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1. Introduction  

According to a widespread notion, a monochromatic harmonic temporal wave’s frequency 

ω  becomes inherently “uncertain” to a degree ωΔ  if the wave lasts for only a limited time 

tΔ  owing to the “Uncertainty Principle” which states that constant≥ωΔ⋅Δt  (i.e. ωΔ  cannot 

be zero if tΔ  is finite). This frequency uncertainty is commonly thought of as also being 

reflected in the fact that the (“sinc”-shaped) frequency spectrum obtained by Fourier-

transforming a finite-duration monochromatic wave spreads over a nonzero frequency 

range. Since, as often argued, the Fourier spectrum represents the ”frequency components” 

of a temporal function (or signal), the nonzero width of the spectrum tells us that the 

”nominally” monochromatic ω  frequency of a time-limited sinusoid is “effectively” 

polychromatic, with frequencies continuously distributed over a ωΔ  range in accord with 

the Uncertainty Principle. 

A typical area where this argument shows up is Pulsed Fourier-Transform (PFT) nuclear 

magnetic resonance (NMR) spectroscopy. In NMR a molecular ensemble is placed in a 

strong homogeneous static magnetic field, whereupon the ensemble’s NMR-active nuclei 

(those that act like spinning atomic magnets, say protons) will precess about the direction of 

the magnetic field. Those “spins” in the ensemble which precess (Larmor precession) with 

identical Lω frequencies form a net macroscopic magnetization which is normally aligned 

along the external field, but which will also (Larmor-)precess with a frequency Lω  

following a transient perturbation of the magnetization from its equilibrium state. Typically 

there are several such bundles of homogeneous spins in the analyzed sample, covering a 

range of Larmor frequencies LωΔ . PFT-NMR works on the principle that the sample’s bulk 

magnetizations of interest can be excited into precession-mode (made to “resonate”) 

simultaneously in a wide LωΔ  (“off-resonance”) frequency range when perturbed by a 

“driving” electromagnetic wave of a single well-defined monochromatic radio-frequency 

(RF) Dω  if the wave is applied as a “pulse” in a sufficiently short time tΔ . Because this 

phenomenon may appear counter-intuitive, the fundamental NMR literature is abundant in 

attempts to offer a preliminary explanation for why pulsed excitation works, typically 

invoking the “Uncertainty Principle” and the “sinc”-shaped FT-spectrum of the pulse 

according to the notions outlined above. Some representative examples from authoritative 
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sources are as follows: “…although the applied excitation may be precisely centred at a 

frequency Dω , […], our act of turning the excitation power on at time zero and and off at 

time Δt effectively broadens the spectral range of the excitation (to a bandwidth of ~1/Δt).” 

(Marshall and Verdun, 1990); “A pulse of monochromatic RF with a rectangular envelope 

can be described in the frequency domain as a band of frequencies centred at the RF 

frequency. The Heisenberg principle states that there is a minimum uncertainty in the 

simultaneous specification of […] the frequency of a system and the duration of the 

measurement. […] this means that the […] irradiation is spread over a wide frequency band. 

[…] the ‘sinc’ Fourier spectrum of a rectangular RF pulse shows that a shorter pulse gives a 

wider ‘sinc’ band and a longer pulse gives a narrower ‘sinc’ band.” (King and Williams, 

1989); “…if the pulse is made shorter, we will no longer have a truly monochromatic Fourier 

spectrum even though the source is still monochromatic. This is because many different 

frequencies have to be combined in order to form the rising and falling edges of the 

rectangular pulse.” (Fukushima and Roeder, 1981); “… as the Uncertainty Principle 

indicates, a pulse [of carrier frequency Dω ] will contain, in effect, a range of frequencies 

centred on Dω . […] the distribution of RF magnetic field amplitudes takes the ‘sinc’ form 

[…] which is the frequency-domain equivalent of a short pulse in the time domain. The two 

domains are connected by the Fourier transform.” (Harris, 1983); “… the RF source […] is 

monochromatic, so we have to work out a way of using a single frequency to excite multiple 

frequencies. To see how this can be done we take our cue from the Uncertainty Principle. If 

the irradiation is applied for a time Δt, then […] the nominally monochromatic irradiation is 

uncertain in frequency by about 1/Δt.” (Derome, 1987) 

One should quickly note that at a macroscopic level the basic NMR phenomenon is a purely 

classical effect (Hoult, 1989 and Hanson, 2008) involving interactions between the oscillating 

magnetic component of the RF pulse and the sample’s bulk magnetizations. Indeed, the fact 

that a monochromatic pulse can excite spins in a wide frequency range can be well 

explained classically using the laws of driven mechanical harmonic oscillators and 

magnetism (Bloch, 1946) without resorting to the vague idea that the Dω  RF pulse 

frequency should be “uncertain” or “effectively” polychromatic according to its Fourier 

spectrum. Furthermore, except for one case the above arguments are unclear on whether by 

“Uncertainty Principle” they mean the Heisenberg Uncertainty Principle (HUP) which is a 

probabilistic, quantum-mechanical statement, or the Fourier Uncertainty Principle (FUP) 

which is a deterministic theorem in the discipline of time-frequency analysis. 

In a series of recent papers (Szántay, 2007, 2008a, 2008b, 2008c) the author of the present 
work explored the above problem in detail, showing that a) the idea that the frequency of a 
time-limited sinusoid would be uncertain in the Heisenberg sense is flawed; b) it is the FUP 
(and not the HUP) that is of relevance to the problem; c) the notion that a monochromatic 
pulse “effectively” comprises of a range of physically existing frequency components is 
erroneous. During that discourse the need had come up to contemplate the essence of the 
Fourier Transform (FT) itself, which may appear somewhat odd considering the fact that the 
FT is ubiquitously applied in a broad range of sciences and technology, and works 
explaining its mathematics and its manifold physical applications are available in almost 
countless abundance. However, it turns out that the FT is so commonplace, it has become so 
much consolidated into many fields of science and engineering, its basic principles and 
formulas are so commonly taken for granted, that, paradoxically, this can easily stop people 
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from thinking more deeply about how and why the FT works as a mathematical tool and 
what exactly it means when evoked to interpret physical phenomena. One of the central 
features of the present author’s approach in discussing the FT was the use of a ”touched up” 
mathematical formalism to provoke a new way of looking at some key ideas of the FT and to 
avoid some hidden ambiguities in meaning that are otherwise inherent to the conventional 
formalism and can give rise to the misconceptions mentioned above. Besides coming out 
with a disambiguative but symbolically elaborate formalism for the FT involving the 
depiction of the domain intervals on which functions ”exist” and introducing the concept of 
thinking about the FT in either ”trigonometric-frequency-space” or ”phasor-frequency-
space”, those articles also expounded, from a new perspective, on several apparently simple 
but in practice elusive related concepts such as ”periodicity”, “harmonic oscillation”, 
“phasor”, “negative frequency”, “uncertainty”, etc.; much emphasis was placed also on a 
comparison of Fourier analysis and the Fourier transform, on the pros and cons of 
metaphoric thinking and the dangers of unrecognized linguistic ambiguities (e.g., words 
and phrases like “uncertainty”, “nominally monochromatic” and “effectively polychromatic” 
deceptively appear to be meaningful, but on deeper examination their meaning is 
ambiguous and notoriously misunderstood). 

Owing to the volume and thematic complexity of those papers the need has repeatedly 
arisen to present its main thrusts in a more compact and symbolically simplified form. The 
present work therefore attempts to condense the original discussion into a shorter 
communication by focusing only on two themes, namely the reformulation of the primary 
FT equations (other closely related topics such as Fourier analysis will be left out) and the 
main conclusions on the problem of the “Uncertainty Principle”. These thoughts are hoped 
to provide some fresh insights and a deeper understanding of the essence of the FT and the 
Uncertainty Principles. In that regard it should be emphasized that the applied 
mathematical formalism is not a l’art pour l’art design: it serves to facilitate a more 
conscientious way of thinking about the pertinent topics. For the full technical and 
philosophical details behind the ideas presented here the reader is encouraged to consult the 
original articles.  

2. Nomenclature 

2.1 General notation 

• The term Fourier analysis will be used to refer to the Fourier series expansion of periodic 
functions and the term Fourier transform (FT) will refer to the generalization of Fourier 
analysis including nonperiodic functions. The FT will be discussed only in the context 

of the Fourier-pair variables time (t) and frequency (ω). The word “spectrum” will in 

genereal mean the ω-dimension (ω-D) representation of a time-dimension (t-D) 
function, more specifically as it has been obtained by the FT. 

• Sets will be represented by bold, italicized letters while vectors will be denoted by bold, 
non-italicized letters. If in a set x  its members x can assume values on a continuous 
scale, I will use the symbol “@“ as a primary generic index to tag an arbitrary value as 
“ @x ” so as to emphasize that we are focusing on that particular value in the set (“@” 
can be interpreted as: “at a given value”. Members x of the sets x , +

x  and −
x  can in 

general take on negative as well as positive values, only nonnegative values, and only 
nonpositive values, respectively. If a set x  represents an interval for the variable  
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x∈x , we will consider five main interval types labeled as follows: 
⇔
x  = ),( ∞=−∞= xx  

is open and unbounded on both sides; ],[ @'@ xx=
•−•
x  is closed and bounded (compact) 

at arbitrary @x  and @'x  values on both sides; ),[ ∞===
⇒

xx 0x  is closed and bounded 

at zero on the left, open and unbounded on the right and ],( 0=−∞==
⇐

xxx  is closed 

and bounded at zero on the right and open and unbounded on the left; @
↑
x  = 

} ,{ @@@@ ′′ ←≤≤ xxxxxx  will be associated with a function which has a finite function 

value at @
•

= xx  but is zero if @
•

≠ xx ; @
↑
x  = } ,{ @@@@ ′′ ←≤≤ xxxxxx  will be used in 

connection with a Dirac delta whose function value is infinite at @
↑

= xx  but zero if 

@
↑

≠ xx . 

• Underlined symbols are used to denote complex quantities having a real (ℜ) and an 

imaginary (ℑ) component, so a complex constant ),( AAA ℑℜ=  is defined and 

symbolized as AiAA ℑℜ ⋅+=  = AA ′+ℑℜ  where AAi ′=⋅ ℑℑ . Hence A  has the absolute 

value AA =  = 22 )()( AA ℑℜ +  = 22 )()( AA ′− ℑℜ . A complex number A  expressed in 

the form of a complex exponential )exp( ϕ⋅⋅= iAA  will be referred to as a phasor where 

the phase ϕ is measured from the positive real axis (+ℜ) with a counterclockwise angle 
being positive and a clockwise angle being negative. A non-underlined character, if 

lacking the tags ℜ or ℑ, represents a real-valued quantity by default. Likewise, a 

function in general is represented as )(xf  if it is real-valued and as )(xf  if it is complex-

valued. 

• The action of a mathematical formula (rule, operator, etc…) upon a set will be denoted 

as setFormula . Thus, a rule acting on a variable x  to give a function )(xf  is written as 

xx Rule)( =f , and an operator that converts a function )(xf  into )(yF  is depicted as 

)(Operator)( xy fF = . 

• The natural (largest possible) domain of a function xx Rule)( =f  is the set of all 

allowable inputs that the function’s argument x may assume. However, )(xf  can of 

course be restricted to or can simply be of interest to us over a subset x  of the natural 

domain, and herein x  will be called the operative interval of )(xf . A function’s operative 

interval will be denoted as 
xx

xx Rule)( =f  and should be interpreted either as having 

no values or zero function values for any x∉x . For example, for a single rectangular 

“bump” along x we have 
•−•

= xx  corresponding to the rectangle’s width, while for a 

function that starts with a finite value at x = 0 but decays exponentially to zero at x = ∞ 

we have 
⇒

= xx  ranging from zero to positive infinity. Care must be taken not to 
confuse the operative interval (which is always indicated as a subscript following a bar 
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placed after the function’s name or rule of association) with the function’s natural 

domain. For example, for a function •−•
x

)(xf  the natural domain may be 
⇔
x  but the 

operative interval is 
⇔•−•

∈ xx ; for ⇔
x

)(xf  the operative interval is 
⇔
x , implying that the 

natural domain must also be 
⇔
x . A proper understanding of the FT requires that one 

should always be conscious of what domains and intervals are relevant to the time 
scales and frequency ranges in the pertinent mathematical expressions. These aspects 
are often far from being self-evident from the formulas themselves in their conventional 
notation, and are usually present as hidden assumptions or unstated premises.  
To overcome this problem herein the pertinent interval types will be represented as 

⇔
x

)(xf  = ⇔
x

xRule , •−•
x

)(xf  = •−•
x

xRule ; ⇒
x

)(xf  = ⇒
x

xRule ; ⇐
x

)(xf  = ⇐
x

xRule , 
@

)( ↑
x

xf  = 

)( @@@ xxA −δ  = ∞⋅@A  if @xx = , otherwise zero, and 
@

)( •
x

xf  = 
@@

•
x

A  = @A  if 

@xx = , otherwise zero. If the properties of )(xf  are considered on different intervals 

simultaneously, the pertinent interval symbols will be separated by semicolons, such as 

•−•⇔
xx ;

)(xf  =  Rule
;

•−•⇔
xx

x . 

2.2 Trigonometric and phasor frequencies 

The symbol ω will be used as a general representation of (angular) frequency such that the 

oscillation frequencies associated with a temporal function have constant values 

( =ω )(t constant) over the operative interval t  of the function. In the customary notation a 

sinusoid (trigonometric) harmonic wave with a complex amplitude (i.e., a 1D oscillation in 

the complex plane that gives a 2D wave as a function of time) has the general form 

)]()cos[()( ωϕ+ω⋅ω DtA  and a harmonic phasor (i.e., a vector A rotating uniformly either 

clockwise or anti-clockwise in the complex plane, and describing a 3D helix as a function of 

time) has the general form )ωexp(])([exp)( tiiA ⋅⋅ωϕ⋅⋅ω D  = )ωexp()( tiA ⋅⋅ω , where Dϕ  is the 

wave’s initial phase at t = 0. For the harmonic phasor the phase angle Dϕ+ω=ϕ tt)(  is 

measured from the positive real axis (+ℜ) with a counterclockwise angle being positive and 

a clockwise angle being negative. For simplicity both a sinusoid wave and a harmonic 

phasor will be referred to as a “harmonic wave”.  

The sinusoid and phasor forms of a harmonic wave are connected by Euler’s famous 

identity, written in its conventional form as )ωexp( ti ⋅ = )sin()cos( tit ω⋅+ω , from which the 

trigonometric terms can be expressed by rearrangement as )cos( tω = )ωexp(5.0 ti ⋅⋅ + 

)ωexp(5.0 ti ⋅−⋅ , and )sin( tω = )ωexp(5.0 tii ⋅⋅⋅− + )ωexp(5.0 tii ⋅−⋅⋅ . Using this conventional 

notation the concept of the sign of ω, in particular the idea of a negative frequency, can be a 
confusing issue. Thus, based on making a distinction between “trigonometric frequency” 
and “phasor frequency” the following notation is introduced: a trigonometric frequency (the 
frequency of a sinusoid oscillation) will be labeled as ϖ∈ϖ ; a phasor frequency (the 

frequency of harmonic phasor) will be labeled as ω/∈ω/ . Accordingly, a sinusoid harmonic 

wave )(thϖ  and a harmonic phasor )(ω th/  take the following general forms: 
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 ( ) ( ) cos[( ) ( )]h t A tϖ = ϖ ⋅ ϖ + ϕ ϖD , (1) 

 ( ) ω ω ω ω
ω( ) ( ) ( ) ( ) ( )i i t i t i t i th t A e e A e A e i A e⋅ϕ ω ⋅ ⋅ ℜ ⋅ ℑ ⋅/ / / / /
/ = ω ⋅ ⋅ = ω ⋅ = ω ⋅ + ⋅ ω ⋅/ / / /

D
. (2) 

Note from (2) that the phasor’s complex amplitude A  always corresponds to t = 0 since A  

is defined by its magnitude (absolute value) and the phasor’s initial phase, which are both 

time-independent quantities. From (2) we see that the phasor )ωexp()( tiA /⋅⋅ω/  can be 

equivalently viewed also as a sum of two phasors of the same frequency, one with a real 

amplitude Aℜ , and the other with a pure imaginary amplitude Aiℑ⋅ . 

For the trigonometric wave )t(hϖ  the meaning of ϖ  seems straightforward: it expresses the 

number of full periods (multiplied by 2π) completed by the wave in unit time, whereby ϖ  is 

defined as having positive numerical values only since it would not make sense to speak of 

a negative number of oscillations per unit time. The algebraically positive nature of ϖ  

merits emphasis because in the context of the FT tigonometric frequencies are sometimes 

(mistakenly) given negative values in the literature [e.g. the fact that neither the cosine 

transform, nor the sine transform alone can distinguish between the two possible rotational 

directions of a harmonic phasor is often explained by the formal truths that 

])cos[( tω− = t)cos(ω  and ])sin[( tω− = t)sin(ω− ]. However, one should appreciate that the 

concept of ])([cos tω−  (or ])([cos tϖ− ) or ])sin[( tω−  (or ])sin[( tϖ− ) does not make any physical 

sense. This issue is partly rooted in the fact that the literature makes no symbolic distinction 

between “ϖ ” and “ω/ ”, hence the intended meaning (phasor vs. trigonometric) of 

“frequency”, labeled as “ω ”, is typically an implicit consequence of the context in which it 

appears but is not implied or conveyed by the symbol “ω ” itself. Thus the formulas 

])cos[( tω−  or ])sin[( tω−  may easily escape mental objection when speaking about positive 

and negative phasor frequencies when the latter are also labeled as ω+  and ω− . There is in 

fact no need to allow sinusoid frequencies to be negative (see below) and we can adhere to 

the physically appropriate definition that trigonometric frequencies are always positive.  

A harmonic phasor )(ω th/  has either a positive or a negative frequency +ω/  and −ω/  

depending on the direction of “skew” (or “helicity”) of the 3D helix described by the phasor 

as a function of time. I employ the convention according to which for positive ω/  the phasor 

)ωexp()(ω tiAth +
/ /⋅⋅=+  corresponds to the vector A rotating in the complex plane in the 

−ℑ→−ℜ→+ℑ→+ℜ  direction as time progresses, while for negative ω/  the phasor 

)ωexp()ωexp()(ω tiAtiAth +−
/ /⋅−⋅=/⋅⋅=−  represents rotation in the opposite sense.  

Note that according to the above considerations there is an intrinsic difference between the 

concepts of the “sign” of the frequency for a harmonic sinusoid wave and a harmonic 

phasor. If, in a ),,( tℑℜ  space, we associate a positive skew with +ω/  and a negative skew 

with −ω/  (and this is what we mean by the positive and negative sign of ω/ ), then a 

trigonometric frequency ϖ , which is “skew-less”, should also be “sign-less”. Thus our 

definition of ϖ  being always positive carries the implicit understanding that a numerically 

positive frequency value requires a different physical interpretation for ϖ  and 
+ω/ . 

All subsequent equations will be formulated in line with the above definitions on the 
concept of frequency. Forcing oneself to accordingly rethink the common text-book 
equations related to the FT is an instructive endeavour yielding added levels of insight. 
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Furthermore, the concept of a “frequency sweep” is introduced as follows: the symbols ω/
I

, 

ω/
G

 and ω/
H

 emphasize the fact that we take into account all values for the variable ω/  in the 

continuous sets 
⇔
/ω , 

⇒
/ω  and 

⇐
/ω , respectively. Thus we may think of ω/

I
, ω/
G

 and ω/
H

 as 

representing a “sweep” of the frequency value from −∞  to +∞ , from 0 to +∞ , and from 0 to 

−∞ , respectively, in phasor-frequency space. Likewise, the symbol ϖ
G

 designates a 

trigonometric-frequency “sweep” of ϖ  from 0 to +∞  in the set 
⇒ϖ . Frequency-sweep 

notation will be used, when needed for emphasis, in expressions describing temporal 
harmonic waves as well as in the function names of FT-spectra. For example, when stressing 

that we are considering the set of all sinusoid harmonic waves )(thϖ  covering the entire 

trigonometric frequency range 
⇒ϖ  where each wave lasts from −∞  to +∞ , we write ⇔→

ϖ t
)(th  

= ⇔ϖϕ+ϖ⋅ϖ
t

)](cos[)(
GGG DtA . Similarly, the set of all perpetual harmonic phasors in the infinite 

phasor-frequency range 
⇔
/ω  can be written as ⇔↔

/ t
)(ω th  = ⇔ω/⋅⋅ω/

t
)exp()( tiA
II

. If however we 

want to focus on a harmonic wave at a given frequency value we write 

)cos()( @@@@

Dϕ+ϖ⋅=ϖ tAth  or )ωexp()( @@ω@
tiAth /⋅⋅=/ . 

2.3 FT-contextualized function notation in the time and frequency dimensions 

The ways in which the forward and inverse FT operators 
→
FT  and 

←
FT  connect a t-D 

function )t(f  and its ω-D counterpart )(ωF  are denoted as )t(f)(F
→

=ω FT  and 

)(F)t(f ω=
←
FT , respectively. The so-called Fourier Inversion Theorem (FIT) (see below) 

states that the FT is an invertible transform: there is a one-to-one correspondence between 
all temporal and spectral function pairs that we consider here; to reflect this concept the 

forward and backward FT operator symbols are combined into the symbol 
↔
FT , so the link 

between the two dimensions can be depicted as: )(   )( ω⎯⎯ →←
↔

Ftf
FT

.  

In the time dimension we generally consider complex-valued temporal functions 
t

)(tf  on a 

real timeline, with the operative duration t  corresponding to the time frame over which the 

(forward) FT is performed. This means that 
t

)(tf = ”something” for t∈t  (that “something” 

may contain values of )(tf  = zero besides nonzero values) but 
t

)(tf = “nothing” (i.e., )(tf  is 

either zero or nonexistent) for all t∉t . All 
t

)(tf  functions that are of practical relevance to 

us can be Fourier-transformed, i.e., their spectrum exists and 
t

)(tf  can be recovered exactly 
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(for all practical purposes) from its spectrum, and all nonperiodic temporal functions 

labeled here as 
t

)(tf
�

 have the extra feature that their function values are zero in the infinite 

past and in the infinite future - a property needed so that they can be absolute integrable 

(the integral of 
t

)(tf
�

 over all t exists and is finite) which in turn is required for the spectrum 

of 
t

)(tf
�

 to exist in a form that contains only finite function values.  

In the frequency dimension, when thinking of the spectrum ω)(ωF  as a mathematical object 

that has been obtained by the forward FT of 
t

)(tf , it will prove useful to extend the name 

ω)(ωF  such that it can remind us of what specific operative temporal interval 
t

)(tf  existed 

on. To that end the temporal function’s operative interval t  will be indicated in the 

spectrum’s name as ωt
)(ωF . Although 

t
)(tf  and ωt

)(ωF  are equivalent representations of 

the same mathematical object, 
t

)(tf , we may regard 
t

)(tf  as the primary mathematical 

entity since the physical events that we are interested in and which are modelled by 
t

)(tf  

actually “happen” in time. A function 
t

)(tf  describing an “event” of duration t  is defined 

as zero outside of t , and in that sense we can ignore all t∉t  without actually having to 

“sweep through” the natural domain from −∞=t  to +∞=t . However, most ωt
)(ωF  

spectra that we will encounter have an infinite operative interval 
⇔
/ω  or 

⇒ϖ  such that the 
spectrum is continuous and has nonzero function values (allowing for zero values at points 

where ⇒⇔
/

ω ϖ; )( ωt
F  may intercept or touch the ω  axis) over its entire domain. Thus for the 

mathematical equivalence between 
t

)(tf  and ⇒⇔
/

ω ϖ; )( ωt
F  to hold, the forward FT must be 

performed by accounting for all possible frequencies in the infinite natural domains 
⇔
/ω  or 

⇒ϖ , depending on whether we want to express the spectrum in ω/ -space or ϖ -space. To 

reflect this concept the notation for the pertinent frequency sweep (as described in the 
previous section) will be indicated in the spectrum’s name. Thus, spectra with an infinite 

support are written as ⇔
/

ω/ ωt
)(
I

F  or ⇒ϖϖ)(
G

t
F .  

An ω/ -space spectrum can always be equated with a suitable, complex combination of two 

ϖ -space spectra, one obtained through the “cosine transform” and one through the “sine 

transform” of 
t

)(tf . Phasor representation usually being more convenient to work with, 

herein preference will generally be given to ω/ -space formalism (however, the trigonometric 

form will also be discussed to some extent since this gives some interesting added insight 
into the nature of the FT). In all, the FT relationship will most generally be thought of as: 
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 ωt
t /

↔
ω/⎯⎯ →← )()(
I

Ftf
FT

 (3) 

Finally, we will find that some spectra of the type ⇔
/

ω/ ωt
)(
I

F  are centred about a specific 

frequency @ω/ . Although in such cases the value of @ω/  is contained in the relevant rule, 

⇔
/

ω/−ω/ ω@Rule , it will often prove informative to indicate @ω/  in the function’s name as 

well, which will be done by writing ⇔⇔
/// ω/−ω/=ω/ ωωt @ω Rule)(

@
;
I

F .  

3. “Enhanced” Fourier-Transform equations 

3.1 Euler’s identities 

With the above considerations in mind we can reformulate Euler’s identities as follows. For 
a given frequency we have  

 
ttttt

)sin()cos( @@

)ω(
@@

ω
@

ω
@

ω
@

@
@@@ tAitAeAieAeA tititi ϖ⋅⋅±ϖ⋅=⋅⋅+⋅=⋅

±/
/⋅ℑ/⋅ℜ/⋅  (4) 

 
tt

t

titi eAeAtA
++ /⋅−/⋅ ⋅+⋅=ϖ⋅ @@ ω

@
ω

@@@ 5.05.0)cos(  (5) 

 
tt

t

titi eAieAitA
++ /⋅−/⋅ ⋅⋅+⋅⋅−=ϖ⋅ @@ ω

@
ω

@@@ 5.05.0)sin(  (6) 

On the other hand the entire positive, entire negative, or complete positive and negative 
phasor frequency range can be embraced via positive trigonometric frequency notation 
which may be represented by writing Equations (4) – (6) as 

 
tt

ttt

)sin()()cos()()()()(
)ω(ωωω tAitAeAieAeA tititi ϖ⋅ϖ⋅±ϖ⋅ϖ=⋅ω/⋅+⋅ω/=⋅ω/

±↔↔↔ /
/⋅ℑ/⋅ℜ/⋅ GGGGIII

 (7) 

 

tt

t

titi eAeAtA
←→
/⋅/⋅ ⋅/+⋅/=ϖ⋅ϖ ωω )ω(5.0)ω(5.0)cos()(

HGGG
 (8) 

 

tt

t

titi eAieAitA
←→
/⋅/⋅ ⋅/⋅+⋅/⋅−=ϖ⋅ϖ ωω )ω(5.0)ω(5.0)sin()(

HGGG
 (9) 

These equations reflect the concept that we can describe a harmonic phasor’s frequency and 
sign of rotation in both phasor notation and complex trigonometric form, so long as in the 
latter case we use both the (real) cosine and (imaginary) sine waves - both of which have 
algebraically positive ϖ  frequencies. There is no contradiction in the fact that we can obtain 
a negative phasor frequency −ω/  by combining a real and an imaginary sinusoid, both of 
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which have positive ϖ  trigonometric frequencies. Equations (5,6) and (8,9) show that while 
a given sinusoid has no frequency sign ambiguity (it is always positive) in ϖ -space, it 
exhibits a sign duality when expressed in ω/ -space, i.e., a sinusoid is always equated with 
the sum of two phasors, one with a positive and one with a negative frequency. 

3.2 Interrelationships in temporal and spectral representations 

In our formalism a key stepping stone to the FT involves the consideration of Euler’s 

identities from both a t-D and ω-D perspective. Let us take a harmonic phasor 

t
)ωexp(@ @tiA ±/⋅⋅ , called herein the principle phasor, which can be viewed as a vector rotating 

in time as shown in temporal representation for a positive phasor 
t

)ωexp(@ @tiA +/⋅⋅  in 

Figure 1(a). We can also find it informative to represent our phasor as an ω-D entity ±•
/ @

@ωA  

as shown for 
t

)ωexp(@ @tiA +/⋅⋅  in Figure 2(A). The temporal and spectral representations 

emphasize different aspects of the phasor: the temporal form shows its progression in time, 

from which the numerical value of 
±ω/@  is not directly accessible, while the spectral 

representation displays the 
±ω/@  value in ω/ -space, but offers no direct sense of the phasor’s 

temporal behavior or of its operative interval t . Considering the principle phasor 

t
)ωexp(@ @tiA ±/⋅⋅  in the light of (4)–(6), we can formulate the following scheme: 

Temporal: 

t

tieA
±//⋅⋅ @ω

@
 

tt

titi eAieA
±ℑ±ℜ /⋅/⋅ ⋅⋅+⋅= @@ ωω

@             @  (10t) 
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±//⋅⋅ @ω
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�� 	� tt

)sin(@          )cos(@ @@ tAitA ϖ⋅⋅±+ϖ⋅=  (11t) 
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 (12t) 

Spectral: 
±•

/ @
@ωA  

±•
ℑ

±•
ℜ

//
⋅+=

@@
@                @ 
ωω

AiA  (10s) 

 ±•
/ @

@ωA  
�
�	�

7

�
�	�

7

@@
@        &         @       •• ⋅±↔ ϖϖ AiA  (11s) 
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 (12s) 

Equation (10t) tells us that we can decompose the principle phasor into a sum of two 

component phasors, 
t

)ωexp(@ @tiA ±/⋅⋅ℜ  and 
t

)ωexp(@ @tiAi ±/⋅⋅⋅ℑ , having at 0=t  a real and 

a pure imaginary amplitude, respectively, as shown for a positive phasor in Figure 1(b,c). In 

spectral form Eq. (10t) becomes (10s), and 
±•

ℜ

/ @
@ω

A and 
±•

ℑ

/
⋅

@
@ω

Ai  [Figure 2(B,C)]. This tells 

us that if we take the real and imaginary parts of the principle phasor’s complex spectrum 

±•
/ @

@ωA  [Figure 2(A)], then the real spectrum 
±•

ℜ

/ @
@ω

A  [Figure 2(B)] corresponds to the real-

amplitude component 
t

)ωexp(@ @tiA ±/⋅⋅ℜ  [Figure 1(b)], and the imaginary part 
±•

ℑ

/
⋅

@
@ω

Ai  

[Figures 2(C)] corresponds to the pure imaginary-amplitude component 
t

)ωexp(@ @tiAi ±/⋅⋅⋅ℑ  

[Figure 1(c)] of the principle phasor.  

Neither the real, nor the imaginary spectrum are normally represented in a 3D complex 
amplitude vs. frequency graph as in Figure 2(B,C), but as 2D real-amplitude vs. frequency, 
or imaginary-amplitude vs. frequency graphs [the analogous graphical schemes for a 
negative principle phasor can be seen in the original work (Szantay, 2007)]. Although in this 
representation the concepts of “real” and “imaginary” spectrum may seem almost self-
evident, one should note that the ordinate value at a given frequency of the real and 
imaginary spectrum is often erroneously understood as meaning the amplitude of a cosine 
and sine trigonometric harmonic wave, respectively.  

Consider the decomposition of 
t

)ωexp(@ @tiA ±/⋅⋅  into a cosine and a sine wave according to 

Eq. (11t). Because their amplitudes are related as @A  and @Ai ⋅ , the planes of oscillation of 

the cosine and sine wave are perpendicular to each other in the complex plane as shown in 
Figure 1(d,e). In spectral form [Expression (11s)] the respective complex amplitudes are 
depicted in ϖ -space according to Figure 2(D,E). Note that when we translate (11t) into 

spectral form, (11s) ceases to be an equality. This is because: a) the spectral amplitudes 

@
@ •ϖA  for the cosine and sine components [Figure 2(D,E)] belong to two different 

mathematical “species”, therefore they cannot simply be added; b) the spectrum of the 
principle phasor [Figure 2(A)] is a function in ω/ -space, while the spectra of its component 

sinusoids [Figures 2(D,E)] are functions in ϖ -space. (Again, this is a fundamental difference 

which can easily escape attention in the absence of a symbolism that differentiates between 
phasor and trigonometric frequencies.) Note also that we have no analogous problem with 
the relevant temporal forms of Figures 1(a,d,e), since they have a common argument: time. 
Thus the amplitudes depicted in Figure 2(D,E) do not add up to those shown in Figure 2(A).  
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Temporal representation 

 

Fig. 1. Graphical representation of Equations (10t)-(12t) for a positive principle phasor. For 
added clarity the side-view projections of the principle phasor onto the real and imaginary 
axis are shown in (a’) 
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Fig. 2. The spectral representational analogue of Figure 1 according to Equations (10S)-(12S) 

Spectral representation
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In order to bring ±•
/ @@ωA , 

@@ •ϖA , and 
@@ •⋅ ϖAi  onto a “common ground” we need to 

translate the ϖ -space spectra into ω/ -space. In the temporal domain this means that the 

principle phasor’s cosine component [Figure 1(d)] and sine component [Figure 1(e)] are 

decomposed into a sum of oppositely rotating phasors [Figure 1(f,h)] according to (12t). The 

decomposition of the cosine term reflects Equations (5) while that of the sine term 

corresponds to (6) multiplied by “i”. If we now add up the four phasors in (12t) we re-gain 

our principle phasor 
t

)ωexp(@ @tiA ±/⋅⋅  [Figures 1(a)]: the two negative phasor-frequency 

components have identical amplitudes but are in opposite phase [Figures 1(h,i)] and hence 

cancel each other at every point in time, while the two positive phasor-frequency 

components, both having an amplitude 
@

5.0 A , are in-phase [Figure 1(f,g)] and thus 

reinforce each other to give the original principle phasor. 

In spectral notation the relationships of (12t) are expressed according to (12s) and the 

pertinent ω/ -space spectra are shown in Figure 2(F,G,H,I). In analogy to the correlation 

between the left and right sides of (11s), there is a correlation, but not an equation, between 

the pertinent terms on the right side of (11s) and (12s).  

By adding up the four amplitudes in [12s] we obtain the principle phasor’s spectrum 

±•
/ @@ωA  [Figures 2(A)]. We may think of these ”secondary-phasor” spectra [Figures 

2(F,G,H,I)] as “interfaces” that allow us to connect the principle phasor’s ω/ -space spectrum 

[Figures 2(A)] with its ϖ -space spectra [Figures 2(D,E)].  

From a broader viewpoint, the whole basis of the FT rests on the idea that a temporal 

function can be constructed from suitable harmonic “principle phasors”. Any given point on 

the complex FT-spectrum will represent a constituent harmonic principle phasor. It is 

according to the above scheme that we can conceptually envisage the way the spectrum of a 

temporal function (or signal) is obtained. 

3.3 The Fourier Transform 

The FT is based on the theorem that 
t

)(tf  can be uniquely expressed in terms of its 

projections onto an infinite frequency set of basis phasors ⇔↔
/ t

)(ω th  = ⇔ω/⋅⋅ω/
t

)exp()( tiA
II

. In 

general, the infinite set of unit phasors ⇔ω/⋅
t

)exp( ti
I

 constitutes a unitary orthogonal basis set 

for all Fourier-transformable 
t

)(tf  functions, which can therefore be represented as a 

weighted sum of the unit harmonic waves. The spectrum ωt /
ω/ )(
I

F  specifies the weighting 

coefficient for the unit basis phasors at all 
⇔
/∈ω/ ω  frequencies. Using both trigonometric  

and phasor notation [cf. Equations (7)-(9)], the essence of the FT can conceptually be written 

as: 
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 ω/⋅=ϖ⋅= ∫∫
∞

∞−
ω/

∞

ϖ ⇔↔⇔→ dthdthtf
ttt

)()()(

0

 (13) 

Employing the nomenclature and concepts outlined above, the Fourier integrals can be 
expressed as follows: 
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)()cos()()cos()()( (cos)

cos tfdtttfdtttfF FT
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ϖ  (15acos) 

 
t

t

tttt
t

)()sin()()sin()()( (sin)
sin tfdtttfdtttfF

→∞

∞−

=⋅ϖ⋅=⋅ϖ⋅=ϖ ∫∫ ⇔ FT
GGG

ϖ  (15asin) 

 
t

t t
t

t
tωt

)()()()( ωω tfdtetfdtetfF titi →/⋅−
∞

∞−

/⋅−
/ ∫∫ =⋅⋅=⋅⋅=ω/

↔

⇔

↔

FT
I

 (15b) 

Equations (15) and (14) express the forward and inverse FT, respectively. In the spectra 

ϖ
)(cos ϖ
G

t
F , 

ϖ
)(sin ϖ
G

t
F  and ωt /

ω/ )(
I

F  each ω/  or ϖ  value corresponds to a pure harmonic 

wave and the unit basis functions ⇔ω/⋅
t

)exp( ti
I

 are declared on an infinite time scale 
⇔
t , 

which means that irrespective of what operative temporal interval 
t

)(tf  “exists” upon, it 

can be decomposed into an infinite set of eternal harmonic waves. The eternity of the 

unitary orthogonal basis set ⇔ω/⋅
t

)exp( ti
I

 is a generally not fully appreciated, but 

fundamentally important aspect of the FT, easily escaping attention in the standard 
mathematical symbolism. For example, in the conventional notation Equation (14b) is 

simply written as ∫
∞

∞−
ω⋅⋅⋅ω⋅π= dtiFtf )ωexp()()( 21 , and this expression offers little in the way 

of showing us that even if )t(f  is finite in time, the basis phasors tie ω⋅  are perpetual. 

Further insight may be gained into the FT by noting that the right-hand side of Equation 
(14b) represents an infinite collection of eternal “principle phasors” on the phasor frequency 
scale. Thus, in analogy to Equations (10)-(12) we can formulate the following scheme: 
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Temporal:       =ω/⋅⋅ω/⋅
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From Equations (4) and (5) we can express the forward FT for the phasor-space spectral 
form also as: 
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In Equations (16) - (21) the relationships between the various ϖ -space and ω/ -space spectral 

forms are as follows:  
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ϖ
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(22) 

From this formalism one can draw a number of subtle insights into the FT as was detailed in 
the original papers which also included a discussion on a geometrical interpretation of the 
FT and on its capability to unravel the oscillating frequency components that are otherwise 
obscured in a complicated time signal (Szántay, 2007, 2008a, 2008b, 2008c). These aspects 
will not be elaborated here. Suffice to note only that if a signal, represented by the function 

t
)t(f , comprises of harmonic phasor components (such is the case with the NMR “free 

induction decay” except that it contains exponentially damped harmonic phasors), then the 
signal must be detected from two orthogonal directions simultaneously to be able to tell the 

sense of rotation of the pertinent phasors. Letting these directions correspond to the +ℜ  and 

+ℑ  axes we obtain the functions 
t

)t(fℜ  and 
t

)t(fiℑ⋅  [cf. Equation (20t)] as the “side 

projections” of 
t

)t(f  which are analogous to the principle phasor’s real and imaginary 
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“side-view” components as shown in Figure 1 (a’). Accordingly, in general 
t

)t(fℜ  and 

t

)t(fi ℑ⋅  both comprise of a mixture of cosine and sine waves, thus when we speak of the 

“complex forward” FT of 
t

)(tf , then this is actually accomplished through the FT of 
t

)(tfℜ  

combined with the FT of 
t

)(tfiℑ⋅ . The relationship between the right-hand sides of (20s) and 

(21s), or (17s) and (18s), reflects the way in which the ϖ -space outputs of the cosine and sine 

transforms (cos)
→
FT  and (sin)

→
FT  assume a sign duality in ω/ -space. The addition of the 

“secondary” ω/ -space spectra ωt /
ω/ )(cos GF , ωt /

ω/ )(cos HF , ωt /
ω/ )(sin GF  and ωt /

ω/ )(sin HF  gives the final 

FT-spectrum ωt /ω/ )(
I

F , i.e., only the (cos)
→
FT  and (sin)

→
FT  transforms together can properly 

identify the sign of the phasor frequency components within 
t

)(tf .  

A few basic FT relationships, represented graphically as well as in terms of function rules 
written in the style discussed above are shown in Figure 3 (all of these formulas are of 
course available in conventional notation from standard textbooks).  

4. Uncertainty principle(s) 

4.1 The Heisenberg and Fourier Uncertainty Principles 

With reference to the issue of whether or not the frequency of a time-limited sinusoid wave 
becomes inherently ”fuzzy” due to the Uncertainty Principle (as was discussed in the 
Introduction), let us now take a closer look at the meaning of the term ”Uncertainty 
Principle”. One mental trap here is that for most people the phrase ”Uncertainty Principle” 
invokes a single famous theorem, while there are actually several uncertainty principles that 
have come to constitute their independent branches of mathematics, physics and signal 
analysis theories. In the context of our present discussion we can speak of two main types of 
uncertainty principle: Heisenberg’s Uncertainty Principle (HUP) which is a quantum- 
mechanical concept grounded in the physical world, and the Fourier Uncertainty Principle 
(FUP) which is a classical concept and stems from a mathematical necessity inherent to the 
way the FT works. 

Within our framework of discussion the HUP can be written for the noncommuting 
variables time and frequency through the expression: 

 constantωsd ≥Δ⋅Δt  (23) 

where the symbol sdΔ  denotes the standard deviation of frequency. 

In the classical realm of time-frequency signal analysis there exists another fundamental 
inequality commonly referred to as the Fourier Uncertainty Principle (FUP). In qualitative 

terms the FUP states that the ”broader” 
t

)(tf
�

 is in time, the “narrower” ⇔
/

ω/ ωt
)(
I

F  is in 

frequency and vice versa. Since there is no universally applicable mathematical or semantic  
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Fig. 3. Some special FT relationships 
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definition that would adequately quantify or delineate the concept of a function’s “breadth” 

(Cohen, 1995 and Claerbout, 2004), we adopt from Claerbout the generic symbol “∧”, herein 

called “characteristic span”, connoting the “compressedness” or “elongatedness” of a 

function along its domain, the idea being that “∧” symbolizes any mathematical definition, 

including sdΔ , that may be suitably applied to the specific function at hand. Using the 

symbol “¬” to denote “of”, so “
x

)( xfx¬∧ “ means the characteristic span of 
x

)(xf , the 

FUP can thus be expressed as 

 Ξ≥=/¬/∧⋅¬∧ ⇔
/

TBP)ω( ω)( ωt
t

I�
Ftft  (24a) 

 Ξ≥=/∧⋅∧ TBPωt  (24b) 

where TBP is the so-called “time-bandwidth product”, Ξ  is the minimum value of the TBP, 

and (24b) is just a short-hand for (24a). The actual values of TBP and Ξ  are specific to the 

exact way in which 
t

)( tft
�

¬∧  and ⇔
/

/¬/∧ ωt
)ω( ω
I

F  have been defined for the particular 
t

)(tf
�

 

and ⇔
/

ω/ ωt
)(
I

F  functions at hand. The FUP is an equality in the sense that for any given 

absolute integrable function 
t

)(tf
�

 the TBP is constant, therefore increasing 
t

)( tft
�

¬∧  entails 

a concurrent decrease in ⇔
/

/¬/∧ ωt
)ω( ω
I

F  and vice versa; the FUP however is an inequality in 

the sense that the TBP must be greater than the value of Ξ . The FUP asserts nothing more 

than: a) a t-D function can only be “squeezed” at the expense of expanding its ω-D 

counterpart and vice versa; b) 
t

)(tf
�

 and ⇔
/

ω/ ωt
)(
I

F  cannot both be made arbitrarily “narrow”.  

The FUP and HUP share a common mathematical form and terminology which is why, as it 

was pointed out by Cohen (Cohen, 1995), they are easily mixed up, especially since both are 

often written simply in the form ” constantω ≥Δ⋅Δt ”. However, the physical interpretations 

of (23) and (24) are different: in the HUP the word “uncertainty” reflects probabilistic 

uncertainties in the measurement of quantum-mechanical physical observables, while the 

FUP is a deterministic theorem resulting from the innate nature of the FT, as was illustrated 

geometrically earlier (Szántay, 2008c).  

The notion that by time-limiting a monochromatic sine wave we impose some “uncertainty” 

on its frequency stems either from confusing the HUP and the FUP, or from 

misunderstanding the FUP itself. With regard to the deterministic sine wave (such as the 

NMR pulse), it is obviously the FUP that is of relevance and not the HUP. As for the FUP, 

one reason it is often misinterpreted is because “uncertainty” is a dubious word with several 

possible interpretations in various situations, as was discussed in detail before (Szántay, 

2008c). The concept of the characteristic span 
x

)(xx f
�

¬∧  simply reflects “broadness” which 

is not a probabilistic quantity per se; just because a function has a large characteristic span, it 

is not “uncertain”. In that sense, referring to (24) as an “Uncertainty Principle” is a 

misnomer, as was also emphasized by Cohen (Cohen, 1995). 

www.intechopen.com



 
A Reformulative Retouch on the Fourier Transform – “Unprincipled” Uncertainty Principle 

 

231 

4.2 The law of “Conjugate Physical Equivalence” 

The Fourier Inversion Theorem (FIT) symbolized by (3) tells us that 
t

)(tf  and ωt /
ω/ )(
I

F , as 

being functions of the conjugate variables time and frequency, represent the same 

mathematical object 
t

)(tf  expressed in two different “languages”, temporal and spectral. 

The mathematical truth of the FIT implies that if 
t

)(tf  is a model of some physical process, 

then whatever physical meaning we assign to 
t

)(tf , we must assign the same physical 

meaning and information content to ωt /
ω/ )(
I

F . For the sake of emphasis I will herein refer to 

this concept as the “Law of Conjugate Physical Equivalence” (LCPE).  

Although, when phrased in this way the LCPE may seem rather self-evident, it is actually all 
too often overlooked when it comes to the physical interpretation of the mathematics of the 

FIT. The reason for this stems from the innate “linguistic” difference between 
t

)(tf  and 

ωt /
ω/ )(
I

F . The temporal form is intuitively more familiar since it reflects, and is more 

congruent with, our natural perception of physical events in the way they actually “happen” 
in time. The spectral “language” however is an artificial construct which is non-intuitive in 

the sense that when 
t

)(tf  is transposed according to (13) onto frequency space, we loose 

direct information on its temporal progression of; furthermore, the spectral form is highly 
abstract in that its “alphabet” consists of an infinite number of eternally sounding “vowels” 

in the form of the scaled perpetual basis harmonic waves ⇔ω/⋅
t

)exp( ti . It is the entirety of 

these spectral “letters” that describes 
t

)(tf  in the frequency dimension (in other words the 

concerted sound, i.e. the superposition of the vowels returns 
t

)(tf  in its exact shape and at 

its precise time location; however, the vowels cancel each other exactly to produce utter 

“silence” for all t∉t ). This kind of abstraction being inherent to ωt /
ω/ )(
I

F  is something that 

is often not fully appreciated, and the fact that the FT involves transposition between the 
physical variables time and frequency invites a strong reflexive (and often unjustified) 
association of its mathematics with physical properties. In particular, since the ”letters” of 
the spectrum are formed of harmonic waves, one may be inclined to think (in violation of 

the LCPE) that each of the (abstract) letters ⇔ω/⋅
t

)exp( ti  represents a physically existing 

oscillation perceived as being somehow inherent in the temporal function but ”revealed” by 
the FT. However, the spectral letters happen to be harmonic waves simply as a consequence 

of the mathematics of the FT. We can envisage the basis set ⇔ω/⋅
t

)exp( ti
I

 on which the 

forward FT transposes 
t

)(tf  as an abstract “ocean” of harmonic waves stretching infinitely 

in both the frequency and time dimensions. The forward FT projects the properties of 
t

)(tf  
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onto this “ocean” by adjusting the amplitudes and phases of the waves according to the 
“coding instructions” of the FT, and the backward FT “decodes” this information to 

reconstruct 
t

)(tf . However, ⇔ω/⋅
t

)exp( ti
I

 is just (a rather convenient and useful) 

mathematical vehicle whose waves act as carriers of the FT codes but do not ab ovo represent 

physical oscillations (in principle it would be possible to ”translate” 
t

)(tf  into an infinite 

number of other mathematical “languages” whose letters would be based on functional 
forms other than ⇔ω/⋅

t
)exp( ti , in which case the letters would less readily suggest some 

association with a physical meaning). 

To better understand this problem it can be useful to think of 
t

)(tf  simply as a curve 

detached initially from any physical meaning which is “morphed” by the FT into the 
“oceanic profile” of 

ωt /
ω/ )(
I

F . There are certain features of the temporal curve that we, for 

convenience, can call by specific names (such as ‘oscillation frequency’, ‘phase’, ‘amplitude’, 
in the case of, say, a sinusoid). If we render specific physical properties through these 
features to our temporal signal, then we must assign the same physical properties to the 
spectral representation according to the LCPE since the FT does not “know” anything about 
the physics represented by those curves (thus it cannot “create” or “reveal” e.g. any 
frequency “uncertainty” in the frequency domain that was not there in the time domain). 

Whatever meaning we therefore attribute to ωt /
ω/ )(
I

F , that meaning emerges through a 

process of its “a posteriori” physical interpretation, and this must be in keeping with our 
physical interpretation of the relevant temporal “curve”. 

Consider e.g. the simple monochromatic real-valued eternal cosine wave ⇔ϖ
t

)(
@

th  and its 

spectrum 
@

)( ↑⇔

/
ω/ ωt

I
H  [Figure 3(d)]. In ⇔ϖ

t
)(

@
th  the wave’s frequency @ϖ  is known exactly 

by definition and 
@

)( ↑⇔

/
ω/ ωt

I
H  is localized to ±ω/@ , representing the limit where ⇔ϖ¬∧

t
)(

@
tht  = 

∞ and so 
@

)( ↑⇔

/
ω/¬ω/∧ ωt

I
H = 0 in (24). Take, next, the time-windowed harmonic waves 

•−•ϖ
t

)(
@

th  and their spectra ⇔•−•

/// ωt
)ω(

@ω;
I

H  (Figure 4).  

Again, in •−•ϖ
t

)(
@

th  the frequency @ϖ  has an exactly known value. Since now •−•ϖ¬∧
t

)(
@

tht  

is finite, the FUP requires that  )ω(
@ω ⇔•−•

///¬ω/∧
ωt ;

I
H must also broaden to some finite value. 

However, just because we have time-windowed ⇔ϖ
t

)(
@

th  its frequency @ϖ  has not become 

“uncertain”. The fact that  )ω(
@ω ⇔•−•

///¬ω/∧
ωt ;

I
H > 0 is not a reflection of any ”uncertainty” in 

@ϖ  but a mathematical necessity ensuing from the fact that all information that specifies the 

temporal function or signal must be uniquely coded into the spectrum. One way of thinking 

about this is that while for ⇔ϖ
t

)(
@

th  there was no need for the spectrum to code for the  
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Fig. 4. Simple time-windowed monochromatic temporal waves and their ω/ -space spectra 
(for simplicity, only the positive phasor-frequency side of the spectra is shown). Each wave’s 
frequency is the same value, @ϖ , but their duration, time location, and initial phase are 
different. The value of @ϖ  “codes into” the frequency location of the center of the sinc-
shaped spectra, therefore this location is the same in each spectrum. Differences in the 
spectral profiles reflect differences in the waves’ other features, because those are coded 
exactly by the FT into the (complex) FT-spectrum. Spectral broadening is due to that fact 
that the FT-spectrum carries all that coding information, and not to any “uncertainty” in @ϖ  

duration and time location of the wave (which is why the spectrum is a Dirac-delta 

@
)( ↑⇔

/
ω/ ωt

I
H ), for •−•ϖ

t
)(

@
th  a Dirac-delta would not provide enough degrees of freedom in its 

spectral features to be able to code for the wave’s duration and time location. It is, then, this 
encoding of the ”window” into the FT-spectrum that manifests itself in a spectral profile 

that covers the infinite frequency set 
⇔
/ω , and not some kind of ”uncertainty” in @ϖ . 

Thinking in terms of “curves”, we can render to the curve of •−•ϖ
t

)(
@

th  [Figure 4(a)] some 

distinct physical “aspects”, such as a “frequency aspect” defined through the term )(cos @tϖ , 

and a “window aspect” defined through the location and duration of the operative interval 
•−•
t . All of these features are coded exactly into the shape of the spectrum ⇔•−•

/// ωt
)ω(

@ω;
I

H  

[Figure 4(a)]. The “frequency aspect” of •−•ϖ
t

)(
@

th  translates into the (exact) central 
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frequency value ±ω/@  of ⇔•−•

/// ωt
)ω(

@ω;
I

H , while the “window aspect” translates into the 

broadened complex profile of the spectrum. One must therefore understand that the scaled 

basis elements ⇔ω/⋅
t

)exp( ti  in ⇔•−•

/// ωt
)ω(

@ω;
I

H  do not necessarily represent physical 

vibrations that are actually or “effectively” present in •−•ϖ
t

)(
@

th . Rather, each eternal basis 

harmonic wave’s (complex) amplitude carries a single piece of the entire set of codes that is 

needed to reconstruct the original temporal function •−•ϖ
t

)(
@

th . The physical interpretation 

that we should, then, correctly assign to ⇔•−•

/// ωt
)ω(

@ω;
I

H  is simply that the frequency of the 

central basis element of the spectrum corresponds to the monochromatic frequency of 

•−•ϖ
t

)(
@

th , and the rest of the basis elements code for all of its other features such as its 

“window aspect”.  

The popular notion that the forward FT disseminates a temporal function (signal) into its 
“frequency components” is incorrect if by “frequency component” one understands a 
physical vibration contained in, and lasting for the duration of, the signal. Rather, the 
spectrum represents a transposition of all properties of the temporal signal into frequency 
space, and some of those properties may happen to be periodic events whose frequency will 
show up as peaks in the spectrum, but other features of the signal also become scrambled 
into the spectrum. Claiming therefore that any given point of the FT-spectrum represents a 
“frequency component” of the temporal signal is misleading and violates the LCPE. Indeed, 
Figures 4(b-e) illustrate this point by showing that if we keep the monochromatic 

“frequency aspect” of •−•ϖ
t

)(
@

th  constant but vary its other “aspects”, the spectral profiles 

will change so as to code for every alteration in the temporal curve, but the (unchanged) 

value of @ϖ  remains “coded into” the same frequency position for each spectrum. 

4.3 Back to NMR 

If one reconsiders the statements on PFT-NMR quoted in the Introduction, the flaws in those 
arguments should now be evident. An RF pulse can be treated as a deterministic, time-
windowed harmonic phasor in that it acts as a classical magnetic field vector rotating with a 
specific monochromatic frequency. The assertion that “a nominally monochromatic short 
pulse effectively has a (Heisenberg) uncertainty-broadened frequency band” simply reflects 
a misuse of the HUP and/or a physical misinterpretation of the FUP. The FUP does not 
warrant the causal inference that “wide frequency band” should mean a wide range of 
physically existing driving RF oscillations, as is often deemed necessary for explaining the 
phenomenon of off-resonance excitation. Actually, according to the LCPE the sinc-shaped 
spectral profile of the pulse is synonymous in physical meaning with its temporal form, 
therefore the statement that a “short pulse has a wide frequency band” does not tell us any 
more “physics” about the pulse than saying that a “short pulse is a short pulse”. In fact there 
is nothing paradoxical about the fact that a monochromatic pulse can excite off-resonant 
spins: the phenomenon is solely due to the pulse’s large amplitude, akin to the way a 
classical mechanical resonator also gives nonzero response to a sufficiently large off-
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resonance driving force. Nota bene: a) the common notion that “a shorter pulse excites a 
wider frequency band” is misleading in that it is valid if by ’excites’ one specifically means 
‘gives absorption-shaped measured signals’, but is not valid, and thus does not conflict with 
the above statements, if by ‘excites’ one just means ‘perturbs’ in general (Szántay, 2008c); b) 
the response of a linear system to an input signal can in fact be calculated from the spectrum 
of the input signal by way of the so-called Superposition Principle (the NMR system is 
nonlinear in general, and the linearity approximation is valid only for special limiting 
conditions), but that concept should not be confused with the ideas discussed above. 

5. Conclusion 

The Fourier Transform (FT) is often thought of as a mathematical device capable of 
“revealing” the ”frequency components” of a temporal signal. Although this notion is 
correct with regard to any sinusoid oscillatory feature that may be present in the signal, it is 
deceptive in general, easily leading to the belief that the overall spectral profile represents 
all the physical ”frequency components” that are present in the signal. This idea can give 
rise to false interpretations such as the concept that the frequency of a time-limited 
monochromatic sinusoid is “uncertain” or “effectively polychromatic”, in line with the 
“Uncertainty Principle”. In fact the Heisenberg Uncertainty Principle (HUP) has nothing to 
do with this problem; it is the Fourier Uncertainty Principle (FUP) that is of relevance, but 
the word “uncertainty” is also misleading in that regard: the FUP does not imply that time-
windowing a deterministic wave with a monochromatic frequency makes its frequency 
“uncertain” or that the forward FT “reveals” such uncertainty just because the spectrum has 
a profile that covers a broad range of frequencies. Whatever physical attributes we associate 
with a temporal signal (such as that it has an exact monochromatic frequency) must be 
carried over exactly into the frequency dimension according to the “Law of Conjugate 
Physical Equivalence” (LCPE).  
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