
Selection of our books indexed in the Book Citation Index 

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us? 
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected. 

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International  authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

186,000 200M

TOP 1%154

6,900



14 

Vectorial Signatures for Pattern Recognition 

Jesús Ramón Lerma-Aragón1 and Josué Álvarez-Borrego2 

1Facultad de Ciencias, Universidad Autónoma de Baja California, 
 2CICESE, División de Física Aplicada, Departamento de Óptica 

México 

1. Introduction 

Due to the variety of shapes and sizes that present both living organisms and static objects, 
the necessity to look for automated systems of identification, both in industry and scientific 
research has arisen. During the 1960s, the scientific community in the field of optics has used 
the Fourier transform and other types of mathematical transformations for pattern 
recognition, taking advantage of their different properties; for example, invariance to 
position, rotation and scale. 

Many invariant descriptors use the Fourier transform to extract invariant features. The 
Fourier transform has been a powerful tool for pattern recognition. One important property 
of the Fourier transform is that a shift in the time domain causes no change in the 
magnitude spectrum. This can be used to extract invariant features in pattern recognition. 

In the last few years, they have been used as a tool in the digital processing of pattern 
recognition. Recently several books have been published (Pratt, 2007, Gonzalez et al., 2008 
and 2009, Cheriet et al., 2007, and Obinata, 2007), that show us a general view, the progress 
and development of pattern recognition, as well as different tools for image pre-processing, 
extraction, selection and creation of features, classification methods, using different types of 
transforms, etc. However, some studies have focused on solving the problem of invariance 
to rotation and scale (Cohen, 1993, Casasent, 1976a, Pech et al, 2001 and Pech et al, 2003, 
Solorza and Álvarez-Borrego, 2010, Solorza and Álvarez-Borrego, 2011). 

For practical implementation of the theory it should be considered, according to Casasent 
and Psaltis (1976a, 1976b, 1976c), a system that is invariant to scale through the 
manipulation of the Fourier transform directly changing the input function. We must also 
consider the practical realization of the Mellin transformation given by a logarithmic 
mapping of the input stage followed by a Fourier transform.  

Schwartz (1994) found that there is strong evidence in many physiological and 
psychophysical visual systems (including human) use of such logarithmic mapping between 
the retina and visual cortex. The motion of changing a scaling to a shift by a logarithmic 
transformation of the coordinates occurs in many areas. In fact, the log-polar coordinate 
system described above seems to have a biological analogue. Since biological systems can 
shift objects to the centre of the field of view by movement of the eyes, it seems logical that a 
mapping that facilitates scale and rotation invariant recognition would be most useful. This 
is not to say that biological systems also compute Fourier transforms of these representations. 
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Other methods can take advantage of representation in which transformations are reduced 
to shifts. 

The different techniques used today have difficulties, the main one being that the 
calculations involve a high computational complexity. Moreover, in this case, the 
complexity of the operation performed is directly proportional to the resolution of the 
images used. The computational cost associated inevitably increase the time required for 
comparison. Emerging applications of computer vision and pattern recognition require the 
development of new algorithms. The vectorial signatures techniques have an important role 
to play in this context, given their simplicity and low computational requirements.  

In this chapter we will focus on examining the capabilities of vectorial signatures, as a 
method of recognizing objects, and we will consider inside this algorithm invariance to 
position, rotation and scale. It will be applied here to the recognition of alphabetical letters 
in Arial typeface, copepod species and some butterflies species (color images). However, 
this algorithm can be applied to any kind of object. The system was developed by taking 
advantage of the properties of the Fourier, Mellin and Scale transforms. 

2. Mathematical description 

In this section we present some basic concepts, such as the definition of Fourier, Mellin and 
Scale transforms, tools that are of great usefulness in audio and image processing, noise 
reduction signals (such as white noise) frequency analysis of any discrete signal, materials 
analysis and statistical synthesis by inverse Fourier transform, and so on. 

2.1 Fourier transform 

The Fourier transform F(u) of a continuous function f(x) of a single variable is defined  

 2( ) j uxF(u) f x e dxπ
∞

−

−∞

= ∫  (1) 

Where 1.j = −  Consequently, the inverse Fourier transform (IFT) of F(u) results in the 
original function, described by 

 2( ) j uxf(x) F u e duπ
∞

−∞

= ∫  (2) 

2.1.1 The Fourier-Mellin transform 

Mellin transform is especially useful for the scale invariant (Bracewell, 1978). This has been 
applied to the spatially varying image restoration and in the analysis of networks that vary 
with time, among others.  

The two dimensional Mellin transform M(ju,jv) of a function f(x,y) along the imaginary axis 
is defined by Casasent and Psaltis (1976a) 

 1 1

0 0

, ( , ) ju jvM(ju jv) f x y x y dxdy
∞∞

− − − −= ∫ ∫  (3) 
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2.1.2 The scale transform 

Cohen (1993) introduced the “scale transform.” This transform is said to be scale invariant, 
thus meaning that the signals differing just by a scale transformation (compression or 
expansion with energy preservation) have the same transform magnitude distribution. 
Cohen showed that the scale transform is a restriction of the Mellin transform on the vertical 
line p = −jc + 1/2, with c Є R. 

We choose the scale transform, which is a restriction of the Fourier-Mellin transform 
(Casasent, 1976c). The main property of the scale transform is the scale invariant property. 

If we call c the scale variable, then in two dimensions the scale transform and its inverse is 
given by Cristobal & Cohen (1996).  

 ( )
0 0

1
, ( , ) ,

2
x yjc Inx jc Iny

x y
dxdy

D(c c ) f x y e
xyπ

∞∞
− −

= ∫ ∫  (4) 

 ( )1
, , .

2
x yjc Inx jc Iny x y

x y

dc dc
f(x y) D(c c )e

xyπ

∞ ∞
+

−∞ −∞

= ∫ ∫  (5) 

3. Implementation 

In this section we will use two-dimensional scale transformations now written in polar 
coordinates D(cr,cθ), because this transform is invariant to changes in size and rotation 

 ( ) ( )1
2

2

0 0

1
, ( , ) ,

2

jc
rjc

rD(c c ) f r r e drd
θθ

π

θ θ θ
π

−
∞

− −= ∫ ∫  (6) 

and taking the logarithm of the radial coordinate, that is λ= Inr, we get 

 ( ) ( )1
2 2

2

0 0

1
, ( , ) .

2

c c
rjc

D(c c ) f r e e d d
λ θλ θ θ

π

λ θ λ θ λ θ
π

+
∞

− −= ∫ ∫  (7) 

Applying the transformation described above, we built a new algorithm. Fig. 1 shows the 
block diagram of the methodology used. The target (Ii) to be recognized is denoted by the 
function f(x,y) (step 1) and the modulus of its Fourier transform (F) is obtained (step 2). A 
parabolic filter to the modulus of F is applied (step 3). In this way, low frequencies are 
attenuated and high frequencies are enhanced in proportion to (wx)2, (wy)2 (Pech-Pacheco et 
al., 2003), where wx and wy are the angular frequencies. The scale factor ,r  (step 4) is 
applied to the results of step 3 (r is the radial spatial frequency). This process is what 
differentiates the scale transform from the Mellin transform. After these steps, we mapped 
the Cartesian coordinates to polar-logarithmic coordinates (step 5), to obtain invariance to 
rotation. In this step we introduced a bilinear interpolation of the first data of coordinate 
conversion. This is done to avoid the aliasing due to the log-polar sampling. A subimage 
denoted by M(λ,θ) (Lerma-Aragón & Álvarez-Borrego 2008) is chosen from step 5, which 
contains more information of the target and a bilinear interpolation is done again in order to 
resize the subimage data to its original size (step 6). From the subimage, we obtain two 1-D 
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vectors by projecting M(λ,θ) onto the x and y axes (steps 7 and 8). In other words, we 
compute the marginals, according to the equations 

 ( ) ( )
1

, ,
n

m m k
k

M Mλ λ θ
=

=∑  (8) 

 ( ) ( )
1

, .
m

n k n
k

M Mθ λ θ
=

=∑  (9) 

  
Fig. 1. Block diagram of used procedure 

A modulus of the Fourier transform is calculated in order to obtain the rotation and scale 
signatures (equations 10 and 11), which will be the two unidimensional vectors for the target 
(steps 9 and 10). 

 ( ) ( )1 ,mV w F Mλ λ⎡ ⎤= ⎣ ⎦  (10) 

 ( ) ( )2 ,nV w F Mθ θ⎡ ⎤= ⎣ ⎦  (11) 

To evaluate this algorithm, the target image (Ii) and an image problem (Ij) (Ij is denoted by 
the function g(x,y) either rotated or scaled) are selected, to which we apply the procedure 
described above. To determine the similarity between the images Ii and Ij in the database, 
using the Euclidean distance (Ed) is calculated among their average firms using the 
following equation 
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 ( ) ( ) ( ) ( ){ }2 2
1 1 2 2 .d f g f gE V w V w V w V wλ λ θ θ⎡ ⎤ ⎡ ⎤= − + −⎣ ⎦ ⎣ ⎦∑  (12) 

Thus, the signatures of all the j images of the database can be compared with any image i to 
be recognized. 

3.1 Application of the algorithm 

To apply the algorithm based on the theory described above, is considered primarily a 
target image, in this particular case, we consider a simple image (rectangle) of size 256 X 256 
pixels and black background, as shown in Fig. 2(a), which is calculated the magnitude of the 
Fourier transform, which can be seen in Fig. 2(b). We used Matlab colormap command to 
change to a colour figure and of this way clearly visualize each step of the procedures. 
When these values are scaled linearly for display, the brightest pixels will dominate the 
display, at the expense of lower (and just as important) values of the spectrum. If, instead of 
displaying the values in this manner, we apply logarithmic transformations (Gonzalez, 
2009) to the spectrum values, then the range of values of the result is a more manageable 
number. Fig. 3 shows the result of scaling this new range linearly and displaying the 
spectrum. The wealth of detail visible in this image compared to a straight display of the 
spectrum is evident from these pictures. 

          
                                                (a)                                                                            (b) 

Fig. 2. (a) Simple image of a rectangle. (b) The corresponding centered spectrum 

 
Fig. 3. Result showing increased detail after a log transformation 
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Fig. 4. Parabolic filter 

 
                                                    (a)                                                                       (b) 

Fig. 5. (a) Modulus with parabolic-effect. (b) Image with scale factor 

A parabolic filter (Fig. 4) to the modulus of F is applied, in this way, low frequencies are 
attenuated and high frequencies are enhanced as shown in Fig. 5(a). The scale factor ,r  is 
applied to the previous results (Fig. 5b). A subimage is chosen from Fig. 6(a) corresponding 
to the zone that contains the major quantity of information. In the Fig. 6(b) results are 
observed. 

From the subimage M(λ,θ) seen in Fig. 6(b), we compute the marginal functions, using the 
following equations 

 ( ) ( ), ,g x Mθ λ θ=∑  (13) 

 ( ) ( ), .,h x Mλ λ θ=∑  (14) 

In the Fig. 7(a) the subimage (Fig. 6b) appears, in three dimensions, and in 7(b) and 7(c) the 
marginal functions can be observed, with which scale and rotation vectors are obtained. 
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Finally, Fig. 8 shows the modulus of the Fourier transform of the vectors showed in the Fig. 
7(b) and 7(c) respectively, which defines the vectorial signatures of the image, and they are 
used for comparison with respect to another image. 

 
                                                        (a)                                                              (b)  

Fig. 6. (a) Image 5(b) in polar-logarithmic coordinates. (b) Selected subimage 

 
Fig. 7. (a) Tridimensional image of Fig. 6(b). (b) Vector of the summation on the rotation 
axis. (c) Vector of the summation on the scale axis 

4. Computer simulations in grayscale images 

To evaluate the performance of the vectorial signatures, images of different types were used 
as input images.  
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                                             (a)                                                                                         (b) 

Fig. 8. (a) Scale signature vector. (b) Rotation signature vector 

4.1 Simulation using letters 

The first case analyzed corresponds to images of the different letters of the alphabet. Each 
letter is an image of 256 X 256 pixels of black background with a centered white Arial letter 
size 72. The methodology described above was applied to these letters. The behavior of the 
Euclidean distance (Ed) for the target E versus itself with respect to rotation from 0 to 359º 
with variations of one degree was studied. Because of the letter distortions, when is rotated, 
due to the square pixels, the curve representing the Ed is cyclic and with symmetry of 180º 
(Fig. 9).  
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Fig. 9. Behavior of the Euclidean distance where the target and the input scene is the letter E 
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Fig. 10. Euclidean distance of the letter E compared with other letters 

 
Fig. 11. Statistical distance behavior 
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To evaluate the distinguish ability between the 26 letters of the alphabet; each one was 
rotated 360 degrees, with a variation of one degree. Simulation was performed to determine 
the difference between them, using the 9360 images (26x360). In Figure 10 shows the 
behavior of the letters that have greater similarity with the reference (E); the result shows a 
very clear separation between the values of the Euclidean distance of the letter E compared 
with the rest of the letters, which allows being able to identify it. When an image is similar 
to another one, the Ed has a minimum value. Statistic was performed and the mean value ± 
2SE (two standard error) was calculated. This algorithm has at least a 95.4% level of 
confidence for this case (Fig. 11 shows the comparison with all the letters).  

To analyze the behavior to changes in scale, changes were tested by 90% to 110% with 
respect to the target image, with increments of 0.5%. Fig. 12. shows the results obtained by 
reference to the letter E and compared again with all the letters of the alphabet.  
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Fig. 12. Changes of distance versus scale 

4.2 Simulation using copepod species 

Copepods are the dominant group in marine zooplankton; they constitute at least 70% of the 
planktonic fauna. This group of organisms has a great diversity. There are about 11,500 
species of copepods described by Humes (1994) and the number is steadily increasing with 
the description of new species, such as those from anchialine caves (Fosshagen, 1991), 
hydrothermal vents (Humes, 1991), and those previously reported under the name of 
another species (Bradford, 1976; Soh & Suh, 2000). 

Copepods are of prime importance in marine ecosystems. The majority of copepods feed on 
phytoplankton, forming a direct link between primary production and commercially 
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important fish, such as sardine, herring, and pilchard. Copepods are also the main food 
source for a great variety of invertebrates. Studies on copepod abundance and species 
composition are particularly relevant, because most larvae of commercial fish feed on 
copepods. Hence, changes in the abundance of these plankters from year to year, may 
determine interannual population fluctuations of the commercially exploited fish stocks in a 
particular region.  

For this study, adult stages of different copepod species were separated from several 
plankton samples. The specimens were observed with an optical microscope and their 
images were digitally captured using a charge coupled device camera (CCD). We used 14 
images from seven different species of copepods each with male and female samples  
(Fig. 13). Since the background noise in all the images is mostly repetitive, the images where 
cleaned using some methods described en Guerrero & Álvarez-Borrego (2009). Fig. 14 
shows the original and its pre-processed image for a female specimen Rhincalanus nasutus. 

 
           (a)                       (b)                         (c)                         (d) 

 
           (e)                       (f)                         (g)                         (h) 

 
           (i)                        (j)                         (k)                          (l) 

 
          (m)                      (n) 

Fig. 13. Species of copepod used in the study: (a) Calanus pacificus female; (b) C. pacificus 
male; (c) Rhincalanus nasutus female; (d ) R. nasutus male; (e) Centropages furcatus female;  
( f ) C. furcatus male; (g) Pleuromamma gracilis female; (h) P. gracilis male; (i) Temora discaudata 
female; (j) T. discaudata male; (k) Acartia tonsa female; (l) A. tonsa male; (m) Centropages 
hamatus female; (n) C. hamatus male 

The image of one of the calanoides Calanus pacificus female Fig. 13(a) was used as a target to 
discriminate between copepod species and sex from the rest of the organisms, the image size 
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is 256 X 256 pixels of black background with a centered copepod. The image was rotated 
360º in increments of 1º to recognize a target in an input scene; signatures were compared 
using the Euclidean distance (Ed) between the target and the input image and, because there 
is no variation in the size of copepod adults, we did not analyze the changes of scale. 

In order to see if this methodology has a good performance for recognizing the target image 
when compared with other images that don’t correspond to the copepod chosen as reference, 
numerical calculations were performed for the entire set of 14 images showed in Fig. 13.  

             
                                                           (a)                                                        (b) 

Fig. 14. (a) Original image. (b) Cleaned images 

Fig. 15. shows the performance of Ed for the fourteen pictures rotated 360 degrees. The Fig. 
13(a) was used as a target, corresponding to a female Calanus pacificus. We can see a very 
good separation of the Ed for the target with respect to the calculation of the Ed for the non-
target images. As can be seen in Fig. 15, the curve of the copepod (Fig. 13a) represents an Ed 
with minimum values, which distinguish it from the rest of the copepods. Statistic was 
realized and the mean value ±2 SE was calculated. We can see this algorithm has at least a 
95.4% level of confidence for this case (Fig. 16).  
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Fig. 15. Change the angle of rotation against Ed 
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Fig. 16. Statistical behavior of the Ed, for a Calanus pacificus female specimen 

4.3 Average signature  

Like a second set of test images 30 females and 30 males from each of the 7 different species 
of copepods were used, thus forming a database of 420 images. To have an identification 
system that contains information from several copepods, vector composed signatures were 
designed, which is derived from adding the signatures of 10 different copepods and to get 
its average, which is now the reference vectorial signature (Fig. 17). 

In Fig. 18 is shown the application of this method, we can see an excellent separation of the 
Euclidean distance mean, which corresponds to Centropages furcatus female (Group e), 
used like target, with respect to the calculation of the Ed from the rest of the groups. Statistic 
was realized and the mean value ± 2SE was calculated. We can identify the species and sex 
of the target with the confidence level was about 95.4%.  

4.4 Comparison with other algorithms 

To evaluate the performance of the algorithm, we compare it with respect to that published 
by Álvarez-Borrego and Castro-Longoria, considering that both are similar in application to 
pattern recognition and methodology based on the properties of the Fourier transform, in 
the second method is pattern matching using the correlation.  

Comparing the results of the two algorithms applied to the same sets of images, we 
observed that in the second is not possible to distinguish the selected image as reference, 
with respect to the others. Regarding the computational cost, the processing time of our 
procedure is approximately 20% lower. 
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Fig. 17. Average vectorial signature 

 
Fig. 18. Statistical behavior of the Euclidean distance, in the case of vectorial signatures 
composite of 10 images of Centropages furcatus female (Group e) 
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5. Computer simulations in color images 

One of the most important characteristics, which account for visual pattern recognition is 
the color, and has been used in a wide range of applications in different areas of knowledge, 
such as evaluation and identification of textiles, flowers, microscopic images, surface 
corrosion, species recognition, and so on. In our daily life, our vision and actions are 
influenced by a variety of shapes and colors. The introduction of color increases the amount 
of information in pattern recognition, so that discrimination can be improved considerably.  

Color is a perceived phenomenon and not a physical dimension like length or temperature. 
A suitable form of representation must be found for storing, displaying, and processing color 
images. This representation must be well suited to the mathematical demands of a color 
image processing algorithm, to the technical conditions of a camera, printer, or monitor, and 
to human color perception as well. These various demands cannot be met equally well 
simultaneously. For this reason, different representations are used in color image processing 
according to the goal. For these use different models that are known as color space 
(Gonzalez & Woods, 2008, Kosch & Abidi, 2008, Westland & Ripamonti, 2004) were used. 

One of the most used color space is RGB, this model is based on the additive mixture of the 
three primary colors: red (R), green (G) and blue (B). When dealing with color images, there 
are several concepts that are inherently quite different. For example, if we treat the RGB 
signals at a pixel as a three-dimensional vector, a color image becomes a vector field, while a 
monochromatic image is a scalar field.  

5.1 Methodology 

Fig. 19. shows the block diagram of the methodology applied to RGB color spaces: in the 
first step, is select the color image to be used like a target (Ii) which is denoted by fi(x, y), 
where i = R,G,B, then each image is decomposed into its respective RGB channels [ fR(x, y), 
fG(x, y), fB(x, y)]. To have an identification system that contains information from the 
components fi(x,y), a vector-composed signatures were obtained, which is now the average 
vectorial signature V1f(wλ) and V2f(wθ), for the test image (Ij) represented by gj(x, y) is 
performed the same process where were obtained V1g(wλ) and V2g(wθ). To determine the 
similarity between the two images Ii and Ij, the value of the Ed is calculated.  

5.2 Simulation for butterflies 

To test this algorithm a set of images shown in Fig. 20 was used. With different types of 
butterflies, each image has a size of 256 x 256 pixels. In addition it is estimated that the number 
of species of butterflies in the world varies between 15.000 and 20.000, which according to 
the North American Butterfly Association (NABA), about 2000 are located in México.  

In Fig. 21 we can see the statistical behavior of the Euclidean distance for the case of rotation 
of the image 360 degrees in one degree increments, using as reference the butterfly (10), 
which corresponds to a specimen Archaeoprepona amphimachus amphiktion, which at first 
glance is very similar to others butterflies, for example with butterfly (11) belongs to same 
genus but different species. As expected, the minimum value of the distance corresponds to 
the target. We can see that this algorithm has a very good performance in to recognize the 
target when is compared with the others butterflies. Numerical simulations were performed 
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considering as a reference each of the 18 butterflies and in all cases could be distinguished 
from the rest.  

 
Fig. 19. Block diagram of used procedure 

 
Fig. 20. Butterflies used. (1) Actinote guatemalena guerrerensis. (2) Actinote stratonice 
oaxaca. (3) Agraulis vanillae incarnata. (4) Agrias amydon oaxacata. (5) Anae aidea. (6) 
Ancyluris inca mora. (7) Anetia thirza. (8) Ansyluris jurgennseni. (9) Arawacus sito. (10) 
Archaeoprepona amphimachus amphiktion. (11) Archaeoprepona demophon centralis. (12) 
Baeotus baeotus. (13) Basilarchia archippus. (14) Biblis hyperia aganissa. (15) Bolboneura 
Sylphis sylphis. (16) Caligo eurylochus sulanos. (17) Caligo memnon. (18) Caligo oileus 
scamander 
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To analyze the invariance to scale changes were made from 70% to 130%, with variations of 
one percent each of the test images. The analysis of the statistical behavior of the distance is 
shown in Fig. 22. for the case where the butterfly (3) is used like target. The results indicate 
that there is separation of the reference image with the rest of the butterflies, which can be 
identified without difficulty, regardless of changes of scale.   

 
Fig. 21. Statistical behavior of the Ed, for an Archaeoprepona amphimachus amphiktion specimen 

 
Fig. 22. Statistical behavior of the Ed, for a Agraulis vanillae incarnata specimen 
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6. Conclusion 

In this chapter it was developed a system for pattern recognition with the utilization of 
vectorial signatures, based on the well-known relation between scale and Fourier transform, 
and has been performed to be practical and accurate. To test the built model, simulations 
were made and the results were analyzed. Conducting various numerical tests with letters 
of the alphabet, with variations in the scale and rotation, the results obtained from a 
comparison of the Euclidean distances show that it is possible for identification and 
discrimination with a high confidence level (at least 95.4%). The system was applied to the 
recognition of copepod species and sex. With vectorial signatures it is possible to identify, 
with a confidence level of 95.4%, the species and sex of various species of copepods. A 
modification of the algorithm in color image recognition, using average vector signature 
from the information contained in the RGB channels was done. For this case images of real 
butterflies were used, finding that the system can identify the species you choose as a 
reference, when compared with images of different butterflies, for any angle of rotation that 
contains, as well as changes in the scale of 70% to 130%. 

This work contributes to increase the potential recognition systems for use in applications 
requiring assessment and interpretation of data, applications that were traditionally 
performed by human vision or specialists trained technicians and are still far from 
automation.  
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