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Vibration-Based Diagnostics of Steam Turbines 

Tomasz Gałka 
Institute of Power Engineering, 

Poland 

1. Introduction   

Of three general maintenance strategies – run-to-break, preventive maintenance and predictive 
maintenance – the latter, also referred to as condition-based maintenance, is becoming widely 
recognized as the most effective one (see e.g. Randall, 2011). To exploit its potential to the full, 
however, it has to be based on reliable condition assessment methods and procedures. This is 
particularly important for critical machines, characterized by high unit cost and serious 
consequences of a potential failure. Steam turbines provide here a good example. 

In general, technical diagnostics may be defined as determining technical condition on the 
basis of objective methods and measures. The objectivity implies that technical condition 
assessment is based on measurable physical quantities. These quantities are sources of 
diagnostic symptoms. For any given class of objects, the development of technical 
diagnostics essentially involves four principal stages (Crocker, 2003), namely: 

- measurement, 
- qualitative diagnostics, 
- quantitative diagnostics, 
- prognosis (forecasting). 

At the measurement stage we are able to measure physical quantities relevant to the object 
technical condition. On the basis of measurement data, at the qualitative diagnostics stage 
faults and malfunctions are identified and located with the aid of an appropriate diagnostic 
model. Quantitative diagnostics consists in estimating damage degree (advancement), for 
which a reference scale is necessary. Finally, prognosis is an estimation of the period 
remaining until an intervention is needed. Qualitative diagnostics may be viewed as being 
aimed at detecting hard (random) failures, while the aim of the quantitative diagnosis is to 
trace the soft (natural) fault evolution (Martin, 1994). 

Complex objects, like steam turbines, are characterized by a number of residual processes 
(such as vibration, noise, heat radiation etc.) that accompany the basic process of energy 
transformation, and hence a number of condition symptom types. For all rotating machines, 
vibration-based symptoms are the most important ones for technical condition assessment, 
due to at least three reasons: 

- high content of information, 
- comparatively easy and non-intrusive measurement techniques, 
- well-developed methods for data processing and diagnostic information extraction. 
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Of all vibration-based symptom types (see e.g. Morel, 1992; Orłowski, 2001), three are of 
particular importance for steam turbine diagnostics: 

- absolute vibration spectra, 
- relative vibration vectors, 
- time evolution of spectral components. 

These symptoms form the basis of diagnostic reasoning in both permanent (on-line) and 
intermittent (off-line) monitoring systems.  

2. Vibration generation and vibrodiagnostic symptoms 

Just like all rotating machines, steam turbines generate broadband vibration, so that power 
density spectra typically contain a number of distinct components. Due to different 
vibration generation mechanisms involved, it is convenient to divide the entire frequency 
range under consideration (typically from a few hertz up to some 10 to 20 kilohertz) into 
two sub-ranges, commonly referred to as the harmonic (or ‘low’) and blade (or ‘high’) 
frequency ranges, respectively. Sometimes the sub-harmonic range (below the fundamental 
frequency f0 resulting from rotational speed) is also distinguished. This division is shown 
schematically in Fig.1. 

 

Fig. 1. Schematic representation of dividing the entire power density spectrum frequency 
range into sub-harmonic, harmonic and blade frequency ranges (after Gałka, 2009a). 

Components from the harmonic range result directly from the rotary motion of turbine shaft 
and are related to malfunctions common to all rotating machines, such as: 

- unbalance,  
- shafts misalignment, 
- bent or cracked rotors,  
- magnetic phenomena in the generator. 

Components that fall into the sub-harmonic range are typically determined mainly by the 
stability of the oil film in shaft bearings (Bently and Hatch, 2002; Kiciński, 2006). Those of 
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very low frequencies (a few hertz) may be indicative of cracks in turbine casings and other 
non-rotating elements. 

Individual components from the blade frequency range are produced as a result of 

interaction between steam flow and the fluid-flow system, and hence may be considered 

specific to steam turbines. There are three basic phenomena involved (Orłowski, 2001; 

Orłowski and Gałka, 1998), namely: 

- flow disturbance caused by stationary and rotating blades edges, 

- flow disturbance resulting from scatter of fluid-flow system elements dimensions., 

- flow disturbance by control valves opening. 

First of these can be described in the following way: discharge edges of stationary and 

rotating blades introduce local interruptions of steam flow, thus reducing its thrust on a 

rotating blade and causing an instantaneous force of the opposite direction. Resulting force 

q1 is thus periodic and can be expressed by 

 q1 = 0 + k cos k(nt + k)               (1) 

where 0 is time-averaged thrust, k and k are amplitude and phase of the k-th component, 

respectively, n is number of blades in a stage (stationary or rotating) under consideration 

and  denotes angular frequency. This force can thus be expressed as a series of harmonic 

components with frequencies equal to kn = 2knu, where u is the rotational speed in s-1. As 

for the second phenomenon, it results from the fact that manufacture of blades and their 

assembly into rotor stages or bladed diaphragms are not perfect, so for each blade the 

corresponding discharge cross-section is slightly different from the other ones. Resulting 

force has a form of a pulse generated once per rotation and thus may be expressed by 

 q2 = 0 + k cos k(t + k) .                          (2) 

The third phenomenon is related to turbine control and shall be dealt with a little later. It 

should be mentioned, however, that – unlike the first two – the influence of control valves 

opening is usually limited to the vicinity of the control stage and diminishes as we move 

along the steam expansion path. Frequencies of basic spectral components resulting from 

interaction between steam flow and the fluid-flow system can be, on the basis of above 

considerations, expressed by 

 fw = l  u                         (3) 

 fk = b  u                                               (4) 

 f(w+k)/2 = (l + b)  u/2                                          (5) 

 f(w-k)/2 = (l - b)  u/2                              (6) 

where l and b denote numbers of blades in rotor stages and bladed diaphragms, 

respectively. Components given by Eqs.(5) and (6) result from interactions between rotor 

stages and adjacent bladed diaphragms. Each turbine stage is thus in general characterized 

by as many as six individual vibration components. 
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Vibration signal that can be effectively measured in an accessible point of a turbine is 
influenced not only by relevant generation mechanisms, but also by its propagation to this 
point, as well as by operational parameters and interference (see e.g. Radkowski, 1995; 
Gałka, 2011b). In general terms it may be expressed as (Radkowski, 1995) 

 z(r,t) = hp(r,t)  uw(r,t) + (r,t)  ,                       (7) 

where z denotes measured diagnostic signal, hp is the response function for signal 

propagation from its origin to the measuring point and  denotes uncorrelated noise; all 
these quantities are functions of the spatial variable r and dynamic time t. uw(r,t) is given by 

 
n

w i i
i

u r t h r D t x t h r t x t
1

( , ) ( , , ) ( ) ( , ) ( )


    ,                        (8) 

where Di describes development of the ith defect, hi is the response function pertaining to 
this defect and h is the response function with no defect present; x(t) is the input signal, 
generated by an elementary vibroacoustic signal source. This model is shown schematically 
in Fig.2. 

 

Fig. 2. Model of vibroacoustic signal generation and propagation (after Radkowski, 1995). 

An alternative general relation, in a vector form, is provided by (Orłowski, 2001) 

 S() = S[X(), R(), Z()]  ,                                                 (9) 

where S, X, R and Z denote vectors of symptoms, condition parameters, control parameters and 

interference, respectively, all varying with time .1 Control parameters may be defined as 

resulting from object operator purposeful action, aimed at obtaining demanded performance 

(Gałka, 2011b). In steam turbines, usually (at least in power industry) the ‘demanded 

performance’ means demanded output power; active load Pu can thus be treated as a scalar 

measure of the vector R. As for the interference, two types can be distinguished: external 
interference (the source is outside the object) and internal interference (the source is within the 

object). With some reservations, the former can be identified with measurement errors, while the 

latter refers to all other contributions to the uncorrelated noise (t) in Eq.(7). 

                                                                          
1 The reason for using t and  symbols for denoting time is that the former refers to the ‘dynamic’ time 
(e.g. that enters equations of motion), while the latter is for the ‘operational’ time – the argument of 
equations pertaining to technical condition evolution. 
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Let us assume that the influence of interference may be reduced to a point wherein it can be 

neglected. As control parameters are, at any given moment, known, there is obviously a 

possibility of symptom normalization with respect to them, either model-based or empirical. 

It has to be kept in mind, however, that normalization with respect to Pu, which seems most 

straightforward, in practice may be only approximate. Pu can be expressed as (Traupel, 

2000) 

 Pu = (dm/dt)it   ,                      (10) 

where dm/dt denotes steam mass flow, i is the enthalpy drop and t is the turbine 

efficiency. Assuming that t remains constant (which is only an approximation), Pu may be 

controlled by changing i (qualitative control), dm/dt (quantitative control), or both. The 

latter method (known as group or nozzle control) is typically used in large steam turbines. 

Each control valve supplies steam to its own control stage section; the number of these 

valves in large steam turbines is usually from three to six and they are opened in a specific 

sequence. At the rated power the last valve is only partly open, or even almost closed, as it 

provides a reserve in a case of a sudden drop of steam parameters. Furthermore, i depends 

also on condenser vacuum, which for a given unit may change within certain limits 

depending on overall condenser condition, cooling water temperature, weather etc. Thus 

 Pu = f(r1, r2, …, rk, po)  ,                           (11) 

where ri denotes ith valve opening, k is the number of valves and po is the condenser 

pressure. In fact, ri and po are the R() vector parameters, various combinations of which 

may yield the same value of Pu. In view of Eqs.(9) and (11), any Si(Pu) function (Si  S) 
cannot thus be a single-valued one. 

Some attention has been paid to developing experimental relations of the Si = f(Pu) type (see 
e.g. Gałka, 2001), bearing in mind that they are approximate and applicable to a given turbi-
ne type only. Such relations turn out to be strongly non-linear and differences between 
individual symptoms are considerable. In general, within the load range given by roughly 

Pu = (0.85  1.0)Pn, where Pn is rated power, variations are quite small; thus, when dealing 
with large sets of data, the simplest approach is to reject those acquired at extremely low or 
high loads. It has to be added that the fact of vibration-based symptoms dependence on 
control parameters and interference may serve as a basis for developing certain diagnostic 
procedures; this issue shall be dealt with in Section 6. 

3. Qualitative diagnosis 

As already mentioned, qualitative diagnosis consists in determining what malfunctions or 
damages are present and localizing them. In this Section the influences of control and inter-
ference shall be neglected, i.e. it shall be assumed that symptoms under consideration are 

deterministic functions of condition parameters Xi  X. 

For obvious reasons, the following review does not claim to be exhaustive and is 

concentrated on issues relevant to steam turbine applications. For comprehensive and 

detailed treatment the reader is referred e.g. to (Morel, 1992; Bently and Hatch, 2002; 

Randall, 2011). 
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3.1 Harmonic (low) frequency range 

Basically this subsection deals with absolute vibration spectral components of frequencies 
determined by f = nf0, where f0 results from rotational speed, and to some extent also with 
relative vibration vectors or orbits. In practical applications, components corresponding to  
n > 4 are seldom accounted for; this means that we are dealing with first four harmonic and 
sub-harmonic (n < 1) components. As each of these is typically influenced by a number of 
condition parameters, it is convenient to speak in terms of possible malfunctions and faults 
rather than frequencies. 

3.1.1 Unbalance 

Unbalance is common to all rotating elements. Primary symptom of this malfunction is the 
1  f0 component of absolute vibration in a direction perpendicular to the turbine shaft line. 
They are, however, many other possible malfunctions (some of them quite common) that 
produce similar vibration patterns; additional procedures are therefore usually needed for a 
correct diagnosis. 

In general, a ‘pure’ unbalance, be it static, quasi-static or dynamic, produces a 1  f0 compo-
nent that remains almost constant in amplitude and phase during steady-state operation 
and disappears at low rotational speed. As rotor systems are non-linear, this component is 
typically accompanied by higher harmonics (n > 1), with amplitudes decreasing as n in-
creases. Shaft orbits usually are quite regular and nearly circular or slightly elliptical. If such 
vibration pattern is present, the probability of unbalance being the root cause is high. Proper 
rotor balancing will usually reduce the residual unbalance to an acceptable level.  

Rotor systems will always respond to balancing. Step changes of the 1  f0 component not 
related to any maintenance activities (but occurring mainly after turbine shutdown and sub-
sequent startup) may be indicative of a loose rotor disk. Similarly, sudden and dramatic 
change may result from a broken rotor blade; such step changes are often big enough to 
enforce turbine tripping. Much slower, but continuous increase is often indicative of a 
permanent rotor bow (see also sub-section 3.1.3). An example is shown in Fig.3; it is easily  
 

 

Fig. 3. Time history of the 1  f0 component with permanent rotor bow present: 230 MW unit, rear 
intermediate-pressure turbine bearing, vertical direction. Arrows indicate balancing sessions. 
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seen that balancing results in a considerable decrease of the 1  f0 component, but the 
improvement is only temporary. If this component is comparatively high at low rotational 
speed, coupling problem (offset rotor axles) is a possible root cause, especially in turbines 
with rigidly coupled rotors.  

3.1.2 Misalignment 

Ideally the entire turbine-generator unit shaft line (with overall length approaching 70 m in 
large units in nuclear power plants) should be a continuous and smooth curve; a departure 
from such condition is referred to as misalignment. The shape of this line is determined by 
shaft supports (journal bearings). As they displace during the transition from ‘cold’ to ‘hot’ 
condition, due to changing temperature field (this process may take even a few days to 
complete), at the assembly stage care has to be taken to ensure that the proper shape is 
maintained during normal operation. Relative vertical displacements may be even of the 
order of millimeters (Gałka, 2009a). 

Misalignment modifies distribution of load between individual shaft bearings and therefore 
affects shaft orbits. With increasing misalignment magnitude they typically evolve from 
elongated elliptical shape through bent (‘banana’) and finally to highly flattened one (Bently 
and Hatch, 2002). High misalignment may lead to oil film instability, but in large steam 
turbines (especially modern ones, with only one bearing per coupling) this is a very rare 

occurrence. As for absolute vibration, 2  f0 component in directions perpendicular to the 
turbine axis is generally recognized as the basic misalignment symptom. Care, however, has 
to be taken when dealing with the turbine-generator coupling, as this component may be 
dominated by the influence of the generator (asymmetric position of rotor with respect to 
the stator electromagnetic field); in the latter case, dependence on the excitation current is 
usually conclusive. Marked misalignment is often accompanied with relatively high 
amplitudes of harmonic components in axial direction, but this symptom can by no means 
be considered specific. 

3.1.3 Rotor bow 

In general, three types of turbine rotor bow can be distinguished, namely: 

- elastic bow, resulting from static load, 
- temporary bow, caused by uneven temperature field and/or anisotropic rotor material 

properties, and 
- permanent bow, wherein material yield strength has been exceeded (plastic defor-

mation). 

Permanent bow is obviously the most serious one. As it causes the center of gravity to move 
off from the shaft centerline, it basically produces an unbalance (cf. Fig.3). In general, rotor 
response vector may be expressed as (Bently and Hatch, 2002): 

 
j

j e
e

Mr e
r e

K M jD

2

2[ (1 ) ]


 

  
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r ,                  (12) 

where M denotes unbalance mass, shifted at the distance re in the direction determined by 

the angle . K and D are stiffness and damping coefficients, respectively;  denotes rotor 
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angular velocity and  is the fluid circumferential velocity ratio ( = /, where  denotes 
average fluid angular velocity). First term describes the low-speed response (which, as men-
tioned earlier, is basically absent with ‘plain’ unbalance), while the second one refers to the 

dynamic synchronous response. It can be seen that for  >> r (where r is the resonance 
angular speed), when the first and the third term in the denominator can be neglected, rotor 
response is close to zero. This is a feature characteristic for this malfunction (colloquially 
speaking, the rotor ‘balances itself out’), but in large steam turbines with heavy flexible 

rotors the  >> r condition is seldom fulfilled. 

It has been shown (Gałka, 2009b) that permanent rotor bow causes simultaneous increase of 

the 1  f0 component in vertical and axial directions, so that a developing bow should result 
in strong correlation between these components (see also Section 6). Available data seem to 
confirm this conclusion, in fact based on quite simple model considerations. 

3.1.4 Rotor crack 

As a very serious fault with potentially catastrophic consequences, rotor crack has received 
considerable attention (for perhaps the most comprehensive available review, see Bach-
schmid, Pennacchi and Tanzi, 2010). In general, crack reduces shaft stiffness and thus causes 

resonance to shift to a lower rotational speed. As a result, the 1  f0 component amplitude 
during steady-state operation will either increase or decrease. In large steam turbines, ope-
rated above the first critical speed, the latter may be the case. This effect may be combined 
with that of increasing rotor bow due to reduced bending stiffness. As a result of asymmetry 

introduced by a crack, the 2  f0 component may also increase substantially.  

It is generally recognized that considerable continuous changes of first two harmonic com-
ponents amplitudes (not necessarily both increasing!) and phases during steady-state 
operation indicate that a shaft crack is possibly present. Rates of these changes vary within 
broad limits, from the order of months to days or even hours – in the latter case, a cata-
strophic failure is most probably imminent. Such evolution of vibration patterns should 
serve as an alert. Presence of a crack may be confirmed by monitoring absolute and relative 

vibration during transients – typically after a turbine trip. Time histories of the 1  f0 and  

2  f0 components, obtained in such manner, may be compared with reference data recorded 
after unit commissioning or a major overhaul. Significant reduction of critical speeds and 
increase of vibration amplitudes on passing through them are indicative of this malfunction, 
as well as is high overall relative vibration amplitude; the latter will sometimes render the 
startup impossible to complete, as the unit shall be tripped automatically below nominal 
rotational speed. 

3.1.5 Bearing problems 

A problem specific to shaft journal bearings is oil film instability that induces so-called self-
excited vibrations. This issue has attracted considerable attention and detailed theoretical 
models have been developed (Bently and Hatch, 2002; Kiciński, 2006). It can be shown that 

threshold rotational speed for the onset of instability th  is given by 

 th
K
M

1


  ,                                    (13) 
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where K and M denote stiffness and mass, respectively, and  is the oil circumferential 

velocity ratio. It is therefore obvious that a suitable stability margin should be provided by 

proper design and operation, which influence all three quantities that determine th. 

Bearing instability is nicely demonstrated with laboratory-scale model rotor systems. For 

large steam turbines in power industry, operated at a fixed rotational speed, this is a rare 

occurrence. Most frequently it results from bearing vertical displacement, due to thermal 

deformation and/or foundation distortion. Downward displacement reduces bearing load 

and causes K to decrease, so that th may become lower than the nominal rotational speed. 

In such circumstances, instability is unavoidable. Most typical symptom of this malfunction 

is the increase of sub-harmonic spectral components, often of the ‘hump’ shape centered 

slightly below 0.5  f0. Shaft orbits typically exhibit loops. Strong instability results in high 

relative vibration that leads to bearing damage. Proper adjustment of bearing positions is 

the primary action to be taken; sometimes reduction of the bearing size (length), in order to 

increase specific load, is necessary for a permanent remedy (Orłowski and Gałka, 1995). 

Due to strong non-linearity, journal bearings generate higher harmonic components which 

may be very sensitive to bearing condition, clearances and oil pressure. An example is 

shown in Fig.4, in the form of a time history of the 3  f0 absolute horizontal vibration com-

ponent. Initially very low, it increased dramatically following a minor bearing damage and 

remained at a high level, exhibiting considerable variations that suggest a resonance nature 

of the phenomenon. Permanent improvement was achieved only after a major overhaul. It 

has to be noted that such behavior is to a large extent influenced by design features; there-

fore care has to be taken when generalizing the results over other turbine types. In any case, 

sensitivity of spectral components to oil pressure is decisive. 

Typical malfunctions which have their representations in the low frequency range and their 
corresponding symptoms have been listed in Table 1, which summarizes this subsection. 

 

Fig. 4. Time history of the 3  f0 component: 200 MW unit, rear intermediate-pressure 
turbine bearing, horizontal direction. Arrows: 1, bearing damage; 2, bearing position and 
clearances adjustments; 3, major overhaul 
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Malfunction Typical symptoms 

Unbalance 
1f0 component in vertical and horizontal directions, constant 
amplitude and phase, decreasing at low rotational speed 

Misalignment 
2  f0 component in vertical and horizontal directions, ‘banana-
shaped’ or flattened shaft orbits, high harmonic components in axial 
direction 

Permanent rotor bow
1  f0 component in vertical and horizontal direction (also at low 

rotational speed), strong correlation between 1  f0 components in 
vertical and axial directions, 

Rotor crack 
Continuous changes of 1  f0 and 2  f0 components amplitudes and 
phases during steady-state operation, reduction of critical speeds 
and increase of vibration amplitudes on passing through them 

Bearing problems 

Increase of sub-harmonic components (typically slightly below 

0.5  f0), relative vibration increase, shaft orbits with loops, high and 
unstable amplitudes of higher harmonic components, sensitive to 
bearing oil pressure 

Table 1. Typical steam turbine malfunctions and their representation in low-frequency 
vibration-based symptoms. 

3.2 Blade (high) frequency range 

So-called blade spectral components, with frequencies given by Eqs.(3) to (6), are usually 

low in amplitude. Typically they fall into the frequency range from a few hundred hertz to 

about 1020 kilohertz. In vibration displacement spectra they are undistinguishable, so 

velocity or acceleration spectra have to be employed. Constant-percentage bandwidth (CPB) 

analysis is the most convenient tool; 23% CPB yields satisfactory results. 

Technical condition of the individual fluid-flow system components, i.e. rotor stages and 

bladed diaphragms, influences the k coefficients in Eqs.(1) and (2) and hence the vibration 

amplitudes in relevant frequency bands. Blade components are, however, highly sensitive to 

control and interference. Influence of control may be seen as a competition between two 

mechanisms. First, with nozzle control typical for large steam turbines, there is an asymmetry 

of steam pressure distribution over the turbine cross-section that depends on the control valve 

opening. This asymmetry affects forces resulting from the steam flow thrust, again via the k 

coefficients. As turbine load increases and consecutive valves are opening, pressure 

distribution becomes more uniform. Second, with increasing turbine load and steam mass 

flow, the 0 coefficient also increases. As already mentioned, it may be expected that the 

former mechanism shall influence vibration patterns at points close to the control stage, as the 

asymmetry decreases as we move downstream the steam expansion path. The latter should be 

noticeable for last low-pressure turbine stages, with long blades and large cross-section area. In 

practice, influence of steam flow asymmetry on blade components is quite strong in points 

located at the high-pressure turbine; operation at extremely low loads2 may cause them to 

increase even by a few times. Steam mass flow influence is usually much weaker. 

                                                                          
2 Load minimum is usually imposed by the steam generator (boiler or nuclear reactor) stable operation 
considerations. 
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Fig.5 shows relative standard deviation (/Ŝ, where Ŝ denotes mean value) plotted against 
mid-frequency of 23% CPB spectrum bands, determined for a 120 MW steam turbine. It is 
immediately seen that for the harmonic range /Ŝ is below 0.1, while in the blade range it 
may be as high as about 0.6 to 0.8. Similar analysis for other turbine types has yielded quan-
titatively comparable results (Gałka, 2011b). In such circumstances, a time history of a blade 
spectral component has to be considered a monotonic curve with large fluctuations im-
posed; an example is shown in Fig.6. Therefore the very occurrence of a high amplitude 
cannot be unanimously considered as indicative of a fluid-flow system failure. From the 
point of view of measurement data processing, values heavily influenced by control and/or 
interference have to be treated as outliers. 

 

Fig. 5. Relative standard deviation vs. frequency: results for a 120 MW unit, low-pressure 
turbine casing rear/left side, horizontal direction; data obtained from 90 consecutive measu-
rements (after Gałka, 2011b). 

 

Fig. 6. Time history of the 2500 Hz component: 200 MW unit, low-pressure turbine casing 
front/right side, vertical direction 
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It has to be noted that in steam turbines there are sources other than the fluid-flow system 
that generate vibration components with frequencies in the same range. Typically this is the 
case with oil pump and governor, driven from turbine shaft via gears. If unexpectedly high 
amplitudes are encountered, additional narrow-band analysis provides conclusive data, as 
frequencies of these components may be easily calculated. 

4. Quantitative diagnosis 

In short, qualitative diagnosis provides an answer to the question ‘what’, while quantitative 
diagnosis is expected to tell ‘how much’. This problem is becoming particularly important 
when a turbine is operated beyond its design lifetime, which is by no means uncommon. It 
has to be kept in mind that many turbines still in operation had been designed a few dozen 
years ago, with much less knowledge of lifetime consumption mechanisms and therefore 
larger safety margins. Quantitative diagnosis is obviously mandatory if condition-based 
maintenance is to be introduced. 

By necessity, for a quantitative condition assessment a reference scale of some kind has to be 
used. Such scale may be provided by three values: basic, limit and admissible. Basic value Sb 
corresponds to a new object with no malfunctions or faults present. Limit value Sl may be 
considered as determining the ‘normal’ operation range: if S > Sl, further operation is still 
possible, but the machine cannot fulfill all requirements (concerning e.g. reliability, 
economy, output, environmental impact etc.). Admissible value Sa is determined from safety 
considerations: S > Sa indicates high possibility of imminent breakdown and should result in 
machine tripping.  

As Sa is in practice irrelevant to technical diagnostics and Sb may be determined in a rather 
straightforward manner, the Sl estimation is fundamental for quantitative diagnostics. A 
complex machine is characterized by a large number of symptoms, and obviously each of 
them may be assigned its specific limit value. An approach to this estimation is provided by 
the Energy Processor model and the concept of symptom reliability (for a comprehensive 
and detailed treatment, see Natke and Cempel, 1997). This approach is based on the fact that 
any energy-transforming object is a source of residual processes, such as vibration, noise, 
thermal radiation etc. The power of these processes V can be shown to depend on the object 
condition. In the simplest case the relation is given by 

 
b

V V
1

0 1




 

  
 

,                                  (14) 

where V0 = V( = 0) and b denotes time to breakdown, determined by the time-invariant 
properties of the object. As Eq.(14) has been derived with quite restrictive assumptions, 
several modifications have been proposed, applicable for various types of diagnostic objects 
(see e.g. Gałka and Tabaszewski, 2011); they inevitably result in considerable complication 
of the mathematical description.  

In practice V is usually non-measurable and accessible only via measurable symptoms. A 

symptom is related to V by so-called symptom operator . Several types of symptom 
operators have been proposed (see e.g. Natke and Cempel, 1997). In steam turbine applica-
tions, Weibull and Fréchet operators have been found particularly appropriate; it also has to 
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be added that they conform to all relevant requirements (in particular, vertical asymptote at 

 = b), while some other operators (e.g. Pareto or exponential) are valid only for small 

values of /b. Weibull operator results in the following expression for a symptom as a 

function of : 

 
b

S S
1/

0

1
( ) ln

1 /




 

 
  

 
,                            (15) 

while Fréchet operator yields: 

 bS S 1/
0( ) ( ln / )      .                       (16) 

In both cases,  is the shape factor to be determined empirically and S0 = S( = 0).  

In order to determine Sl, the concept of symptom reliability is introduced. Symptom 
reliability R(S) is defined (Cempel, Natke and Yao, 2000) as the probability that a machine 
classified as being in good condition (S < Sl) will remain in operation with the symptom 
value S < Sbr, where Sbr denotes value corresponding to breakdown. This may be written as 

 R(S)  P(Sbr > S | S < Sl)  .                     (17) 

Analytically this may be expressed as 

 
S

R S p S dS( ) ( *) *


  .                            (18) 

where p(S) denotes the symptom probability density function. Determination of the limit 
value must involve some measure of acceptable operational risk. This may be accomplished 
by using the Neyman-Pearson rule, known from statistical decision theory (Neyman and 
Pearson, 1933). In this particular case, it yields 

 

l

l
S

R S G G p S dS A( ) ( )


    ,                          (19) 

where G denotes the availability of the machine (or group of machines) and A is the accep-
table probability of erroneous condition classification as ‘faulty’, i.e. performing an un-
necessary repair. 

For a given symptom operator, p(S) may be estimated from experimental data, providing 

that the available database is sufficiently large. In practice (Gałka, 1999) about 100 indivi-

dual data points will allow for a reasonable estimation. Weibull and Fréchet operators 

usually yield Sl values differing just by a few percent. 

A set of limit values should be considered specific for a given turbine example; experience 

has shown that generalization of results over the entire type should be avoided. It has to be 

kept in mind that an overhaul often results in a considerable modification of vibration 

characteristics. This refers mainly to harmonic components, which are sensitive even to 

minor repairs or adjustments, while blade components are typically influenced only by 
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major overhauls that involve opening of turbine casings. Formally such overhaul is 

equivalent to creating a new object. Normalization of the influence of overhauls (which 

determine machine life cycles) is quite straightforward if S0 values are available, which is 

usually the case. 

5. Evolutionary symptoms 

Insofar attention has been focused on vibration characteristics recorded at some given 

moment . Diagnostic information is obviously also contained in symptom time histories. 

Although state-of-the-art vibration monitoring systems facilitate so-called trending, i.e. 

plotting of S against , this is seldom used for diagnostic purposes. It has to be mentioned 

that this refers to steady-state operation data, not transients (startups or shutdowns). In 

general, any quantity pertaining to the S() time history may be evaluated in terms of 

diagnostic reasoning and treated as a symptom itself. 

Time histories of vibration components, especially in the blade frequency range, are usually 

quite irregular. As already mentioned, symptom time history may be considered a 

monotonic trend with superimposed fluctuations resulting from control and interference (cf. 

Eq.(9)). If a fault develops fast and strongly influences vibration patterns, this trend is 

clearly visible (see Fig.3). On the other hand, if condition evolution is slow, it may be 

suppressed by control and interference to a point where it is barely distinguishable. The 

latter is often the case for the blade frequency range. Various data smoothing procedures 

have been proposed to extract the monotonic trend, including three-point averaging, 

wherein kth symptom reading S(k) is replaced with S(k) given by: 

 i k i k i k i kS S S S1 1

1
'( ) [ ( ) ( ) ( )]

3
       .                         (20) 

Another option is peak trimming, which in fact consists in eliminating isolated outliers. This 
method is based on the assumption that if 

 S(k)/S(k-1) > c and S(k)/S(k+1) > c ,                   (21) 

then the S(k) value is suspicious and treated as an outlier; in such cases, S(k) is replaced by 

S(k) = [S(k-1) + S(k+1)]/2. For steam turbines c = 1.5 is reasonable. 

Six basic types of vibration evolution can be distinguished for rotating machines in general 
(Morel, 1992), namely: 

- simple evolution (linear or nearly linear), 
- complex evolution (usually variations or fluctuations superimposed on a monotonically 

increasing curve), 
- stepwise changes (discontinuous evolution), 
- exponential increase, 
- cyclic or nearly cyclic variations, 
- rapid random variations. 

Moreover, each type is characterized by a ‘timescale’ ranging within broad limits, from 

seconds to years. Both evolution type and timescale depend on the malfunction or damage 
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type and on the turbine element involved, so the primary idea was to employ this approach  

in qualitative diagnostics. General guidelines for steam turbines are given in Table 2 (after 

Orłowski, 2001). 

Vibration evolution assessment is, however, far more important for a quantitative diagnosis. 
If we limit our attention to Weibull and Fréchet operators, we may expand relevant ex-
pressions for S() into Taylor series around /b = a, wherein 0 < a << 1 (for mathematical 
reasons, a = 0 is unacceptable). Truncating higher-order terms, we obtain S() in the form of 

 
b

S S A0( ) 1



 
  

 
,                       (22) 

which is valid for  << b. The constant A depends on the symptom operator and is given by 

 A
a a

1/ 1
1 1

ln
(1 ) 1






     

                                         (23) 

 

Evolution type Timescale Failure 

Simple (linear or nearly linear 
increase) 

over 24 h deformation of casings 

a few minutes to a few 
hours 

deformation of rotors, 
thermal unbalance 

(temporary) 

Complex (usually fluctuations 
superimposed on an increasing 

trend) 

a few minutes to a few 
hours 

thermal unbalance 
(temporary) 

a few hours to a few days 
variations of natural 

frequencies 

a few days to a few months
deformation of casings 

and/or foundations 

Stepwise (discontinuous) a few seconds 
damage of blades, 

cracks of rotor elements 

Exponential or nearly 
exponential 

a few to a few dozen 
minutes

rubbing in labyrinth seals 

a few hours to a few weeks material creep effects 

Cyclic or nearly cyclic 
variable soft rubbing in seals 

a period of a few seconds flutter, problems with control 

Rapid random  
bearing instability, 

steam flow instability 

Table 2. Failures and damages of steam turbines revealed in vibration evolution parameters 
(after Orłowski, 2001) 

for the Weibull operator and 

 A a
a

(1/ 1)1
( ln ) 


                               (24) 

for the Fréchet operator. We may thus infer that, if lifetime consumption (given by /b) is 

small, symptom time history will be well approximated by a straight line and its slope will 
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not change substantially with time. In fact this is compatible with the main mechanisms of 

lifetime consumption, i.e. fatigue and creep, for which linear approximations for  << b are 

also valid. Such case is illustrated by an example shown in Fig.7a. On the other hand, for a 

considerable lifetime consumption, the slope will initially increase with time (Fig.7b) to a 

point wherein linear approximation is no longer acceptable and S() resembles an exponen-

tial curve. For  close to b even exponential fit fails (Fig.7c). 

 
   (a)     (b) 

 
    (c) 

Fig. 7. (a) Linear fit slope vs. time: 230 MW unit, front low-pressure turbine bearing, 
horizontal direction, 6.3 kHz band; (b) the same, 200 MW unit, low-pressure turbine casing 
rear/ right side, horizontal direction, 3.15 kHz band; (c) vibration velocity vs. time: 200 MW 
unit, high pressure/intermediate pressure bearing, vertical direction, 8 kHz band. Data 
smoothing: peak trimming at c = 1.5 followed by three-point averaging. Red line in (c) 
represents exponential fit. 

Although quantitative assessment results should not be generalized over different turbine 
types, it has been estimated that, for components from the blade frequency range, vibration 
velocity vs. time plots with linear slope values below about (10  20)  10-6 (mm/s)/day are 
typical for normal lifetime consumption (natural damage) with  substantially lower than b. 
For the harmonic frequency range, the value of 10-4 (mm/s)/day may be accepted as a very 
rough estimate. Accelerated damage may result in a value higher by an order of magnitude 
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(cf. Fig.3). It has to be kept in mind, however, that in the harmonic range normalization of 
life cycles is mandatory. 

6. Statistical symptoms 

6.1 Dispersion measures 

Up to this point, the deterministic approach has been employed. It may be argued that this 
is not compliant with the statistical nature of vibration generation mechanisms. What is 
more important, however, is the fact that statistical approach allows for eliminating prob-
lems resulting from the influences of control and interference. The basic idea may be 
summed up as ‘if we cannot get rid of it, then try to make use of it’. 

The main assumption in the statistical approach is that a symptom is a random variable 
rather than a deterministic function of machine condition parameters. Parameters of this 
random variable also depend on object condition and thus may be themselves accepted as 
symptoms (sometimes they are referred to as meta-symptoms, in order to stress that they 
are not directly measurable physical quantities). The idea of determining such symptoms is 
shown schematically in Fig.8. 

 

Fig. 8. The idea of statistical symptom determination: parameters pertaining to measured 

symptom value distribution are determined within a time window  . 

Obviously elements of the control and interference vectors are also random variables. More-
over, for a given turbine at some fixed location, it is reasonable to assume that statistical 
parameters of these random variables do not change with time, so each of them is 
characterized by a time-invariant probability distribution. Now, let us assume that we deter-
mine probability distribution of a vibration-based symptom S (say, vibration velocity level 
in a given frequency band, measured in a given point) in a manner shown in Fig.8. If it can 
be shown that 
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 S/Ri = f(X) and/or S/Zi = f(X) ,                      (25) 

then the distribution of S will obviously change with condition parameters. Intuitively we 
may expect that with deteriorating technical condition both S/Ri and S/Zi will increase 
as   b, i.e. S shall be more and more sensitive to control and interference parameters. It 
can be shown on the basis of a suitably modified Energy Processor model that this is exactly 
the case (Gałka and Tabaszewski, 2011), providing that measurement errors are excluded. 
Thus, a measure of vibration level dispersion may be accepted as a diagnostic symptom. 

Standard deviation  is the most commonly used dispersion measure. From the point of 
view of this application, it has two main deficiencies. First, normal distribution is tacitly 
assumed, which in general is not the case. Second, standard deviation is very sensitive to 
outliers, and obviously no data smoothing can be employed in estimating dispersion. 
Although standard deviation has yielded basically encouraging results (Gałka, 2008b), 
robust measures are far superior. Mean absolute difference between two consecutive 
measurement results  was first proposed (Gałka, 2008b) and () time histories have been 
found much more regular and easier to interpret than those of (). Other possibilities 
include median absolute deviation about the median m, defined as 

 m = Med[S – Med(S)] ,                                 (26) 

which in fact consists in centering the data around median rather than mean value, and 
interquartile range given by: 

 q = Q3(S) – Q1(S),                   (27) 

where Qi is the ith quartile: 

 Q1 = F-1(0.25), Q2 = F-1(0.5), Q3 = F-1(0.75) ,        (28) 

F being the cumulative distribution function. Obviously, for a symmetrical distribution 
these two approaches are equivalent, but with a heavy-tailed distribution this is not the case. 
For the normal distribution, both m and q are constant multiples of . 

Time window width  is obviously a compromise. Larger  yields better estimation of 
dispersion but it has to be kept in mind that the approach schematically shown in Fig.8 is in 
fact based on the assumption that 

 i i
i

X X( ) ( )    .                              (29) 

If this condition is not fulfilled, centering data around any value ‘averaged’ over the entire 
time window becomes groundless. This is certainly the case when  is close to b. In 
analyzing time series one should speak in terms of deviations from the trend rather than 
from some mean value corresponding to the entire time window. This in fact explains why 
() yields better results, as differences between consecutive measurement results better 
represent such deviations. Another symptom may be thus proposed, in the form of 
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


,                                                     (30) 
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where i is the number of data points contained in the time window, S(i) are consecutive 

symptom value readings and St() represents symptom trend estimated for the entire period 
under consideration. 

Comparison of these five dispersion measures is shown in the example presented in Fig.9, 
which refers to a natural damage (last measurement was performed shortly before rotor  
 

 

 

 

Fig. 9. K-200 unit, front high-pressure turbine bearing, vertical direction, 8 kHz band.  

(a) symptom time history, (b) (), (c) m(), (d) q(), (e) (), (f) (); data window containing 
20 measurements.  
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replacement). It is easily seen that they all increase with , almost monotonically, but () is 

obviously influenced by outliers and hence is of ‘step-like’ form. Both m() and q() are more 

regular, but certainly () and () are superior; in particular, the latter is most regular and 

almost perfectly monotonic. The ‘dynamics’ of these symptoms is also noteworthy: during 

the period covered by observation they increase roughly by one order of magnitude. They 

may be thus considered highly sensitive to lifetime consumption. It may also be noted that a 

marked increasing tendency starts well before rotor replacement (about four years). 

Symptoms of this type may thus provide an ‘early warning’, with a lead long enough e.g. to 

re-schedule maintenance or purchase replacement parts. 

6.2 Correlation measures 

The use of a correlation measure in vibration-based condition assessment is twofold. First, 

we may check the very existence of correlation or, more precisely, determine if it is ‘weak’ or 

‘strong’. This may be very useful, because – as already noted – in steam turbines several 

possible malfunctions sometimes produce similar changes of vibration characteristics.  Such 

approach is thus applicable in qualitative diagnostics. Second, we may study how a correla-

tion measure changes with time and utilize the results for a quantitative diagnosis. 

The most commonly used measure of correlation is the Pearson product-moment correlation 
coefficient r, given by the normalized covariance 
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r
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 

 
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

 
,                                          (31) 

where E denotes expected value and 

 1 = E(S1), 2 = E(S2) .               (32) 

This measure is very sensitive to outliers (see e.g. Maronna, Martin and Yohai, 2006), but 

is often sufficient for a qualitative diagnosis. The basic idea stems from the fact that if  

two symptoms can be shown to be correlated, we may infer that they are dependent, i.e.  

that their changes have been caused by the same condition parameter. The reverse is not  

true: if two random variables are not correlated, this does not imply that they are 

independent.  

Fig.10 shows two vibration time histories recorded with a 200 MW turbine that suffered an 

intermediate-pressure rotor failure and secondary fracture of steam guiding fences. Manifes-

tation of this failure in vibration patterns was quite complex. It may be noted, however, that 

before repair both these components tended to increase simultaneously. Several other 

components from the blade frequency range – up to about 2 kHz – behaved in a similar 

manner. We may thus suspect that comparatively high level of the 4  f0 component was a 

result of the fluid-flow system failure. This is corroborated by correlation analysis; for 23% 

CPB spectra bands from 800 Hz to 2 kHz coefficients of correlation with the 4  f0 compo-

nent ranged from r = 0.689 to r = 0.912, while for two other turbines of the same type |r| 

was below 0.2 (in several cases negative). Shortly after the repair the 4  f0 component 

increased again, eventually reaching even substantially higher level; this time, however, 
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there is virtually no correlation with the blade components, r being about –0.1. The root 

cause was thus different.3 

 

Fig. 10. Time histories of vibration amplitudes: K-200 unit, rear intermediate-pressure turbine 

bearing, axial direction, 4f0 (a) and 1000 Hz (b) components. Vertical lines indicate repair. 

In addition to being sensitive to outliers, the Pearson correlation coefficient is deficient in 

that a linear relation is assumed. Both above-mentioned disadvantages may be eliminated or 

at least alleviated to some extent by using non-linear and more robust measures of 

correlation. These include the Kendall rank correlation coefficient , given by 
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,                                                         (33) 

and Spearman rank correlation coefficient , given by 
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3 Detailed case study may be found in (Gałka, 2008a) 
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In these formulae, N is the number of scores (elements) in two data samples, d denotes 

symmetric difference distance and di are differences between individual ranks. It should be 

noted here that both  and  are calculated on the basis of ranks rather than standard 

deviations and therefore more suitable for analyzing time series (Salkind, 2007). They are 

thus more appropriate when dealing with correlation as a function of . 

As mentioned earlier, for a rapidly developing damage one should speak in terms of a 

deviation from the trend than of some mean or expected value. We may therefore, as 

suggested in (Gałka, 2011a), introduce yet another correlation measure, tentatively termed 

‘modified Parsons coefficient’ r. Using the notation from Eqs.(30) and (31), r is given by 

 
   
    

t t

t t

E S S S S
r

E S S S S

1 1 2 2

2 2
1 1 2 2

 
 
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.                      (35) 

Let us assume that lifetime consumption degree D = /b is the only condition parameter 

that is taken into account. Then Eq.(9) for a given symptom S may be rewritten as 

 S = f(D, R1, R2, ..., Rk, Z1, Z2, ..., Zm) .                    (36) 

Within the framework of the Energy Processor model, the influence of D on S is purely 

deterministic and S(D) is a monotonically increasing function. As D approaches unity, both 

S and dS/dD tend to infinity (cf. Eq(14)), so equal increments of D will result in increasing 

increments of S: 

 D  1  S = S(D + D) – S(D)     (D = const.)  ,        (37) 

and this will hold for all symptoms. Correlation is thus expected to increase with D, as for 

any two symptoms Sj and Sk both will, to a growing extent, be dominated by D rather than 

other factors and thus become more deterministic with respect to D. Speaking in a 

descriptive manner, Eq.(35) may be viewed as revealing a competition between the random 

(represented by Ri and Zi) and the deterministic (represented by D). The above 

argumentation suggests that for D  1 the latter should prevail and consequently a measure 

of correlation should increase in value. This phenomenon has been termed the ‘Old Man 

Syndrome’.4 

Fig.11 shows comparison of the above four correlation measures plotted against time for the 

same unit as in Fig.9 (albeit for different frequency bands). All plots exhibit a more or less 

pronounced ‘saddle’, which was found to have resulted from an overhaul which ‘de-

correlated’ the symptoms to a certain extent. The terminal increasing section is, however, 

evident.  

Due to a large number of vibration-based symptoms generated by a typical multi-stage 

steam turbine, the number of pairs to be analyzed in terms of correlation is large, of the 

order of a few dozen or more. It is, however, possible to select those with the highest content  
                                                                          
4 To the author’s best knowledge, this term has been first used in the context of technical diagnostics by 
Cempel (see Cempel, 1991). 
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Fig. 11. Plots of Pearson (a), modified Pearson (b), Kendall (c) and Spearman (d) correlation 

coefficients: 200 MW unit, front high-pressure turbine bearing, vertical direction, 5 kHz and 

6.3 kHz bands. Data window containing 25 measurements. 

of diagnostic information. Such selection may employ the Singular Value Decomposition 

method, known from linear algebra (see e.g. Cempel, 2003). This approach has been applied 

to a number of steam turbines and results have been found very encouraging (Gałka, 2011a). 

In general, components generated by rotor stages are more informative in this respect than 

those generated by bladed diaphragms. Best results have been obtained with high-pressure 

turbines; this is not particularly surprising, due to high temperature and pressure, which 

contribute to accelerated lifetime consumption. 

7. Conclusion 

Steam turbines, which are of vital importance for any economy, have always been at the 

leading edge of technical diagnostics development. A variety of vibration monitoring 

systems is available on a commercial scale, usually tailored to individual needs. Some of 

them are referred to as ‘diagnostic systems’, which is not always strictly true, as many 

merely provide data for diagnostic reasoning.  

In general, qualitative diagnostics is currently based on well-established procedures and 

rules, especially for harmonic components. Quantitative condition assessment seems to be at 

www.intechopen.com



 
Mechanical Engineering 

 

338 

an earlier development stage, at least when it comes to practical applications. Its importance 

is, however, appreciated, in view of introducing predictive maintenance. As a turbine model 

suitable for theoretical determination of quantitative diagnostic relations still remains to be 

developed, much of the work in this field employs empirical data. It seems justified to say 

that reliable forecasting of technical condition development is currently the major challenge 

that faces specialists in this field throughout the world. 
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