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Simple Signals for System Identification 

Paul Annus, Raul Land, Mart Min and Jaan Ojarand 
Tallinn University of Technology / Eliko 

Estonia 

1. Introduction  

Event accessible for observation can be investigated by examining timeline of certain 

measureable values. Usually the process is referred to as time domain analysis of signals. 

Such a signal can be of many different origins. It could be comprised of values of electrical 

current or voltage, mechanical displacement or force, value of stock or popularity of 

politicians, reaction of the patient to medication, and essentially anything which is 

observable, measurable and quantifiable with reasonable accuracy. Observer will quite 

intuitively search for certain patterns and periods in signal if phenomena changes along the 

timeline. Some of them are easily detectable, such as periodic variation of the suns activity; 

some might appear as random fluctuations at the first glance, such as parameters of the 

seismic waves in Earth's crust. Of course sources of noise and other disturbances are usually 

omnipresent and will make matters much more difficult to observe and explain. 

It is well known already from early days of modern science that signals can be analyzed in 

frequency domain as well or instead of time domain analysis. It turns out that for observable 

events both domains can be easily interchanged or in other words transformed one into 

other without any loss of information, and even joint time-frequency analysis can be 

performed. 

First known usage of what is essentially known today as fast Fourier transform (FFT) is 

contributed to Johann Carl Friedrich Gauss (Goldstine, 1977, as cited in Heideman et al., 

1984). In 1805 Gauss describes his computationally efficient method for interpolation of the 

orbits of celestial bodies. Intriguingly it was almost forgotten. Few years later, in 1807, Jean 

Baptiste Joseph Fourier, while interested in heat propagation, claimed that any continuous 

periodic signal could be represented as the sum of properly chosen sinusoids during his 

presentation to the Academy of Sciences in Paris. That claim ignited dispute between the 

reviewers of his paper: Pierre-Simon Laplace, and Joseph-Louis Lagrange, and delayed the 

publication until 1822 (Heideman et al., 1984). Joseph-Louis Lagrange’s protests were based 

on the fact that such an approach could not be used to represent signals with sharp corners, 

or in another words with discontinuous slopes, such as square waves. Dispute lasted almost 

hundred years until Maxime Bôcher gave a detailed mathematical analysis of the 

phenomenon and named it after the Josiah Willard Gibbs (Bôcher, 1906). In essence both 

Lagrange and Fourier were right. While it is not possible to construct signals with sharp 

corners from sinusoids it is possible to get so close that the difference in energy between 

these signals is zero. If real signals from nature are concerned instead of exact and purely 
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mathematical curiosities problem is even smaller. So for all practical signal processing tasks 

it is indeed possible to state that any real signal can be constructed from sinusoids. 

While these transforms, or more precisely their modern counterparts, work very well for 

signals emanating from natural phenomena, matter can also be investigated by deliberately 

exciting it with known signals and analyzing its response. This process may be called 

system identification, synchronous measurement, lock in measurement, or in some 

application areas something entirely different. The task may even be reversed, in a sense 

that system can be designed or modified by knowing what output is desirable to certain 

excitation. It could be filter design in electronics or eigensystem realization algorithm (ERA) 

in civil engineering, to name a few. 

Topic in general is too broad to discuss in one book or even in series of books, and many 

good papers and books are already written on the topic (Godfrey, 1993; Pintelon & 

Schoukens, 2001; etc. to name a few), however when low complexity, limited energy 

consumption and highly optimized measurement systems are targeted new solutions are 

often warranted, and some of them are briefly discussed in the following pages. So 

emphasis is given to properties and practical design of custom excitation signals. 

2. General considerations 

Any system has large set of different parameters, and many subsets of them to be 

characterized according to requirements imposed by task at hand. Sometimes they can be 

measured separately and sequentially one at a time, but quite often not. Bulk of system 

identification theory is based on an assumption that systems are linear and time invariant 

(LTI), which they are not. Generally certain set of measurements has to be conducted within 

short enough timeframe for the system to remain reasonable motionless, and with signals 

which will only very moderately drive system under investigation (SUT) into the non-linear 

region of operation. Limited magnitudes of excitation signals and the need to consider 

frequency spectrum of these signals very carefully are both among implications rising from 

the last requirement. Unfortunately there is also third factor to consider. Disturbances from 

surrounding world, and noise impact, can effectively render useless any and all of the 

measurement results, if not dealt with care. Signal to noise ratio (SNR) is often used for 

numeric quantification of the problem. Similarly known signal to noise and distortion ratio 

(SINAD) does a little better when covering the problem area and considering likely non-

linear behavior of the SUT as well. Shorter excitation time and limited excitation signal 

energy are always paired with lower SNR.  

Therefore it is clear that whenever real systems are characterized, then choice of excitation 

signals is always a subject of optimization and compromise. Effectiveness of said 

optimization depends on level of prior knowledge. Things to consider include measurement 

conditions, SUT itself and the cost of the measurement. Successive approximation and 

adaptation can be considered when prior knowledge is limited, unless it is one of a kind or 

very rare event. Fortunately these very rare cases are indeed rare, and furthermore there is 

usually at least some amount of general prior knowledge available. 

Real objects and systems are seldom fully homogenous and isotropic; therefore several 

measurements from different locations might be warranted for sufficient characterization of 

the SUT. Possibility of sequential in time measurements from different locations depends 
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largely on time variance of the parameters of the system. Such a variance could be caused by 

slow ageing, rapid decay, and fast spatial movement of the SUT relative to the measurement 

system, as well as by modulation of some of the parameters of the SUT with outside signals. 

Ideally variance should be excluded by taking readings from different locations 

simultaneously and rapidly enough. One way to achieve this is to conduct measurements at 

several slightly differing frequencies. In this case system properties between different points 

can be separated, and values will not vary much due to almost identical frequencies: 

 

Fig. 1. System identification in case of two simultaneous excitation signal with slightly 

differing frequencies f1, and f2, injected from different points 

Similar but different task is accomplished when system properties at vastly different 

frequencies are of interest. Again sequential in time measurements can be considered, but in 

case of fast variations in system properties simultaneous multifrequency measurement is 

essential: 

 

Fig. 2. System identification in case of two excitation waveforms with highly differing 

frequencies f1, and f2, injected from the same point 

In even more complex cases multisite and multifrequency measurement are needed 

simultaneously. Question arises whether it is possible to optimize such a complex 

measurement by applying different signals and processing methods. Following matter 

discusses some suitable signals with increasing complexity. For comparison both waveform 

and frequency content of these signals is given. 

Frequency response of any system is comparison of the magnitudes and phases of the 

output signal spectral components with the input signal components in real world 

measurement situations. It is best viewed as complex function of frequency. Instead of 

magnitudes and phases it is often useful to represent the result in Cartesian coordinates. 

Link is straightforward: 
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Fig. 3. Complex number with unity magnitude in polar and Cartesian coordinates 

If sinusoidal signal with frequency ω, magnitude A and relative phase φ compared to 

reference signal is multiplied by orthogonal set of reference sinusoids, i.e. sin( )tω  and 

cos( )tω , then using simple trigonometric product-to-sum identity it is possible to write: 

 sin sin cos cos 2
2 2

A A
A ( t ) ( t) ( ) ( ωt )ω ϕ ω ϕ ϕ+ ⋅ = − +  (1) 

And: 

 sin cos sin sin 2
2 2

A A
A ( t ) ( t) ( ) ( ωt )ω ϕ ω ϕ ϕ+ ⋅ = + +  (2) 

From those equations it is clear that if double frequency component and factor of two is 

disregarded, then first equation can be viewed as giving real part of the complex response, 

and second equation an imaginary part. When response on only few frequencies is needed, 

then such a multiplication is often preferred signal processing method both in analog and 

digital domains. Of course it should be complemented with low pass filtering in order to 

remove 2ω component. If other than sinusoidal signals are used for excitation and reference, 

then more frequency components should be considered when calculating response. As long 

as the reference signal is kept sinusoidal result of the multiplication is still faithful 

representation of the complex response of the system at the frequency of the reference 

signal. Some scaling is needed though, due to the fact that magnitude of the fundamental 

frequency component of the non-sinusoidal signal is different from the magnitude of said 

signal itself. Unfortunately quite often the reference waveform is far from sinusoidal. Square 

wave is preferred simply because multiplication of two functions will be replaced by simple 

signed summing. In analog signal processing domain it will enable to use simple switches 

instead of sophisticated, error prone, and power hungry multipliers. Same is true in digital 

domain, where multiply accumulate operation can be replaced with simpler accumulation. 

Also in this case system response is correct if excitation signal is kept sinusoidal, and in 

addition to that the system is truly linear. Last part requires very careful analysis, since 

appearing higher harmonics might coincide with reference signal harmonics, and after 

multiplication became undistinguishable from the true response. Still, SINAD of the 

response will degrade even if system can be considered sufficiently linear. If nothing else, 

then noise will leak into the result, at frequencies which will coincide with higher harmonics 

of the reference signal. Therefore methods which enable reduction of higher harmonics in 

reference signal, while keeping it reasonable simple for signal processing, are of utmost 

importance. 
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3. Square waves for measurement at single frequency 

First the simplest and spectrally worse signal is examined. It is square wave signal or signal 

which can be described as the sign of sin( )tω : 
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Fig. 4. An odd square wave, with frequency / 2 1f Hzω π= =  

Fourier series of this square wave function will contain only sinusoidal members, since 

function is odd, i.e. ( ) ( )f x f x− = − : 

 
1

4 sin((2 1) ) 4 1 1
( ) (sin( ) sin(3 ) sin(5 ) )

2 1 3 5n

n t
f t t t t

n

ω ω ω ω
π π

∞
=

−
= = + + +

−∑ …  (3) 

It can be viewed as signal with fundamental frequency ω having higher harmonics on odd 

multiplies of ω. If multiplication of the system response signal with orthogonal references is 

chosen as signal processing means, and these reference signals are not sinusoids, then all the 

members of the Fourier series of the response signal are multiplied with all the members of 

the Fourier series of the reference signals, i.e. not only fundamental components of the 

signal, but also all higher harmonics. Therefore if those members of the Fourier series 

coincide in frequency, then the results of multiplication will be added together and become 

undistinguishable. The measurement is no longer conducted on single well defined 

frequency, but instead produces results also on all higher harmonics. As it was discussed 

above it could be largely ignored, if during signal processing multiplication is conducted 

with sinusoidal signals, unfortunately it is often accomplished with the same rectangular 

signal instead, and energy form higher harmonics is summed together. Also spectral impact 

due to non-linearity of the object (or apparatus) cannot be separated from desired response 

signal anymore. Worst case impact of the coinciding spectral components summed 

eventually all together can be seen on Fig. 5 with dotted line. 

There is another way of looking at how the errors appear (Kuhlberg, Land, Min, & Parve, 

2003), by considering phase sensitivity characteristics of the synchronous demodulator (SD). 

They are easy to draw by varying phase shift φ between two signals. For simple square 

waves such a characteristic is presented on Fig. 6. For comparison it is drawn together with 

ideal circle which appears when two sinusoids are multiplied. 
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Fig. 5. Worst case relative impact of the higher harmonics to the multiplication result 

compared to the level of first harmonic in dB. Case of ordinary square wave (dotted line), 

simple shortened square wave (white boxes), and multilevel shortened square wave (black 

boxes) (Annus, Min, & Ojarand, 2008) 
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Fig. 6. Quality of synchronous demodulation in case of square wave signals (bold line). For 

clarity only one quarter is shown 

From the Fig. 6 the magnitude error can be easily computed, as the difference between two 

lines, and Fig. 7. shows this relative magnitude error when square waves are used instead of 

sinusoids. 

Relative magnitude errors of such magnitude as shown in Fig. 7 are generally unacceptable. 

Not to mention large (several degrees) phase errors in addition to the magnitude error. Only 

in very specific cases is measurement with pure square waves useful, such as measurement 

of electrical bioimpedance in implanted pacemakers, where energy constraints are severe. 

Fortunately there is very simple method for reducing errors introduced by higher 

harmonics. Let’s consider sum of two square waves with same frequency and amplitude, 

one of them shifted in phase by β degrees, and another - β degrees. Such a double shift is 

preferable, since resulting function is again odd. In signal processing odd functions are more  
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Fig. 7. Relative magnitude error when square wave signals are used during synchronous 

demodulation 

natural, because negative time is usually meaningless, and signals start at t=0. Care must be 

taken that in many mathematical textbooks, and more importantly in different programs, 

even functions are considered instead. Should the summary phase shift 2β be equal to the 

half period or odd multiply of half periods of any of the higher harmonic, then such a 

harmonic will be eliminated from the signal, since sum of two equal sinusoids with 180 

degree shift is zero. Such an operation is essentially comb filtering. Main difference of the 

resulting signal compared with simple square wave is in appearing third level with zero 

value, so it is reasonable to call them shortened square waves. More generally spectrum of 

these signals can be derived from Fourier series: 

 
1

4 cos((2 1) )sin((2 1) ) 4 cos3
( ) (cos sin( ) sin(3 ) )

2 1 3n

n n t
f t t t

n

β ω ββ ω ω
π π

∞
=

− −
= = + +

−∑ …  (4) 

Two of these shortened square waves are of special interest. In order to remove 3rd and 5th 

harmonics from the signal (as they cause most significant errors) 18 degree and 30 degree 

shifts are useful. First of them is void of 5th, 15th, etc. harmonics, and second 3rd, 9th, 15th 

etc. harmonics. It means that impact of these harmonics is drastically reduced. Both of these 

three level signals with amplitude A are shown on Fig. 8. The third level does not introduce  
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Fig. 8. 18, and 30 degree shortened signals with amplitude A (Min, Kink, Land, & Parve, 2006) 
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much added complexity from signal generation or processing point of view. Both generation 

with digital logic, and also synchronous rectification with CMOS switches is straightforward 

(Min, Kink, Land, & Parve, 2006). If one of them is used as excitation signal and other as 

rectifying reference, then the result will be much cleaner spectrally when compared to 

simple square waves, Fig. 5 white rectangles. These two waveforms were chosen, because 

complete elimination of certain harmonics was desired. Due to that quality of synchronous 

demodulation is drastically improved, as it can be seen on Fig. 9 and 10. Compared to Fig. 7 

improvement is considerable. Not substantial, but still drawback is the need to generate 

different signals for excitation and synchronous demodulation. What would happen if both 

signals are shortened by the same amount, and is there an optimum?  
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Fig. 9. Quality of synchronous demodulation in case of shortened square wave signals bold 

line, compared with sinusoidal signals dashed line 
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Fig. 10. Relative magnitude error when 18 and 30 degrees shortened square wave signals are 

used during system identification 
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If complete elimination of some of the harmonics is not pursued, then arbitrary shift 

between component square waves is allowed. One possible optimization approach would 

be to find shortened square wave where minimal energy is leaked into higher harmonics. 

Relative dependence of the energy of the higher harmonics from shortening angle can be 

seen on Fig. 11: 
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Fig. 11. Relative dependence of the energy of the higher harmonics from shortening angle 
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Fig. 12. Quality of synchronous demodulation in case of shortened square wave signals when 

both are shortened by 22,5 degree bold line, compared with sinusoidal signals dashed line 
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Fig. 13. Relative magnitude error when 22,5 degrees shortened square wave signals are used 

during system identification 
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Such a signal could be used for excitation as well as for synchronous demodulator. Since 

curve is relatively flat around minimum then shortening angels between 22 and 24 degrees 

produce almost equally good results. Obvious choice for real system identification task 

would be 22,5 degrees. Compared with previously discussed pair of shortened square 

waves generation of such a signal requires much lower clock frequency. When 18 and 30 

degree shortening is required, then the clock frequency must be at least 30 times higher than 

the frequency of the resulting signal. With 22,5 degree shortened signal only 8 times higher 

clock is required. It allows either better energy efficiency by lowering the system clock, or 

alternatively allows usage of higher frequency signals at the same clock rate. An added 

benefit is, that noise leakage into result is lower, then in case of 18 and 30 degree shortened 

pair. 

While performing considerably better than simple square waves these shortened signals are 

far from ideal sinusoid. Could the same summing procedure produce further improvement 

without much added complexity, if more square waves are added together? The answer is 

yes. It is enough to add third member into palette consisting already from two square waves 

shortened by 18 and 30 degrees, namely square wave shortened by 42 degrees. By 

combining these three signals promising results can be achieved. Three interesting and still 

simple signals are considered as combinations of previously mentioned summed signals. 

First and perhaps most obvious is a sum of 18, 30, and 42 degrees shortened square wave 

signals with signs 1,-1, and 1. Resulting waveform is on Fig. 14, and spectrum of this 

waveform is on Fig. 15 (Annus, Min, & Ojarand, 2008). It is much cleaner compared to 

ordinary square wave. 
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Fig. 14. Resulting waveform from summing of three shortened signals with weights 1, -1, 

and 1 (Annus, Min, & Ojarand, 2008) 

If on the other hand excitation is also shortened square wave, then following pair of signals 

is suggested (Annus, Min, & Ojarand, 2008). First of them is sum of all three components 

with coefficients 1,1, and 1, Fig. 16. Spectrum of this summed signal is on Fig. 17. 
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Fig. 15. Spectrum of the signal on Fig. 14 (Annus, Min, & Ojarand, 2008) 

 

A 

 

 

  

β  =   /10π2

β  =   /6π1

β  = 7   /30π0

A

A

3A

2ππ0

 

Fig. 16. Sum of three shortened waveforms with coefficients 1, 1, and 1 (Annus, Min, & 

Ojarand, 2008) 
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β  =   /10π2

2ππ

β  =   /6π1

β  = 7   /30π0

0

2A

2A

A

A

 

Fig. 18. Sum of three shortened waveforms with coefficients 2, -1, and 1 (Annus, Min, & 

Ojarand, 2008) 
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Suitable counterpart summed with coefficients 2, -1, and 1 is on Fig. 18, and spectrum on 

Fig. 19: 
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Fig. 19. Spectrum of the signal on Fig. 18 (Annus, Min, & Ojarand, 2008) 

Comparison of the worst case multiplication results (Fig. 5) shows significant improvement 

over previous result. Same improvement can be seen on Fig. 20 as well, where result of 

synchronous demodulation is shown. Relative magnitude error compared to sinusoid is 

given on Fig. 21. Nevertheless same clock speed penalty still applies as with simpler 

solution.  
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Fig. 20. Quality of synchronous demodulation in case of described multilevel shortened 

square wave signals 

Different way of cleaning square wave spectrally it is described in (Min, Parve, & Ronk, 

Design Concepts of Instruments for Vector Parameter Identification, 1992). Simple piecewise 

(over number of system clock periods) constant approximation of the sine wave values is  
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Fig. 21. Dependence of the relative magnitude error from phase difference 

used. Waveforms with relatively small number of different levels (3,4,5) are used, and as 

with already described shortened square wave method different waveforms are suggested 

for multiplication, resulting in cleaner multiplication product. Values of separate discrete 

levels are determined according to: 

 sin( (2 1))
4

qa q
m

π
= −  (5) 

Where m is the total number of approximation levels, and q = 0, 1, 2, …, m is the 

approximation level number. Spectral composition of these approximated harmonic 

functions can be found according to the following equation: 

 4 1hk mi= ±  (6) 

Where kh is the number of the higher harmonic, which exist in the spectra, and i=1,2,3,… If 

two such signals with number of levels m1 and m2 are multiplied, then coinciding harmonics  

can be found according to: 

 1 24 1ck m m j= ±  (7) 

Where j=1,2,3,… If two waveforms with m=3, and m=4 are considered, then first coinciding 

harmonics are 47th, 49th, 95th, 97th, 143rd, 145th, etc. As with shortened square waves clock 

frequency should be relatively high, and furthermore these waveforms are relatively 

sensitive to level errors, which prohibit usage of higher m values, and manifest itself in 

reappearing higher harmonics. 

4. Square waves for multifrequency measurement 

If system parameters vary with frequency, as they usually do, single frequency 

measurement is not enough to fully describe object under test. In complex cases, like 

measuring electrical properties of biological specimens, sweeping over wide frequency band 

may be warranted. Sweeping on the other hand is slow, and prohibits examination of faster 

changes in object under investigation, since transfer function of dynamic system is time 

dependent. Measurements must be as short as possible to avoid significant changes during 
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the analysis and, at the same time, as long as possible for enlarging the excitation energy 

and improving signal to noise ratio. 

Chirp signals can be considered to remedy those shortcomings. They will mentioned here 

only briefly, since more comprehensive overview is in different chapter. Chirp signals, i.e. 

multi-cycle sine wave based signals in which the frequency increases (‘up-chirp’) or 

decreases (‘down-chirp’) continuously as a function of time, are widely used in radar and 

sonar applications, acoustic, ultrasonic, optical and seismological studies. The main 

advantage of chirp signals is their well-defined frequency range and predetermined power 

spectral density and good crest factor. Rectangular chirps can be used to further simplify 

signal generation and processing. Moreover, the rectangular waveform has the minimal 

possible value crest factor (ratio of a peak value to a root-mean-square level) of 1. Two 

signals are viewed here briefly: binary chirp and ternary chirp (Min et al., 2012). Binary or 

signum chirp is defined as signum of the sinusoidal counterpart. For linear chirps: 

 
2

( ( )) (sin 2 )
2

B t
sign ch t sign

T
π

⎡ ⎤
= ⎢ ⎥

⎢ ⎥⎣ ⎦
 (8) 

Where T is duration of the chirp signal, 0 t T≤ ≤ , and B is bandwidth of the signal. It has 

crest factor of 1, and it means that energetically the signum chirp is two times more 

powerful than sinusoidal chirp. Waveform of the binary chirp can be seen on Fig. 22. Third 

level can be introduced by comparing sinusoidal chirp with two levels instead of one as it is 

done in case of binary chirp (Fig. 23). 

 

Fig. 22. NRZ or non-return-to-zero binary rectangular chirp pulse (Min et al., 2012) 

 

Fig. 23. Return to zero (RZ) ternary rectangular chirp pulse (Min et al., 2012) 

Instead of chirp signals other waveforms can be considered as well. A widely used method 

is to generate a pseudo-random maximum length sequence (MLS). Spectrum of the MLS 

signal follows a square(sin(x)/x) law. Signal processing is usually accomplished by taking 

circular cross-correlation of the output signal with the excitation MLS. MLS and chirp have 

however one serious disadvantage – their energy is distributed equally, or almost equally, 

over the whole frequency band of interest. Therefore, the power spectral density A2/Hz is 

comparatively low. 
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In practice, there is seldom a need to measure at all of the frequencies within the bandwidth 

simultaneously, except perhaps when system under test is highly resonant. Usually it is 

enough to know the parameters at several arbitrarily spaced frequencies separately. 

Therefore, it is reasonable to concentrate the energy of the excitation signals to frequencies 

of interest instead of using uniform energy distribution over full measurement bandwidth. 

That can be achieved by summing up several sinusoids: 

 
1

( ) sin(2 )
i n

i i ii
x t A fπ ϕ=

=
= ⋅ +∑  (9) 

Unfortunately while single sinusoid is technically feasible signal, and can be reproduced 

quite accurately, it becomes increasingly costly to use simultaneously many sinusoidal 

signals. There is another drawback associated with simultaneous use of multiple sinusoidal 

signals – crest factor. With single sinusoid the crest factor is 2 1,414≈ . By summing two or 

more sinusoidal signals together the crest factor can take many different values, generally 

bigger then 1,414. Why is crest factor so important? Two reasons are worth considering: 

nonlinear behavior of the object under investigation, and dynamic range of the 

measurement apparatus itself. Real objects can rarely be described as linear. It means that 

different excitation levels do not produce linearly dependent responses. For practical 

purposes measurement signals are usually kept within narrow range of amplitudes where 

object behaves approximately linearly. It is clear that such an approximation is better the 

narrower the range is kept. In worst case high energy pulses can even permanently alter or 

destroy the object under investigation, and that is certainly not acceptable when performing 

measurements for example on living human tissue. Also dynamic diapason of the apparatus 

is limited. From the lower side the limit is set by omnipresent noise signal. If the 

measurement signal is completely buried in the noise and cannot be restored any more the  
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Fig. 24. Multisinusiodal excitation signal (a), containing eleven equal amplitude components, 

with peak value of 1. For simplicity starting phases of all components are zero. Frequencies 

in Hz are:1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024. Same signal with some optimization of 

phases (b); achieved crest factor is 2,5. Please note that the peak values of these two signals 

are equal 
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measurement is void. Upper limit is ultimately determined by supply voltage. Form that it 

is clear that large peaks in excitation signal should be avoided, as well as very low level 

components which get lost in noise. Fig. 24 is to give an impression of what happens when 

just eleven sinusoidal signals, one octave apart from each other in frequency, each with 

equal amplitude, and with random initial phase are summed together. The crest factor of 

this noise like signal is 3,54, and it is clearly worse than crest factor of a single sinusoid. 

Interestingly almost all the parameters of the multisinusoidal signal can be improved 

considerably by simplifying it drastically (Annus et al., 2011). Such a signal is derived from 

the original multisinusoidal signal by detecting its zero crossings: 

 
1

( ( )) sin(2 )
i n

i i ii
sign x t sign A fπ ϕ=

=
= ⋅ +∑  (10) 

In case of n= 11 the resulting waveform is shown on Fig. 25. 
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Fig. 25. Typical binary multifrequency signal with eleven components and random phases 

Clearly multifrequency binary signal is easier to generate then multisinusoidal signal, and 

has far superior crest factor of 1. Minor drawback can be seen on Fig. 26, where spectrum of 

such a signal is shown. So called “snow” lines appear between the wanted frequency 

components, and roughly 30% of the total energy is lost for measurement: 

       1

    0.1

  0.01

0.001

A
m

p
li

tu
d

e

1                                                     10                                                    100                                                 1000                                               10000

Frequency, Hz  

Fig. 26. Spectrum of binary multifrequency signal with ten components and random phases 

Truth is revealed when spectrum of optimized multisine is drawn together with spectrum of 

the binary counterpart: 
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Fig. 27. Magnitudes of spectral lines in binary multifrequency signal (grey squares) together 

with spectrum of multisinusoidal signal (black squares) 

Useful spectral components in binary multifrequency signal contain 1,34927 times more 

energy than in case of optimized multisine, or 4,32933 times more than the multisine above 

without optimization. At first glance there is another drawback, since magnitudes of useful 

components are not exactly equal anymore. Fortunately said magnitudes can be easily 

equalized by iteratively manipulating magnitudes of the components of the original 

multisinusoidal signal. Residual error is generally well below one percent. Furthermore 

almost arbitrary magnitudes of spectral components can be achieved (Fig. 28). 
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Fig. 28. Magnitude control example 

When two level comparison is introduced instead, then energy leakage into unwanted 

components can be reduced. Such a ternary multifrequency signal can be seen on Fig. 29. 
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Fig. 29. Ternary multifrequency signal. Comparison levels are set on +/ - 0,23V 

Comparison of the spectrum of the original multisinusoid with ternary signal from Fig. 29 

can be seen on Fig. 30. 
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Fig. 30. Magnitude spectrum of the ternary multifrequency signal (grey rings) compared 

with magnitudes of multisinusoid components (grey lines), and binary multifrquency signal 

(crosses) 

5. Conclusion 

With some minor drawbacks it is possible to construct relatively simple square wave signals 

in order to replace more sophisticated sinusoidal or arbitrary waveforms when system 

identification is warrantied. Simplest square wave nevertheless might not be sufficiently 

good measurement signal. By adding few more levels situation can be improved 

considerably. These signals can be used to replace single sinusoids, chirps, and arbitrary 

sums of sinusoids. Generally it is a good idea to choose best signal for given identification 

task. Some choices are shown, and reasoning behind theme given. 
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