X x)∈ ⎯⎯→ ∃ ∈ ∃ ⊆  such that 

• 
a,cc,Xl l ' E⎯⎯⎯→ ∈ , v [cc]∈ , v' v[X : 0],and= = v' I(l ')∈  (action successor). 

Intuitively, a time successor does not change the location l of a concrete state, but it 

increases the clocks, provided that their values still satisfy the invariant l . Since the 

invariants are zones, if v and v' satisfy I(l) , then all the clocks between v and v' satisfy I(l) . 

An action successor corresponding to the action a is executed when the guard cc  holds 

for v and v' obtained after resetting the clocks in X , satisfies the invariant l ' . 

For (l,v) Q∈  and 0IRδ +∈ , let (l,v) δ+  denotes (l,v )δ+ . Concatenation of two time steps 

cq qδ δ⎯⎯→ +  and '
cq q 'δδ δ δ+ ⎯⎯→ + +  is the time step '

cq q 'δ δ δ δ+⎯⎯⎯→ + + . Similarly, if 

cq qδ δ⎯⎯→ + , then for any δ there exist: 

 1 k 0,..., IRδ δ +∈  where, 1 k...δ δ δ+ + =  & k1 2
c c c1q q ... qδδ δδ δ⎯⎯→ + ⎯⎯→ ⎯⎯→ + . 

The second relation denotes that each time step can be split into an arbitrary number of 

consecutive times. A (dense) 0q -run ρ of ϑ is a maximal (i.e., non-extendable) sequence, 

0 0 1 2a a1
c c c c c0 0 0 1 1 1 2q q q q q ...δ δ δρ δ δ= ⎯⎯→ + ⎯⎯→ ⎯⎯→ + ⎯⎯→ ⎯⎯→  

where ia A∈ and i 0IRδ +∈ ,for each i N≥ (notice that due to the fact that δ can be equal to 

zero, two consecutive transitions can be executed without any time passing in between, and 

that consecutive time passages are concatenated). Such runs are called weakly monotonic 

(Penczek & Polrola, 2006). 

3. Real Time Logic 

Real Time Logic (RTL) introduced by Jahanian and Mok in 1986, is an FOL having a set of 
elements for specification of requirements of real time systems (Bellini et al, 2000). The logic 
is a formal language used for reasoning about time characteristics of the real time systems. 
RTL deals with ordering of the events (Jahanian-a, 1998). There is a significant difference 
between event and action in RTL (Jahanian-b et al, 1998).  

There are four types of events:  
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1. External event like pushing a button by the user,  
2. The starting event denoting the beginning of an action.  
3. The ending event denoting the completion of an action, 

Performing an action is shown by starting and ending events [4]. Events have unique name 

and the capital letters are used for showing them. To show the external events, we use 

notation Ω before the name of an event. Also notation ↑ is used before the name of an event 

to show a starting event (denoted by ŃA) and notation ↓ to show an ending event (denoted 

by ↓A). Propositions of RTL are the relations between occurrences of the events using 

orderings < , = , >, ≥ ,≤ (Jahanian-b et al, 1998). The RTL formulas are made of 

equal/unequal, existential forms, quantifiers ∀ and ∃ and logical relations, 

, , ,∧ ∨ → ¬ (Jahanian, 1994). A function is used to show the time of the occurrence of an event 

and allocation of an amount of time to the occurrence of the event. It is shown by notation 

“@”. Relation “@(e,i)” denotes the ith occurrence of event e where e can be a starting or 

external event (Jahanian-a et al, 1998). 

Example: 

Consider a system specified in a natural language; the system samples and displays data on 

demand by external stimuli. Upon pressing button #1, action SAMPLE is executed within 30 

time units. During each execution of this action, data are sampled and subsequently 

appeared in the display panel. The computation time of action SAMPLE is 20 time units. The 

following set of formulas is a partial description of the system in RTL: 

i tR( BUTTON1,i, t)

[ x,yR( SAMPLE,i,x) R( SAMPLE,i,y) t x y t 30]

i x,y[R( SAMPLE,i,x) R( SAMPLE,i,y)] x 20 y

Ω∀ ∀ →

∃ ↑ ∧ ↓ ∧ ≤ ∧ ≤ +

∀ ∀ ↑ ∧ ↓ → + ≤

 

3.1 The RTL Language 

In this section, we introduce the RTL language; the following notations are used in RTL 

formulae: 

• true and false 
• A, set of time variables 
• B, set of occurrence variables 
• C, constants including the natural numerals 

• D, set of events 

• Function + 

• Predicates , , , ,≤ ≥ < > =  

• Occurrence relation R 

• Logical connections: ∧ , ∨ , ¬  and ń 

• Existential and universal quantifiers: ∀ , ∃ . 

The time terms in RTL consist of constants, variables and if t 1 and t 2 are time terms, then t 1 

+ t2 is a time term. The occurrence terms in RTL are expressions consisting of constants, 

variables and if i and j are occurrence terms, then i + j is an occurrence term. 

www.intechopen.com



 
Real-Time Systems, Architecture, Scheduling, and Application 

 

134 

The propositions in RTL consist of truth symbols, true and false and:  

- if t1 and t2 are time terms and ρ is an inequality/equality predicate, then t1 ρ t2 is a 
proposition 

- if i and j are occurrence terms and ρ is an inequality/equality predicate symbol, then i ρ 
j is a proposition 

- if i is an occurrence term, t is a time term and e is an event constant, then R (e, i, t ) is a 
proposition. 

The formulas of RTL are constructed from the propositions, logical connections and 
quantifiers.  

Definition: An occurrence relation is a relation on the set E × Z+ × N where E is a set of 
events, Z+ is the set of positive integers, and N is the set of natural numbers, such that the 
following axioms hold:  

Monotonicity Axioms: For each event e in the set D, 

i t t '[R(e,i, t) R(e,i, t ') t t '

i t[R(e,i, t) i 1] [ t 'R(e,i 1, t ') t ' t]

∀ ∀ ∀ ∧ → =

∀ ∀ ∧ > → ∃ − ∧ <
 

The first axiom states that at most onetime value can be associated with each occurrence i of 
an event e, i.e., two same occurrences of an event cannot happen at two distinct times. The 
second axiom expresses that if the ith occurrence of event e happens, then the previous 
occurrences of e would happened before. This axiom also states that two distinct 
occurrences of the same event must happen at different times. 

Start/Stop Event Axioms: For each pair of start/stop events in the set D, we have: 

i tR( A,i, t) [ t 'R( A,i, t ') t ' t]∀ ∀ ↓ → ∃ ↑ ∧ <  

where ŃA and ŅA denote the events: start and stop of action A, respectively. The axiom 
states that every occurrence of a stop event would be preceded by a corresponding start 
event. 

Transition Event Axioms: For the transition events in the set D corresponding to a state 
variable S, we have the following relations. Proposition 4(a) states that the first occurrence of 
event (S:=T) is at time zero. This means that initially the system is in state S. Proposition 4(b) 
states that ith occurrence of event (S:=F) is at time t. This means that ith time that the system is 
not in state S is at time t. The transition from 4(a) to 4(b) shows a transition event where the 
system is initially in state S and at future time the system is not in state S. The transition 
from 4(b) to 4(c) shows the entrance of the system to state S and the transition from 4(c) to 
4(d) shows the exit of the system from state S. Transitions in 5(a) to 5(d) is similar to 
transitions in 4(a) to 4(d) but the system is not initially in state S. In fact, Propositions 4(a) to 
4(d) and Propositions 5(a) to 5(d) define the order in which two complementary transition 
events can occur depending on whether S is initially true or false (Jahanian-b et al, 1998). 

 R((S : T),1,0)   = →  (4a) 

 ( i 1, t 0,R((S : F),i, t)  ∀ > ∀ > = →  (4b) 
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 [ t 'R((S : T),i, t ') t ' t] i tR((S : T),i 1, t)   ∃ = ∧ < ∧ ∀ ∀ = + →  (4c) 

 [ t 'R((S : F),i, t ') t ' t] ∃ = ∧ <  (4d) 

 R((S : F),1,0)  = →  (5a) 

 ( i tR((S : T),i, t)∀ ∀ = →  (5b) 

 [ t 'R((S : F),i, t ') t ' t] i tR((S : F),i 1, t)∃ = ∧ < ∧ ∀ ∀ = + →  (5c) 

 [ t 'R((S : T),i, t ') t ' t] ∃ = ∧ <  (5d) 

3.2 State predicates 

RTL provides nine different state predicates to evaluate the value of S over an interval as 
follows: 

S[x,y], S(x,y), S<x,y>, S[x,y), S[x,y>, S(x,y], S(x,y>, S<x,y], S<x,y) 

Each state predicate qualifies the timing of two events, one denotes the transition event that 
changes the value of the state variable to true and the other denotes the transition event that 
changes the value of S to false. The arguments, x and y, in the state predicates are used in 
conjunction with the symbols "[", "]", "(", ")", "<" and ">" to denote an interval over which the 
state variable remains true (Jahanian, 1994). Suppose Et and Ef denote the transition events 
making S true and false, respectively. Informally: 

- "[x " denotes that Et occurs at time x,  
- "(x " denotes that Et occurs before or at time x, 
- "<x" denotes that Et occurs before time x,  
- " y]" denotes that Ef occurs at time y, 
- " y)" denotes that Ef does not occur before time y, 
- " y>" denotes that Ef does not occur before or at time y. 

Definition: If state variable S is initially true, i.e., R((S : T),1,0)= , then 

S[x,y] i,R((S : T),i,x) R((S : F),i,y)

S[x,y) i,R((S : T),i,x) [ tR((S : F),i, t) y t]

S[x,y i,R((S : T),i,x) [ tR((S : F),i, t) y t]

≡ ∃ = ∧ =

≡ ∃ = ∧ ∀ = → ≤

>≡ ∃ = ∧ ∀ = → <

 

The other intervals are defined similarly. If state variable S is initially false, i.e., 

R((S : F),1,0)= , then S[x,y] iR((S : T),i,x) R((S : F),i 1,y)≡ ∃ = ∧ = + . The other intervals are 

defined similarly (Jahanian-b , 1998). 

4. The proposed approach 

In this section, we propose a method to produce verification rules from Timed Automata. 
These rules are used for verification of the software behavior that is obtained from the 
problem specification. Our method has five steps (Fig.1). In the first step, we specify the 
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system behavior in the Timed Automata and then verify the different states of the system. In 
the second step, we explain specification of the system in RTL. In the third step, based on 
the model of the Timed Automata, we work out the reachability graph of the system, and 
show the behavior of the system in safety and risky states. In the fourth step, we use 
reachability graph obtained in the third step to extract constraints and express them in RTL 
by which we verify entering the system to unsafe states.  

After specifying the system constraints in RTL and specification of the system behavior by 
the model in the second step, we verify the problem specification (in fact, we show a visual 
model of the system in Timed Automata and its behavior in RTL. By the rules extracted 
from the system behavior, we address verification of the system in entering to unsafe states  

 

Fig. 1. The proposed approach 

4.1 Specifying the problem in timed automata 

In this section, we show states of a real time system in the visual and logic forms.  

Structure 1: Change of a state due to occurrence of an event. The change of a state in real 

time systems might be taken place due to occurrence of an event. 

Visual definition. When the system is in state p and a guard event takes place, the system 

makes a transition from state p to state q (Fig. 2).  

 

Fig. 2. Change of a state by occurrence of a guard event 

Logical definition of structure 1. When the system is in state p at time point t, then by ith 

occurrence of guard event at time t, the system goes to state q (Relation 6). Considering state 

predicates in Section 3.2, we define a time point as p(t,t). 

  ∀i ∀t[p(t,t)  ∧ @(GUARD,i)=t ] → ∃t’,d[q(t’,t’) ∧ t’ ≥t+d ∧ d≥0]  (6) 

1. specification of the problem 
by Timed Automata 

3. extraction of the reachability 
graph 

2. extraction of logic & 
specification of the problem 

4. specification of constraints by RTL from 
reachability graph 

5. production of verification rules 

p q 

guard 
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Structure 2. Change of a state by occurrence of an event and the action execution. After 
occurring the event and the action execution, the state of the system might change.  

Visual definition. When the system (Timed Automata) is in state p and a guard event 
occurs, the action is accomplished and the system holds in state q (Fig. 3). 

 

Fig. 3. Change of a state by occurrence of an event and execution of an action 

Logical definition of structure 2. If the system is in the state p at time t and a guard event 
takes place, we have an occurrence of the starting event of the action denoted by ↑ACTION. 
This causes the start of the action and ending event of action denoted by ↓ACTION. The 
action is accomplished during the time ε>0 and the state changes (Relation 7).  

 ∀i ∀t[p(t,t) ∧ @(GUARD,i)=t ]→ ∃j,t’,d[@(↑ACTION,j)=t’ ∧ t’≥t+d ∧ d≥0]  (7) 

∀i ∀t[@(↑ACTION,i)=t] → ∃j,t’,d[@(↓ACTION,j)=t’ ∧ t’≥ t+d ∧ d≥ε] 

∀i ∀t[@(↓ACTION,i)=t] → ∃t’,d[q(t’,t’) ∧ t’≥t+d ∧ d≥0] 

Structure 3. Being in one state. In real time systems, a state indicates the system state at a 
time instant/interval . 

Visual definition. According to Fig. 2, when the system is in state p, the state indicates the 
current state of the system at that specific moment.  

Logical definition of structure 3. This structure shows that state p is true at time t. In other 
words, the system is in state p at time t (Relation 8).  

 ∀i ∀t[p(t,t)]  (8) 

Structure 4. Remaining in a state and change of the state. The system should stay in a state 

for a while and then the state should change.  

Visual definition. When the system is in state L1, it should stay in this state at least for time 

unit d. After passing of the time and satisfaction of the condition, it would enter to state L2 

(Fig. 4). 

 

Fig. 4. Change of a state (C indicates clock) 

Logical definition of structure 4. If the system is in state L1 after satisfaction of condition 

(c<=d) at time t, it would go to a new state (Relation 9).  

 ∀i ∀t[L1(t,t) ∧ @(COND (c<=d) , i) = t]→ ∃ t’ [L1(t’,t’) ∧ t’ ≥ t+d ∧ d≥ ε]  (9) 

L0 L1 

c<=d
L2 

p q 

Guard, 

Action
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Structure 5. Transition from one state to several states by different events.  

Visual definition. In Timed Automata, some state changes may depend on the condition 
holds on the transition, i.e., if the condition holds, the state change would happen. Some 
possible target states may be accessible from one source state when different conditions hold 
(Fig. 5). 

 

Fig. 5. Change of states by occurrence of  event 

Logical definition of structure 5. Every time one of the events takes places and according to 
the occurred event, the system state changes (Relation 10). 

 ∀i, t [ L0(t,t) ∧ @(COND1 , i) = t] ń∃ t’,d [L1(t’,t’) ∧ t’≥ t+d ∧ d≥0] ∨  (10) 

∀i, t [ L0(t,t) ∧ @(COND2 , i) = t] ń∃ t’,d [L2(t’,t’) ∧ t’≥ t+d ∧ d≥0] ∨ 

∀i, t [ L0(t,t) ∧ @(CONDn , i) = t] ń∃ t’,d [Ln(t’,t’) ∧ t’≥ t+d ∧ d≥0] 

Structure 6. To reach states of a system periodically. When we verify the system behavior, 
some states may be reached periodically. 

Visual definition. In Timed Automata some sets of states and actions might be executed for 
several times. In such a situation, there will be iterations of some states for several times 
(Fig. 6). 

Logical definition of structure 6. While the system is in state Ln and event CONDn occurs, 
the system will go to state L1; this leads to an iteration of states L1 and Ln. However, if the 
system is in state Ln and event condi take places, the system will go to state Ln+1 (Relation 11). 

 ∀i ∀t [Ln(t,t) ∧ @(CONDn , i) = t] ń ∃ t1,d [Ln+1(t1,t1) ∧ t1 ≥ t+d ∧ d ≥0] ∨  (11)  

∀i ∀t [Ln(t,t) ∧ @(CONDi , i) = t] ń ∃ t2,d [L1(t2,t2) ∧ t2 ≥ t+d ∧ d ≥0] 

 

Fig.6. Periodic change of states 

4.2 Case study 

In this section we propose a critical system and apply the first and second steps (specifying 
problem in Timed Automata and extracting the logical specification of the problem) of our 

L0 L1 Ln+1 Ln 

condn

condi
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method. The case study is an example of an automatic controller in which the railway gate 
opens and closes an intersection. The system contains three parts: train, controller, and gate 
(Fig.7). The connection between the train and controller is created by two exit and approach 
methods where the former denotes the train exits from the intersection and the latter 
denotes the train approaches the intersection. It is necessary that the train sends the 
approach signal less than two minutes before entering the intersection. This has been shown 
by a protecting condition X>2 along with event in. Table 1 shows explanation of states of train, 
gate and controller. 

  

Fig. 7. Train, Gate and Controller states 

Train S0: the train is far from the 
intersection 
S1:the train is approaching to the 
intersection 
S2: The train is in intersection 
S3: The train is leaving the 
intersection

Controller
U0: the controller is in standby state 
U1:The controller is in the lower signal state 
U2:The controller is in the raise signal state 

Gate T0: The gate is in upward state
T1: The gate is coming down 
T2: The gate is in down state 
T3: The gate is going up  

Table 1. Explanation of Train, Controller and Gate states  

In addition, we know that the most delay between exit and approach signals is five minutes. 
This has been shown by the conditions X<=5 in transitions between states S1, S2 and S3. The 
gate is opened at T0 and closed at T2. The gate answers to lower signal by the open action in 
one to two minutes. The system clock is used to show the constraints. Initially the controller 
is in state U0 (Idle). The controller responses to the gate by sending the lower signal when it 
receives the approach signal from the train and the controller responses to the gate by sending 
the raise signal when it receives the exit signal from the train. The response time of the 
controller for approach and exit signals are one minute and more than one minute 
respectively; these limitations have been shown by clock z. 

The system is in the safe state when the train is in the intersection, and the gate is low. In 
other words, if the train is in state S1, the gate should be in state T2. For example, consider 
paths originate from nodes S0, T0 and U0 and end with nodes S1, T0 and U1 and paths 
originate from nodes S1, T0 and U1 and end with nodes S2, T0 and U1 representing the event 
approach followed by event in immediately. However, this sequence cannot be true if we 
consider clocks. Now based on the former rules we resemble the previous model with real 
time logic. 
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Specification 1 [based on Logical definition 3]. Initially, the train, the gate and the controller 

are in states S0, T0 and U0 respectively. 

 ∀t [S0(t,t)  ∧ U0(t,t) ∧T0(t,t)]  

Specification 2 [based on Logical definitions 2 and 3]. When the train is in state S0 and 

signal (event) approach occurs, after a while event ŃReset(x) of clock x occurs. When event 

ŅReset(x) occurs and clock x is reset by time d, the train is in the approaching state. 

∀i ∀t [ S0(t,t) ∧ @(SIGNAL(approach), i) = t ]ń ∃ j, t’, d [@(ŃRESET(x), j)= t’∧ t’≥t +d ∧ d≥0]  

∀i ∀t [@(ŃRESET(x) , i)= t] ń ∃j, t’, d [@(ŅRESET(x), j) = t’ ∧ t’≥ t+d ∧ d ≥ε]  

∀i ∀t [@(ŅRESET(x), i)= t] ń ∃ t’, d [S1(t’, t’) ∧ t’≥ t+d ∧ d≥0] 

Specification 3 [based on Logical definitions 2 and 3]. When the train is approaching to the 

intersection, it is in state S1. 

∀t [ S1(t,t) ] ń ∃t’,d [S1 (t’,t’) ∧ t’≥ t+d ∧ d≥0 ∧ d≤5] 

Specification 4 [based on Logical definitions 2 and 3]. When the controller is in state standby 

(denoted by state U0) and signal (event) approach occurs, the clock z is reset for making a 

transition from state U0 to state U1.  

∀i ∀t [U0(t,t) ∧ @(SIGNAL(APPROACH), i) = t] ń 

 ∃j, t’, d [@(ŃRESET(z), j)= t’ ∧ t’≥t +d ∧ d≥0] 

∀i ∀t [@(ŃRESET(z), i)= t] ń ∃j, t’, d [@(ŅRESET(z), j) = t’ ∧ t’>t+d ∧ d≥ε] 

∀i ∀t [@(ŅRESET(z), i)= t] ń ∃ t’ [U1(t’,t’) ∧ t’≥t+d ∧ d≥0] 

Specification 5 [based on Logical definitions 1 and 3]. As long as condition z<=1 holds the 

controller stays in state U1. 

∀i,t1,t2 [ U1(t1,t1) ∧ @(COND(z<=1),i=t2) ] ń ∃t’,d [U1 (t’,t’) ∧ t’≥t+d ∧ d ≥ 0 ∧ d ≤ 1] 

Specification 6 [based on Logical definitions 2 and 3]. Assume that: (1) the controller and the 

gate are in states U1 and T0 at time t respectively, (2) at this time signal lower is generated 

and (3) event ŃReset(y) occurs at time t’. Accordingly, the gate goes to state T1 and clock y is 

reset. If condition z=1 holds at time t, the controller would enter the state at time t’. 

∀i,j ∀t [U1(t, t ∧T0(t, t) ∧ @(SIGNAL(lower), i) = t ∧ (ŃRESET(y), j)= t] ń  

∃t’,q,d [T1(t’, t’) ∧ @(ŅRESET(y), q)= t’ ∧ t’ ≥ t+d ∧ ≥ε]  

∀i,j ∀t [ U1(t, t) ∧ T0(t,t) ∧ @( SIGNAL(lower), i) = t ∧ @(ŃRESET(y) , j)= t ∧  

 @(COND (z=1), i) = t ] ń  

 ∃t’,q,d [T1(t’, t’) ∧ U0(t’, t’) ∧ @(ŅRESET(y), q)= t’ ∧ t’≥t+d ∧ d≥ε]. 
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Specification 7 [based on Logical definitions 1, 3 and 4]. Gate stays in state T1 as long as 
condition y<=1 holds. In other words, if the gate is in state T1 at time t, it stays in the same 
state at time t’ while condition y<=1 holds. 

∀i ∀t [T1(t,t) ∧ @(COND (y<=1) , i) = t] ń ∃t’,d [ T1(t’,t’) ∧ t’ ≥ t+d ∧ d≤1] 

Specification 8 [based on Logical definitions 1 and 3]. Gate will be in state T2 at time t’ if 
event DOWN occurs at time t and after time unit d the gate enters state T2. 

∀i ∀t [T1(t,t) ∧ @(DOWN , i) = t] ń ∃t’,d [ T2(t’,t’) ∧ t’ ≥ t+d ∧ d≥0] 

Specification 9 [based on Logical definitions 1 and 3]. Train will be in state S2 at time t if at 
time t event in occurs and condition X>2 holds. After that the train goes state S2 after time 
unit d if condition X<=5 holds at the same time. 

∀i,j ∀t,t’,d S1(t,t) ∧ @( IN , i) = t ∧ @(COND (x>2) , i) = t ∧ @(COND (x<=5) , i) = t] ń 

∃d,t’[S2(t’,t’) ∧ t’ ≥ t+d ∧ d≥0] 

Specification 10 [based on Logical definitions 1 and 3]. As long as condition X<=5 holds and 
train is in state S2, train stays in this state.  

∀i ∀t [ S2(t,t) ∧ @(COND (x<=5) , i) = t] ń ∃t’,d [S2(t’,t’) ∧ t’ ≥ t+d ∧ d≥0] 

Specification 11 [based on Logical definitions 1 and 3]. Train will be in state S3 at time t’ if 
event OUT have occurred at time t. After that, train enters state S3 after time unit d if 
condition X<=5 holds. 

∀i ∀t [ S2(t,t) ∧ @(COND (x<=5) , i) = t ∧ @(OUT , i)=t ] ń ∃t’,d [S3(t’,t’) ∧ t’ ≥ t+d ∧ d≥0] 

Specification 12 [based on Logical definitions 1 and 3]. Train will be in state S0 at time t’ if 
event exit occurs at time t. After time unit d, train will be in state S0. 

∀i ∀t [S3(t,t) ∧ @(SIGNAL (exit) , i) = t] ń ∃t’,d [S0(t’,t’) ∧ t’ ≥ t+d ∧ d≥0] 

Specification 13 [based on Logical definitions 2 and 3]. Controller will be in state U2 at time 
t’ if it receives event exit. The event occurs due to exiting train from intersection at time t. 
Also if at the same time event reset of clock z occurs, train will enter the state U2 after time 
unit d and clock z is reset to zero at the same time. 

∀i, j ∀t [U0(t,t) ∧ @( SIGNAL (exit) , i) = t ∧ @(ŃRESET(z), j)= t ] ń  

 ∃t’, q, d [U2(t’,t’) ∧ @(ŅRESET(z) , q)= t’ ∧ t’ ≥ t+d ∧ d≥ε] 

Specification 14 [based on Logical definitions 1 and 3]. Controller stays in state U2 as long as 
condition Z<=1 holds. 

∀i∀t [U2(t,t) ∧ @(COND (z<=1) , i) = t] ń ∃t’,d [ U2(t’,t’) ∧ t’ ≥ t+d ∧ d≤1] 

Specification 15 [based on Logical definitions 1 and 3]. Controller will be in state U0 after 
time unit d when it receives signal raise at time t. 

∀i ∀t [ U2(t,t) ∧ @(SIGNAL (raise) , i) = t] ń ∃t’,d [U0(t’,t’) ∧ t’ ≥ t+d ∧ d≥0] 

www.intechopen.com



 
Real-Time Systems, Architecture, Scheduling, and Application 

 

142 

Specification 16 [based on Logical definitions 2 and 3]. Gate goes upward by receiving 

signal raise at time t and event ŃRESET(y) resets clock y at the same time. After time unit d if 

condition y<=2 holds, the gate enters state T3 at time t’ and at the same time event 

ŅRESET(y) resets clock y to zero. 

∀i,j,q ∀t,t’,d [T2(t,t) ) ∧ @( SIGNAL(raise) , i) = t ∧ @(ŃRESET(y) , j)= t ∧  

 @(COND (y<=2), q) = t ] ń 

∃t’, m, d[T3(t’,t’) ∧ @(ŅRESET(y) , m)= t’ ∧ t’ ≥ t+d ∧ d≥ε] 

Specification 17 [based on Logical definitions 1 and 3]. Gate will be in its first state, T0, at 
time t’ if event up occurs at time t and at this time, events COND(y<=2) and COND (y>=1) 
occur. After time unit d, the gate enters state T0. 

∀i, j, q ∀t [ T3(t,t) ∧ @( UP , i) = t ∧ @(COND (y>=1) , j) = t ∧ @(COND (y<=2) , q) = t] ń  

 ∃t’, d [T0(t’,t’) ∧ t’ ≥ t+d ∧ d≥0] 

4.3 Extracting reachability graph 

In the previous section, we stated textual specification of the Timed Automata of road and 

railway intersection in RTL. Having extracted reachability graph from Timed Automata, we 

use RTL to verify those situations in which the system enters unsafe states. Fig. 8 shows the 

reachability graph of road and railway intersection system. The gray parts of the graph are 

unsafe states that the system should never enter. To verify the system behavior against the 

unsafe states, we aim to construct verification rules (constraints). These rules are intended to 

monitor change of system states against the unsafe states. These rules are based on the 

structures specified in Section 4. 

Verification rule 1. When the train is approaching the intersection, the gate should get 

lower (state T1). 

∀t [S1(t,t)] ń ∃t’,d [T1(t’,t’) ∧ t’ ≥ t+d ∧ d≥0] 

Verification rule 2. When the train is approaching the intersection, the gate should not be 

up or should not move up (states T0 and T1); otherwise it is an unsafe situation (state H3 in 

Fig. 8). 

∀t [S1(t,t) ]ń ∃t’,d [¬T1(t’,t’) ∧ ¬T3(t’,t’) ∧ t’ ≥ t+d ∧ d≥0] 

Verification rule 3. When train is in intersection (state S2), the gate should be down (state 

T2); otherwise it is an unsafe situation (state H4 in Fig. 8).  

∀t [S2(t,t)] ń ∃t’,d [T2(t’,t’) ∧ t’ ≥ t+d ∧ d≥0]  

Verification rule 4. When train is in intersection (state S2), the gate should not be up or 

should not move down; otherwise it is an unsafe situation (states H4 and H5 in Fig. 8). 

∀t [S2(t,t) ]ń∃t’,d [(¬T0(t’,t’)  ∨ ¬T1(t’,t’) ) ∧ t’ ≥ t+d ∧ d≥0]  
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Fig. 8. Reachability graph 
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Verification rule 5. When train has not left the intersection (state S3), the gate should be 

down; otherwise it is an unsafe situation (state H5 in Fig. 8). 

∀t [S3(t,t)] ń ∃t’,d [T2(t’,t’) ∧ t’ ≥ t+d ∧ d≥0] 

Verification rule 6. When train has not left the intersection (state S3), the gate should not up 

or should not move up; otherwise it is an unsafe situation (state H5 in Fig. 8).  

∀t [S3(t,t) ] ń ∃t’,d [(¬T0(t’,t’) ∨ ¬T1(t’,t’) ∨ ¬T3(t’,t’) ) ∧ t’ ≥ t+d ∧ d≥0] 

Verification rule 7. When train is leaving the intersection, the gate should go up; otherwise 

it is an unsafe situation (state H2 in Fig. 8). 

∀t [S0(t,t) ∧ U0(t,t) ] ń ∃t’,d [T3(t’,t’) ∧ t’ ≥ t+d ∧ d≥0] 

Verification rule 8. When train is not in intersection, the gate should not be down or should 

not move down; otherwise it is an unsafe situation (states H1 and H2 in Fig. 8). 

∀t [S0(t,t) ] ń∃t’,d[(¬T1(t’,t’) ∨ ¬T2(t’,t’)) ∧ t’ ≥ t+d ∧ d≥0]  

5. Conclusions and related work 

In this paper, we dealt with producing verification rules for verification of real-time 

systems systematically. As a matter of fact, our contribution to the rule production had 

three aspects. The first one was determination and representation of basic constructions of 

Timed Automata that were susceptible to making basic verification rules. The second one 

was producing rules systematically, where it was achieved through reachability graph. 

The reachability graph as a bridge helped us to extract safety rules from visual 

specifications. The third aspect was mapping the safety properties obtained from the 

reachability graph into RTL propositions forming the verification rules. Finally, to show 

effectiveness of our approach we applied it to a real-time system. In the following, we 

state the related work. 

Jahanian and Mok specified high-level requirements by the Modechart visual and specific 

language and mapped them to a constraint graph (Chen & Rosu, 2005) where the graph was 

used by a monitor in order to verify software behavior.  

Deriving monitors from requirements has been considered by some researchers. The Eagle 

method used the Eagle logic to specify requirements and synthesized a rule based monitor 

(Barringer et al, 2004). It extended Mu Calculus to support past and future time linear logic 

and real-time one. Eagle exploiting a state-based approach (d'Amiron & Havelund, 2005) 

was extended by the HAWK logic (d'Amiron & Havelund, 2005). To support event-based 

specifications, the HAWK language, used to specify both high-level specifications and low-

level run-time states, has included low-level programming definitions to verify java 

programs.  

(Mok & Liu, 1997, Chen & Rosu, 2005) used real-time logic (RTL) for the requirements 

specification of real-time system. Li and Dang presented algorithms to combine automata 

with black-box testing in order to verify safety properties (Li, & Dang, 2006). (Mok & Liu, 
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1997, Douglass, 1999, Jalili & MirzaAghaei, 2007) exploiting event-based approach for real-

time systems, used real-time logic (RTL) for high-level specification of system requirements; 

so, they were capable of specifying real-time requirements, particularly ordering of events. 
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