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1. Introduction 

Over the past decades, there are tremendous researches on mobile robots aiming at 
increasing autonomy of mobile robot systems. As a basic problem in mobile robots, self-
localization plays a key role in various autonomous tasks (Kortenkamp et al., 1998). 
Considerable researches have been done on self-localization of mobile robots (Borenstein et 
al., 1996; Chenavier & Crowley, 1992; Jensfelt & Kristensen, 2001; Tardos et al., 2002), with 
the goal of estimating the robot’s pose (position and orientation) by proprioceptive sensors 
and exteroceptive techniques. Since proprioceptive sensors (e.g., dead-reckoning) are 
generally not sufficient to locate a mobile robot, exteroceptive techniques have to be used to 
estimate the robot’s configuration more accurately. Some range sensors such as sonar 
sensors (Drumheller, 1987; Tardos et al., 2002; Wijk & Christensen, 2000) and laser range 
finders (Castellanos & Tardos, 1996), can be employed for the robot localization. However, 
the data obtained from sonar sensors is usually noisy due to specular reflections, and the 
laser scanners are generally expensive. As a result, other sensory systems with more reliable 
sensing feedback and cheaper price, such as visual sensors (Chenavier & Crowley, 1992; 
Dellaert et al., 1999; Gaspar et al., 2000), are more demanded for mobile robot localization. 
Probabilistic localization algorithm (Chenavier & Crowley, 1992; Fox et al., 1999b; 
Nourbakhsh et al., 1995) is a useful systematic method in sensor-based localizations, 
providing a good framework by iteratively updating the posterior distribution of the pose 
space. As a state estimation problem, pose estimation with linear Gaussian distribution 
(unimodal) can be done by Kalman filters for pose tracking (Chenavier & Crowley, 1992; 
Leonard & Durrant-White, 1991), which exhibits good performance under the condition that 
the initial robot pose is known. Nonlinear non-Gaussian distribution (multimodal) problem 
can be solved by multi-hypothesis Kalman filters (Jensfelt & Kristensen, 2001) or Markov 
methods (Fox et al., 1999b; Nourbakhsh et al., 1995) for global localization. The multi-
hypothesis Kalman filters use mixtures of Gaussians and suffer from drawbacks inherent 
with Kalman filters. Markov methods employ piecewise constant functions (histograms) 
over the space of all possible poses, so the computation burden and localization precision 
depend on the discretization of pose space.  

Source: Vision Systems: Applications, ISBN 978-3-902613-01-1
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By representing probability densities with sets of samples and using the sequential Monte 
Carlo importance sampling, Monte Carlo localization (MCL) (Dellaert et al., 1999; Fox et al., 
1999a) represents non-linear and non-Gaussian models with great robustness and can focus 
the computational resources on regions with high likelihood. Hence MCL has attracted 
considerable attention and has been applied in many robot systems. MCL shares the similar 
idea to that of particle filters (Doucet, 1998) and condensation algorithms (Isard & Blake, 
1998) in computer vision. 
As a sample based method with stochastic nature, MCL can suffer from the observation 
deviation or over-convergence problem when the sample size is smaller or encountering 
some poorly modeled events (to be discussed in detail in Section 2.2) (Carpenter et al., 1999; 
Thrun et al., 2001). Many approaches have been proposed to improve the efficiency of MCL 
algorithm. A method of adaptive sample size varying in terms of the uncertainty of sample 
distribution, was presented in (Fox, 2003). However, the sample size of this method must 
meet a condition of an error bound of the distribution, which becomes a bottleneck for a real 
global localization. A resampling process through introduction of a uniform distribution of 
samples was further applied for the case of non-modeled movements (Fox et al., 1999a). 
Likewise, a sensor resetting localization algorithm (Lenser & Veloso, 2000) was also 
implemented using a resampling process from visual feedback, based on an assumption that 
the visual features with range and bearing are distinguishable. Such a method may be 
applicable to RoboCup, but not to a general office environment. Several other visual based 
Monte Carlo methods (Kraetzschmar & Enderle, 2002; Rofer & Jungel, 2003) were 
implemented under the condition that the environment features must be unique. A mixture 
MCL (Thrun et al., 2001) and condensation with planned sampling (Jensfelt et al., 2000) 
incorporated the resampling process to MCL for efficiency improvement, which require fast 
sampling rate from sensors every cycle. 
In order to achieve higher localization precision and improve efficiency of MCL, a new 
approach to extended Monte Carlo localization (EMCL) algorithm is presented here. The 
basic idea is to introduce two validation mechanisms to check the abnormity (e.g., 
observation deviation and over-convergence phenomenon) of the distribution of weight 
values of sample sets and then employ a resampling strategy to reduce their influences. 
According to the verification, the strategy of employing different resampling processes is 
employed, in which samples extracted either from importance resampling or from 
observation model form the true posterior distribution. This strategy can effectively prevent 
from the premature convergence and be realized with smaller sample size. A visual-based 
extended MCL is further implemented. The common polyhedron visual features in office 
environments are recognized by Bayesian network that combines perceptual organization 
and color model. This recognition is robust with respect to individual low-level features and 
can be conveniently transferred to similar environments. Resampling from observation 
model is achieved by the triangulation method in the pose constraint region.   
The remainder of this chapter is organized as follows. Section 2 introduces conventional 
MCL algorithm and discusses the existing problems when applied to the real situations. 
Section 3 proposes the extended MCL (EMCL) with brief implementation explanations 
showing the difference from conventional MCL, which is followed by the implementation 
details of a visual-based EMCL application example in Section 4. Section 5 presents 
experiments conducted on a mobile robot system to verify the proposed approach. Finally, 
conclusions of this work are given in Section 6. 



A Visual Based Extended Monte Carlo Localization for Autonomous Mobile Robots 205

2. Conventional Monte Carlo Localization 

2.1 Conventional MCL

Monte Carlo localization (MCL) (Dellaert et al., 1999; Fox et al., 1999a) is a recursive 
Bayesian filter that estimates the posterior distribution of robot poses conditioned on 
observation data, in a similar manner to Kalman filters (Chenavier & Crowley, 1992) and 
Markov methods  (Fox et al., 1999b; Nourbakhsh et al., 1995). The robot’s pose is specified 

by a 2D Cartesian position 
kx  and 

ky , and a heading angle 
kθ , where k denotes the index of 

time sequences. It is assumed that the environment is Markov when using Bayesian filters, 
that is, the past and the future data are (conditionally) independent if one knows the current 
state. The iterative Markov characteristic of Bayesian filters provides a well probabilistic 
update framework for all kinds of probability-based localization algorithms. 
MCL is implemented based on SIR (Sampling/Importance Resampling) algorithm 
(Carpenter et al., 1999; Doucet, 1998) with a set of weighted samples. For the robot pose 

[ ]Tkkkk yxX θ= , define the sample set as follows: 
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where the sample 
)(i

ks  consists of the robot pose )(i
kX  and the weight 

)(i
kw  that represents 

the likelihood of )(i
kX , i is the index of weighted samples, and kN  denotes the number of 

samples (or sample size). It is assumed that 
=

=kN

i

i

kw1

)( 1 , since the weights are interpreted 

as probabilities. 
During the localization process, MCL is initialized with a set of samples reflecting initial 
knowledge of the robot’s pose. It is usually assumed that the distribution is uniform for 
global localization when the initial pose is unknown, and a narrow Gaussian distribution 
when the initial pose is known. Then samples are recursively updated with the following 
three steps executed (see Table 1).

Step 1: Sample update with robot motion (prediction step) 
The probabilistic proposal distribution of robot pose in the motion update is 

)(),|( 111 −−− ×= kkkkk XBeluXXpq  (1) 

where ),|( 11 −− kkk uXXp  denotes probabilistic density of the motion that takes into account 

the robot properties such as drift, translational and rotational errors, 

[ ]Tkkkk yxu 1111 −−−− ∆∆∆= θ  denotes variation of the robot pose at time k-1, and )( 1−kXBel

denotes posterior distribution of the robot pose 1−kX . Then, extract a new sample set 
kS ′

with >< )()(
,

i
k

i
k wX  from the proposal distribution 

kq , by applying the above motion update to 

the posterior distribution, where )(i

kX   and )(i

kw  denote the extracted pose and weight after 

motion update, respectively.

Step 2: Belief update with observations (sensor update step) 
Robot’s belief about its pose is updated with observations, mostly from range sensors. 

Introduce a probabilistic observation model )|(
)(i

kk XZp , where kZ  denotes measurements 
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from the sensor. Re-weight all samples of 
kS ′  extracted from the prediction step, and we 

then have 

Algorithm Conventional MCL

Prediction step: 
for each 

kNi ,,1=

Draw sample )(i

kX  from 
1−kS  according to (1) 

k

i

k Nw /1)( =

k

i

k

i

k SwX ′>→< )()( ,

end for 
Sensor update step: 

for each
kNi ,,1=
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end for 
Resampling step (importance resampling): 

for each >=< )()()( ~,~ i

k

i

k

i

k wXs  in 
kS ′′

=
=

i

j

j

k

i

k wscw
1

)()( ~)~(                             {Cumulative distribution} 

end for 
for each 

kNi ,,1=

r=rand(0,1);                                               {random number r} 
j=1
while(

kN≤j ) do    

if( rscw j

k >)~( )( )

)()( j

k

i

k XX =

k

i

k Nw /1)( =

k

i

k

i

k SwX >→< )()( , , break 

else j=j+1   
end if 

end while 
end for 

Table 1. Conventional MCL algorithm 

)|(ˆ )()()( i
kk

i
k

i
k XZpww ⋅=  (2) 

where )(ˆ i

kw  denotes the non-normalized weight during the sensor update. 

Normalize weights as follows to ensure that all beliefs sum up to 1: 
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Then, the sample set after sensor update, denoted by 
kS ′′  with >< )()( ~, i

k
i
k wX , is obtained. 

The observation model )|(
)(i
kk XZp  is also named as importance factor (Doucet, 1998), 

which reflects the mismatch between the probabilistic distribution 
kq  after the prediction 

step and the current observations from the sensor.

Step 3: Resampling step 
The resampling step is to reduce the variance of the distribution of weight values of samples 

and focus computational resources on samples with high likelihood. A new sample set kS

is extracted with samples located nearby the robot true pose. This step is effective for 
localization by ignoring samples with lower weights and replicating those with higher 
weights. The step is to draw samples based on the importance factors, and is usually called 
importance resampling (Konolige, 2001). The implementation of such importance 
resampling is shown in Table 1. 

2.2 Problems of Conventional MCL 

When applied to the real situations, conventional MCL algorithm suffers from some 
shortcomings. The samples are actually extracted from a proposal distribution (here is the 
motion model). If the observation density deviates from the proposal distribution, the (non-
normalized) weight values of most of the samples become small. This leads to poor or even 
erroneous localization result. Such phenomenon results from two possible reasons. One is 
that too small sample size is used, and the other is due to poorly modeled events such as 
kidnapped movement (Thrun et al., 2001). To solve the problem, either a large sample size is 
employed to represent the true posterior density to ensure stable and precise localization, or 
a new strategy is employed to address the poorly modeled events.  
Another problem when using conventional MCL is that samples often converge too quickly 
to a single or a few high-likelihood poses (Luo & Hong, 2004), which is undesirable in the 
localization in symmetric environments, where multiple distinct hypotheses have to be 
tracked for periods of time. This over-convergence phenomenon is caused by the use of too 
small sample size, as well as smaller sensor noise level. The viewpoint that the smaller the 
sensor noise level is, the more likely over-convergence occurs, is a bit counter-intuitive, but 
it actually leads to poor performance. Due to negative influences of the smaller sample size 
and poorly modeled events, implementation of conventional MCL in real situations is not 
trivial.  
Since sensing capabilities of most MCLs are achieved by sonar sensors or laser scanners, the 
third problem is how to effectively realize MCL with visual technology, which can more 
accurately reflect the true perceptual mode of the natural environments.

3. Extension of Monte Carlo Localization (EMCL) 

In order to overcome limitations of conventional MCL when applied to real situations, a 
new approach to extended Monte Carlo localization (EMCL) methodology is proposed in 
this section. 
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In the proposed extended MCL algorithm, besides the prediction and sensor update steps 
that are the same as in the conventional MCL, two validation mechanisms in the resampling 
step are introduced for checking abnormity of the distribution of weight values of sample 
sets. According to the validation, different resampling processes are employed, where 
samples are extracted either from importance resampling or from observation model. Table 
2 gives the procedures of the proposed extended MCL algorithm. 

Algorithm Extended MCL  

Prediction step: 
Sensor update step: 

Same as conventional MCL algorithm; 
Resampling step: (different from conventional MCL) 

Quantitatively describe the distribution of (normalized and non-normalized) weight 
values of sample set; 

Two validation mechanisms: 
if (over-convergence);                                                      over-convergence validation

sample size sn  resampling from observations  

for each 
sk nNi −= ,,1

importance resampling )(i

kX  from 
kS ′′

k

i

k Nw /1)( =

k

i

k

i

k SwX >→< )()( ,

end for 
for each 

ksk NnNi ,,1+−=

sensor based resampling 

)|()(

kk

i

k ZXpX ←

k

i

k Nw /1)( =

k

i

k

i

k SwX >→< )()( ,

end for

else if (sum of (non-normalized) weight
thW< );          uniformity validation 

resampling size 
ks Nn =

sensor based resampling (same as the above)  
else importance resampling 
end if 

end if 

Table 2. Extended MCL algorithm 

Two Validation Mechanisms 
The two validation mechanisms are uniformity validation and over-convergence validation, 
respectively.
Uniformity validation utilizes the summation of all non-normalized weight values of 
sample set after sensor update to check the observation deviation phenomenon, in which the 
non-normalized weight values in the distribution are uniformly low, since the observation 
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density deviates from the proposal distribution due to some poorly modeled events.  
Since the samples are uniformly distributed after the prediction step and re-weighted 
through the sensor update step, summation of non-normalized weight values of all samples 

W  can be, according to (2), expressed as 

===
=== kkk N
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XZpwwW
1
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)()(

1

)( )|(
1

)|(ˆ  (4) 

where,
kN  denotes the sample size at time index k; )(i

kw  and )(ˆ i

kw  denote the weight values 

of sample )(i

kX  after motion update and after sensor update, respectively.  

Define thW  as the given threshold corresponding to the summation of the weight values. If 

the summation W  of all non-normalized weight values of samples is larger than the given 

threshold thW , the observation can be considered to be consistent with the proposal 

distribution, and the importance resampling strategy is implemented. Otherwise, deviation 
of observations from the proposal distribution is serious, and the sensor-based resampling 
strategy is applied by considering the whole sample size at the moment as the new sample 
size. The given threshold should be appropriately selected based on the information of the 
observation model and the observed features.  
Over-convergence validation is used to handle the over-convergence phenomenon, where 
samples converge quickly to a single or a few high-likelihood poses due to smaller sample 
size or lower sensor noise level. Over-convergence validation is employed based on the 
analysis of the distribution of normalized weight values of sample set, in which entropy and 
effective sample size are treated as measures for validation. When over-convergence 
phenomenon is affirmed, the strategy of both importance resampling and sensor-based 
resampling will be applied. 

Entropy denotes the uncertainty of probabilistic events in the form of −= ii ppH log ,

where ip  is the probability of events. In MCL, the importance factors indicate the matching 

probabilities between observations and the current sample set. Therefore, we can represent 
the uncertainty of the distribution of weight values of sample set by entropy. 
Effective sample size (ESS) of a weighted sample set is computed by (Liu, 2001): 

21 cv

N
ESS k

+
=  (5) 

where
kN  denotes the sample size at time index k, and 2cv  denotes variation of the weight 

values of samples, derived by 

−⋅==
kN

k

k

iwN
NiwE

iw
cv

1

2

2

2 )1)((
1

))((

))(var(  (6) 

in which ))(( iwE  and ))(var( iw  denote the mean and variance of the distribution of weight 

values of samples, respectively. 
If the effective sample size is lower than a given threshold (percentage of the sample size), 
over-convergence phenomenon is confirmed. It is then necessary to introduce new samples, 
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with the number of )( ESSNcn ks −= , where c  is a constant. Otherwise, the difference of 

entropy of the distribution of weight values before and after sensor update is further 
examined to determine whether the over-convergence phenomenon happens, in the 
following way 

λ≥
−

p

pc

H

HH  (7) 

where,
pH  and 

cH  denote the entropy of the distribution of weight values before and after 

sensor update, respectively; )1,0(∈λ  is a benchmark to check the relative change of entropy, 

which decreases as 
pH  increases. The larger the difference is, the more likely over-

convergence occurs. When over-convergence is confirmed in this manner, the number of 

new samples to be introduced is ))(1( ESSNn ks −−= λ .

By the analysis of the distribution of weight values of sample set, the abnormity cases can be 
effectively checked through the two validation mechanisms, and thereby premature 
convergence and deviation problem caused by non-modeled events can be deliberately 
prevented. In addition, more real-time requirements can be satisfied with smaller sample 
size. Further, the strategy of employing different resampling processes is to construct the 
true posterior distribution by treating the observation model as part of the proposal 
distribution, which is guaranteed to be consistent with the observations even when using 
smaller sample size or more precise sensors.  

4. An Implementation of Visual-Based Extended Monte Carlo Localization 

In this section, an implementation of the proposed extended MCL algorithm with visual 

technology will be discussed. The observation model )|(
)(i
kk XZp  is constructed based on 

visual polyhedron features that are recognized by Bayesian networks. The triangulation-
based resampling is applied. 

4.1 Sample Update 

In the prediction process, samples are extracted from the motion equation 

),,f( 111 −−−= kkkk vuXX

where
1−kv  denotes the sensor noise during the motion. Note that 

1−ku  consists of the 

translation
1−∆ ks  and the rotation 

1−∆ kθ , which are independent between each other and can 

be modeled with the odometry model (Rekleitis, 2003b). 
When the robot rotates by an angle of 

1−∆ kθ , the noise caused by odometry error is modeled 

as a Gaussian with mean zero and sigma proportional to 
1−∆ kθ . Therefore, the heading angle 

of the robot is updated by 

111 −∆−− +∆+=
kkkk θεθθθ  (8) 
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where
1−∆ kθε  is a random noise derived from the heading error model ),0( 1−∆ krot θσ , and 

rotσ  is a scale factor obtained experimentally (Rekleitis, 2003a). Likewise, there exists a 

translation error denoted by 
1−∆ ks

ε , which is related to the forward translation 1−∆ ks .

Furthermore, the change in orientation during the forward translation leads to the heading 
deviation. Then, the pose of samples can be updated by 
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where,
1−∆ ks

ε  and 
1θε  are random noises from the error models ),0( 1−∆ ktrans sN σ  and 

),0( 1−∆ kdrift sN σ ,
transσ  and 

driftσ  are scale factors experimentally obtained for the sigma of 

these Gaussian models (Rekleitis, 2003a); the sensor noise 1−kv  includes random noise 
1−∆ kθε

estimated by the heading error model ),0( 1−∆ krot θσ , as well as the translational error 

1−∆ ks
ε  with Gaussian model of ),0( 1−∆ ktrans sN σ  and the heading deviation 

1θε  with zero 

mean, estimated by ),0( 1−∆ kdrift sN σ .

To generate samples, the robot heading angle is firstly calculated by (8), and then the robot 
pose by (9). Figure 1 illustrates a distribution of samples generated in travelling 3.5 m along 
a straight line, with a known initial pose (on the right end) and the two noise parameters 

),( drifttrans σσ , where only the two-dimensional pose in x and y directions are given. As 

shown in this figure, the sample distribution spreads more widely as the travelled distance 
increases (the solid line with an arrow depicts the odometry data). 
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Figure 1. Sample distribution of straight line motion with error 5=transσ  and 1=driftσ
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4.2 Visual Sensor Update 

Observations from exteroceptive sensors are used to re-weight the samples extracted from 
the proposal distribution. Observations are based on sensing of polyhedrons in indoor office 
environments. Using the observed features, an observation model can be constructed for 
samples re-weighting, and the triangulation-based resampling process can be applied. 
Visual polyhedron features 
Polyhedrons such as compartments, refrigerators and doors in office environments, are used 
as visual features in this application. These features are recognized by Bayesian network 
(Sarkar & Boyer, 1993) that combines perceptual organization and color model. Low-level 
geometrical features such as points and lines, are grouped by perceptual organization to 
form meaningful high-level features such as rectangular and tri-lines passing a common 
point. HIS (Hue, Intensity, Saturation) color model is employed to recognize color feature of 
polyhedrons. Figure 2 illustrates a model of compartment and the corresponding Bayesian 
network for recognition. More details about nodes in the Bayesian network can be found in 
the paper (Shang et al., 2004). 
This recognition method is suitable for different environment conditions (e.g., different 
illuminations and occlusions) with different threshold settings. False-positives and false- 
negatives can also be reduced thanks to considering polyhedrons as features. Furthermore, 
there are many low-level features in a feature group belonging to the same polyhedron, 
which are helpful in matching between observations and environment model since the 
search area is constrained. 

                     

(a)                                                                                (b) 
Figure 2. Compartment model (a) and Bayesian network for compartment recognition (b) 

Consider a set of visual features m

kkkk zzzZ ],,[ 21= to be observed. The eigenvector of 

each visual feature j, denoted by Tj

k

j

k

j

k tz ],[ φ= , is composed of the feature type j

kt  and the 

visual angle j

kφ  relative to the camera system, developed by 

))2/()2/tan()2/(arctan( widthuwidth cj

k

j

k βφ ×−=

where width is the image width, cj

ku  is the horizontal position of feature in the image, and 

β  is half of the horizontal visual angle of the camera system.  

Visual observation model 
As described in Section 2, the sample weight is updated through an observation model 

)|(
)(i

kk XZp . It is assumed that the features are detected solely depending on the robot’s 

pose. Therefore, the observation model can be specified as: 
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The observation model for each specific feature j can be constructed based on matching of 
the feature type and the deviation of the visual angle, i.e., 
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where, j

kt  and 0j

kt  are feature types of current and predictive observations, respectively, and 

)(⋅δ  is a Dirac function; j

kφ  and 0j

kφ  are visual angles of current and predictive 

observations, and 
φσ  is variance of φ . When 0j

k

j

k tt = , the observed feature type is the same 

as the predictive ones. When the number of the predictive features is more than that of the 
observed ones, only part of the predictive features with the same number of observed 
features are extracted after they are sorted by the visual angle, and then a maximum 
likelihood is applied. 

4.3 Resampling Step

As discussed in Section 3, two validation mechanisms in the resampling step are firstly 
applied to check abnormity of the distribution of weight values of sample sets. Then 
according to the validation, the strategy of using different resampling processes is 
employed, where samples are extracted either from importance resampling or from 
observation model. Importance resampling has been illustrated in Section 2 (see Table 1). 
Here we will discuss the resampling method from the visual observation model.  

As we have mentioned that the threshold thW  for uniformity validation should be 

appropriately selected. For our application example, the threshold thW  is determined as 

follows based on the observation model (11): 

∏⋅=
=

m

i
wth kW

1 2

1

φσπ
 (12) 

where wk  is a scale factor, and m  is the number of current features.  

Sensor-based Resampling 

In the resampling from observations, )|( kk ZXp  is also treated as the proposal distribution, 

which can provide consistent samples with observations to form the true posterior 
distribution. According to the SIR algorithm, samples must be properly weighted in order to 
represent the probability distribution. Note that such sensor-based resampling is mainly 
applied in some abnormal cases (e.g., non-modeled events), which is not carried out in every 
iterative cycle. Furthermore, after completing the sensor-based resampling, all samples are 
supposed to be uniformly distributed and re-weighted by motion/sensor updates in the 
next cycle.  
The triangulation method is utilized for resampling from visual features, where visual 
angles are served as the observation features in the application (Krotkov, 1989; Mufioz & 
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Gonzalez, 1998; Yuen & MacDonald, 2005). Ideally, the robot can be uniquely localized with 
at least three features, as shown in Figure 3 (a), where the number 1~3 denotes the index of 
features. In practice, however, there exists uncertainty in the pose estimation due to 
observation errors and image processing uncertainty. The pose constrained region C0 shown 
in Figure 3 (b), illustrates the uncertain area of the robot pose with uncertain visual angle, 

where φφφ ∆−=− , φφφ ∆+=+ , φ  and φ∆  are visual angle and the uncertainty, 

respectively. The uncertain pose region just provides a space for resampling. The incorrect 
samples can be gradually excluded as the update process goes on. 

(a)                                                                              (b)
Figure 3. Triangulation-based localization (a) in the ideal case, (b) in the case with visual 
angle error 

In the existing triangulation methods, visual features are usually limited to vertical edges 
(Mouaddib & Marhic, 2000), which are quite similar and have large numbers. While in our 
application, polyhedron features recognized by Bayesian networks combine perceptual 
organization and color model, and therefore reduce the number of features and simplify the 
search. In addition, the sub-features of polyhedrons such as vertical edges in recognized 
compartments, can also be used for triangulation.  
In the process of searching features by interpretation tree (IT), the following optimizations 
can be applied: 
1. Consider all polyhedrons as a whole, and the position of each polyhedron as the central 

position of each individual feature. 
2. As visual angle of the camera system is limited, form the feature groups that consist of 

several adjacent features according to their space layout. The number of features in each 
feature group should be more than that of the observed features. The search area of the 
interpretation tree is within each feature group. 

3. Search match in terms of the feature type, and then verify by triangulation method the 
features satisfying the type validation, to see whether the pose constraint regions each 
formed by visual angles of two features, are intersected as is shown by the pose 
constraint region C0 in Figure 3 (b). 
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where j
k

j
k

j
k yx φ,,  are position and visual angle of the feature j, respectively, and m  is the 

number of observed features. 
Figure 4 (a) illustrates the sample distribution after sampling from two observed features 1f

and 2f , for a robot pose (3800mm, 4500mm, -120º). The visual angle error is about five 

percent of the visual angle. There are about 1000 generated samples that are sparsely 
distributed in the intersection region formed by the observed features. Figure 4 (b) 
illustrates the sampling results from three features 1f , 2f  and 3f , for a robot pose (3000mm, 

4200mm, -100º). It can be seen that all extracted samples locate in the pose constraint region 
and are close to the true robot pose. 

5. Experiments 

To verify the proposed extended MCL method, experiments were carried out on a pioneer 
2/DX mobile robot with a color CCD camera and sixteen sonar sensors, as shown in Figure 
5. The camera has a maximum view angle of 48.8 degrees, used for image acquisition and 
feature recognition. Sonar sensors are mainly for collision avoidance. Experiments were 
performed in a general indoor office environment as shown in Figure 6 (a). Features in this 
environment are compartments (diagonal shadow), refrigerators (crossed shadow) and door 
(short thick line below). Layout of features is shown in Figure 6 (b). 
In the experiments, the sample size was set as a constant of 400. Parameters of the extended 
MCL are: the percentage threshold of effective sample size was 10%, the constant c was 0.8, 

λ  was 0.15~0.25, and the scale factor wk  was 50%. Parameters for conventional MCL (with 

random resampling) were: percentage threshold of effective sample size is still 10%, c=0.3,

λ =0.35, and wk =30%.
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Figure 4. Sampling from observations with two and three features respectively 

Figure 5. Pioneer 2/DX mobile robot, equipped with a color CCD camera and sixteen sonar 
sensors around 
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 (a) (b) 
Figure 6. (a) Experiment environmental model.   (b) Layout of environmental features 

5.1 Global Localization with Kidnapped Movement 

First, the proposed extended MCL method was applied for global localization as well as an 
non-modeled movement (e.g., kidnapped problem), with time-variant sample distributions, 
entropy and effective sample size. Figure 7 illustrates the whole motion trajectory. It is seen 
that the robot started the motion from position a to position b, then was kidnapped to 
position c, and then continued to move to the end position d. Figures 8 and 9 illustrate 
results when the sample size was within 400. Figure 8 shows that the effective sample size 
and entropy are time varying. Sample distributions at different iterations are shown in 
Figure 9, where (a) ~ (f) corresponds to the initial, the 1st, the 8th, the 9th, the 17th, the 18th

and the 26th iterations, respectively. As shown in Figure 9 (a), the initial distribution was 
uniform. At the first iteration, when two compartments 4f  and 5f  were observed, entropy 

after sensor update decreased, as shown in Figure 8 (b), and both importance resampling 
and triangulation-based resampling were applied. Due to existence of multi-matches, 
importance resampling was applied in all successive iterations, as multi-clusters shown in 
Figure 9 (b). At the 9th iteration, the feature of the door 1f  was observed, and a single 

sample cluster shown in Figure 9 (c) was obtained until reaching position b, where all 
samples were distributed nearby the true pose of the robot, as seen in Figure 9 (d). At the 
18th iteration, the robot was kidnapped to the position c with a largely-changed heading 
angle. At this moment, the effective sample size and the entropy decreased greatly, as 
shown in Figure 8 (a) and (b). With observations of the features of the door 1f , the 

refrigerator 10f , and the compartment 9f , sample distribution was obtained as shown in 

Figure 9 (e), after applying importance resampling and triangulation-based resampling, 
until to the end position d where the sample distribution is shown in Figure 9 (f). 
From the above localization process, it can be seen that the sensor-based resampling, after 
an effective examination of weight values of samples by over-convergence validation, can 
well solve the robot kidnapped problem. Due to too many similar features in the 
environment, there were still some samples with higher weights after the kidnapped 
motion, and therefore only over-convergence validation was executed without the 
uniformity validation. If the robot is kidnapped to a region without similar features, the 
uniformity validation can be executed.

5.2 Comparison of Localization Errors

Through applying the strategy of different resampling processes in the extended MCL, the 
localization error becomes smaller than that with the conventional MCL, especially in the 
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non-modeled movements. Figure 10 illustrates a comparison of the localization errors 
between the extended MCL and the conventional MCL appended by random resampling, 
with the same observation model and the same sample size before and after the kidnapped 
motion. Suppose that the robot’s pose obtained from odometry was accurate enough for a 
short moving distance on the smooth floor. As is seen from Figure 10, at the moment when 
localization error increases at the 5th iteration, robot was kidnapped. The localization error 
under the extended MCL (with triangulation-based resampling), is much smaller than that 
under conventional MCL (with random resampling). This is to verify the improved 
localization performance of the proposed extended MCL. 

5.3 Time Performance 

We further demonstrate that the computational resources of the extended MCL could be 
effectively utilized by appropriately using the sensor-based resampling. As seen from the 
previous experiments, the number of samples (sample size) with EMCL is only 400, while 
the number of sample size with conventional MCL is usually much higher than it to obtain 
good localization performance. 
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Figure 11 (a) illustrates the total update time of the resampling process with respect to 
different numbers of samples. It can be seen when the sample size is less than 1500, the 
update time is lower and increases slowly as the sample size increases; when the sample size 
is more than 2000, the update time is higher and increases fast as the sample size increases. 
This indicates higher computational efficiency since high number of samples is not required, 
and thus the update time can be saved. 
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Figure 11 (b) further illustrates the percentage of the sensor-based resampling time with 
respect to the total update time versus different number of samples. The percentage of 
resampling time decreases as the sample size increases, i.e., from 48.6% with 200 samples to 
35.9% with 8000 samples. Since many samples are not deleted in a large sample set, the 
sensor-based resampling is not necessarily performed, and the process without resampling 
dominates the whole process. When the sample size increases to a certain extent, the 
percentage of the resampling time does not change obviously. This implies that the 
extended MCL with smaller sample size has the similar localization performance to that 
with relative larger sample size. Although the percentage of the sensor-based resampling 
time in the whole update time with smaller sample size is higher than that with higher 
sample size, the total update time is reduced when using smaller sample size. 

6. Conclusion 

An extended Monte Carlo localization (EMCL) method is proposed in this book chapter by 
introducing two validation mechanisms to apply a resampling strategy to conventional 
MCL. Two validation mechanisms, uniformity validation and over-convergence validation, 
are effectively used to check abnormity of the distribution of weight values of sample set, 
e.g., observation deviation or over-convergence problem. The strategy of employing 
different resampling processes is proposed to construct more consistent posterior 
distribution with observations. This new approach is aimed to improve localization 
performance particularly with smaller sample size in the non-modeled robot movements, 
and thus achieve global localization more efficiently. A vision-based extended MCL is 
further implemented, utilizing triangulation-based resampling from visual features in a 
constraint region of the pose space. Experiments conducted on a mobile robot with a color 
CCD camera and sixteen sonar sensors verify efficiency of the extended MCL method. 
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