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1. Introduction 

Discrete Fourier Transform (DFT) is probably the most popular signal processing tool. Wide 

DFT use is partly dedicated to fast Fourier Transform (FFT) algorithms (Cooley & Tukey, 

1965, Oppenheim et al., 1999, Lyons, 2004). DFT may also be efficiently computed by 

recursive algorithms in the window sliding by one sample (Jacobsen & Lyons, 2003, Duda, 

2010). Unfortunately, DFT has two main drawbacks that deteriorate signal analysis which 

are (Harris, 1978, Oppenheim et al., 1999): 1) spectral leakage, and 2) sampling of the 

continuous spectrum of the discrete signal. Spectral leakage is reduced by proper time 

windows, and the frequency bins between DFT bins are computed by interpolated DFT 

(IpDFT) algorithms, thoroughly presented in this chapter.  

2. Basic theory 

2.1 Signal model 

IpDFT algorithms may be derived for discrete sinusoidal or damped sinusoidal signals. 

Discrete sinusoidal signal is defined as 

 0cos( ), 0,1,2,..., 1nv A n n Nω ϕ= + = − , (1) 

and discrete damped sinusoidal signal is defined as 

 0cos( ) , 0, 0,1,2,..., 1dn
nv A n e d n Nω ϕ −= + ≥ = − , (2) 

where A>0 is signal’s amplitude, 0<ω0<π is signal’s frequency in radians or radians per 
sample also referred as angular frequency or pulsation, and ω0=π rad corresponds to the half 

of the sampling rate Fs in hertz, -π<φ≤π is the phase angle in radians, n is the index of the 
sample, N is the number of samples, and d is damping factor. If discrete signals (1) and (2) 
result from sampling analog counterparts then 

 0 02 ( / )sF Fω π= , (3) 

www.intechopen.com



 
Fourier Transform – Signal Processing 

 

4 

where F0 is the frequency of analog signal, v(t)=Acos(2πF0t+φ) or v(t)=Acos(2πF0t+φ)edFst, in 

hertz, Fs is sampling frequency in hertz, and t is continuous time in seconds. 

In section 3 it is shown how to estimate parameters of (1) and (2) i.e. A, ω0, φ and d with the 

use of DFT. If the investigation refers to analog counterpart signal than parameters of the 
discrete signal should be rescaled adequately, for example F0=Fs·ω0/(2π). 

2.2 DFT analysis 

Equations in this section are taken from the textbook (Oppenheim et al., 1999). Fourier 
transform (FT) of infinite length discrete time signal xn is defined as  

 ( )j j n
n

n

X e x eω ω
∞

−

=−∞
= ∑ , (4) 

where n is integer sample index that goes from minus to plus infinity and ω is continuous 

frequency in radians (angular frequency, pulsation). Continuous spectrum X(ejω) defined by 
(4) is periodic with the period 2π. The notation X(ejω), instead of X(ω), stresses up the 

connection between FT and Z transform. 

For finite length discrete time signal vn containing N samples DFT is defined as  

 
1

(2 / )

0

N
j N kn

k n
n

V v e π
−

−

=
= ∑ , 0,1,2,..., 1k N= − . (5) 

From (5) it is seen, that by DFT the FT spectrum is computed only for frequencies 

ωk=(2π/N)k, that is DFT samples continuous spectrum of the discrete signal. 

Finite length signal vn, n=0,1,2,...,N-1 is obtained from infinite length signal xn, n=...-2, 

-1,0,1,2,... by windowing, that is by multiplication with discrete signal wn, called window, 

with nonzero values only on positions n=0,1,2,...,N-1 

 n n nv w x= . (6) 

Signal models (1) and (2) were given with rectangular window defined as 

 
1, 0

0, 0
R
n

n N
w

n N

≤ <⎧
= ⎨ > ≥⎩

. (7) 

Discrete signal is always analyzed with the time window as only finite number of samples 

may be read into computer. If no other window is purposely used then the signal is 

analyzed with rectangular window (7). 

Based on FT convolution property signal windowing (6) in the time domain results in 

following convolution in the frequency domain 

 ( )1
( ) ( ) ( )

2

j j jV e X e W e d
π

ω Θ ω Θ

π

Θ
π

−

−

= ∫ . (8) 
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where X(ejΘ) and W(ejΘ) are the FT spectra of the infinite length signal xn and the time 
window wn. Thus, according to (8) we observe the convolution of the signal spectrum with 
the window spectrum, and not the signal spectrum alone. 

FT of infinite length signal xn=cos(ω0n+φ) is a pair of impulses at frequencies ±ω0+2πk thus 
the spectrum of the windowed sinusoidal signal (1) is  

 0 0( ) ( )0 0( ) ( ) ( )
2 2

j j j j jA A
V e e W e e W eω ϕ ω ω ϕ ω ω− − += + . (9) 

Equation (9) is used as starting point in derivation of IpDFT algorithms. It is also used in 
leakage correction algorithms e.g. in (Radil et al., 2009). 

According to (9) the spectrum V(ejω) of the discrete, windowed, sinusoidal signal is the sum 
of two periodic replicas of window spectrum W(ejω) shifted to the frequency ±ω0 and 
rescaled by complex amplitude (A0/2)e±jφ.  

 

                                            (a)                                                                                         (b) 

 

                                             (c)                                                                                      (d) 

Fig. 1. Sinusoidal signal (1) with rectangular window and the modulus of its spectrum:  
a) signal (1), b) spectrum components for positive and negative frequencies (9), c) continuous 
FT spectrum (4)(9), d) sampling the continuous spectrum by DFT bins (5); ωE denotes 
estimated value 
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Fig. 1 illustrates equations given above for sinusoidal signal (1) analyzed with rectangular 
window for A=1, ω0=1 rad, φ= 1.3 rad, and N =8. Fig. 1b depicts spectrum components for 
positive and negative frequencies (9). The sum of those components gives continuous 
spectrum shown in Fig.1c that may also be computed from the FT definition (4). As seen 
from Fig.1c the energy is not concentrated in the single frequency bin ω0 (as would be for 
infinite length observation), but spills over to all neighboring frequencies. This phenomenon 
is called spectral leakage and may be the reason of significant estimation errors. In the given 
example spectral components for positive and negative frequencies (9) influence each other 
and maximum shown in Fig. 1c is moved from ω0=1 rad to ωE=1.04 rad (E stands for 
estimated value), that is estimation error equals 4%. Amplitude estimation error equals 
approx -15%. Estimation errors depend also on signal’s phase φ as the sum (9) is complex. 
Because of the spectral leakage, the signal in the example disturbs its own spectrum. The 
impact of the spectral leakage would be stronger if the signal was a sum of sinusoidal 
signals, as every sinusoidal component would disturb its own spectrum and the spectrum of 
all others sinusoidal components. 

Fig. 1d depicts DFT spectrum of the signal. DFT bins are only computed for frequencies 
ωk=(2π/N)k. Frequency estimation error in that case equals approx -21%. 

In DFT analysis spectral leakage is reduced by application of time windows other then 
rectangular and the error caused by the sampling of continuous spectrum only in 
frequencies ωk=(2π/N)k is practically eliminated by IpDFT algorithms. 

DFT (5) is derived for periodic signals; as a consequence frequency analysis is correct only 
for the signals containing integer number of periods. The signal with integer number of 
periods is called coherently or synchronously sampled. In field measurements, for 
sinusoidal signals (1) close to coherent sampling is obtained with PLL (Phase Locked Loop) 
that keeps integer ratio of signal’s frequency F0 to sampling frequency Fs, see (3). The 
frequency of coherently sampled signal is ω0=(2π/N)k rad and equals the frequency of DFT 
bin with index k. Damped sinusoidal signals (2) have transient, and not periodic, nature and 
thus cannot be synchronously acquired with PLL. 

 

                                                (a)                                                                                    (b) 

Fig. 2. Coherently sampled sinusoidal signal (2 periods) a), and its continuous Fourier 
spectrum (denoted by FT) and DFT spectrum b); ωE - frequency of DFT bin with the highest 
magnitude (estimated value) 
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                                                (a)                                                                                    (b) 

Fig. 3. Non-coherently sampled sinusoidal signal a), and its continuous Fourier spectrum 
(denoted by FT) and DFT spectrum b); ωE - frequency of DFT bin with the highest magnitude 
(estimated value) 

Fig. 2a depicts coherently sampled sinusoidal signal containing exactly 2 periods. The 
frequency of this signal is ω0=2(2π/N)≈0.79 rad and it equals the frequency of the DFT bin 
with index k=2. Fig. 2b shows continuous Fourier spectrum (4) and DFT bins of this signal. 
Upper OX axis is scaled in DFT index k, and lower OX axis is scaled in frequency in radians.  

The range of frequencies intentionally exceeds 2π (one period) to stress up the periodic 
nature of the spectrum of discrete signals and the fact that spectral leakage for small 
frequencies originates from neighboring period (i.e. the part of the spectrum for negative 
frequencies). For coherent sampling of sinusoidal signal only one DFT bin is nonzero and 
the analysis is practically not affected by spectral leakage and sampling of the continuous 
spectrum. 

Fig. 3a depicts sinusoidal signal which does not contain integer numbers of periods. The 
frequency of this signal is ω0=2.2(2π/N)≈0.86 rad and lays between DFT bins with index k=2 
and k=3. Fig. 3b shows FT spectrum and DFT spectrum of this signal. Estimation of signal’s 
frequency based on the highest magnitude DFT bin is biased by the error of 0.79-0.86=-0.07 
rad or -8%. High estimation errors would also be obtained for amplitude and phase 
estimation based on the highest magnitude DFT bin. Those errors caused by the sampling of 
continuous spectrum can be significantly reduced by IpDFT algorithms. 

2.3 Time windows 

The application of time windows in DFT analysis is thoroughly reviewed in (Harris, 1978), 
and also described in signal processing textbooks, e.g. (Oppenheim et al., 1999, Lyons, 2004). 
Other time windows with interesting properties are described in (Nuttall, 1981).  

Window properties are determined by its spectrum W(ejω) that consists from the main lobe 
which is the highest peak in the spectrum and side lobes. The shape of the spectrum of 
rectangular window (7) may be observed in Fig. 1b. The main lobe of the window should be 
as narrow as possible, and side lobes should be as low as possible. Narrow main lobe 
improves frequency resolution of DFT analysis, while low side lobes reduce spectral 
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leakage. Rectangular window is the one with the narrowest main lobe, which is an 
advantage and the highest side lobes which is disadvantage. All the other time windows 
reduce side lobes, and thus spectral leakage, by the cost of widening main lobe i.e. reducing 
frequency resolution. It is also known that rectangular window has the best noise immunity 
although systematic errors caused by leakage may be dominant for signal containing small 
number of cycles. 

Time windows are defined as cosine windows or non cosine windows. The cosine windows 
may be written in the form 

 0

2
( 1) cos , 0

0, 0

M
m w

m
n m

A mn n N
w N

n N

π

=

⎧ ⎛ ⎞− ≤ <⎪ ⎜ ⎟= ⎝ ⎠⎨
⎪ > ≥⎩

∑
, (10) 

where w in Amw is introduced to distinguish from signal’s amplitude in (1-2).  

IpDFT algorithms may only be analytically derived for Rife-Vincent class I (RVCI) windows. 
Coefficients Amw for RVCI windows are given in Tab.1. For M=0 RVCI window is 
rectangular window, and for M=1 RVCI window is Hanning (Hann) window. RVCI 
windows have the advantage of the fastest decay of the side lobes but they also have wide 
main lobe, which may be observed in Fig. 4. RVCI windows are also referred as cosα(X), 
┙=0,2,4,6... defined in (Harris, 1978). 

m = 0  1  2  3 4 5 6 

Amw, M=0 1       

Amw, M=1 1  1      

Amw, M=2 1  4/3  1/3     

Amw, M=3 1  3/2  3/5   1/10    

Amw, M=4 1  8/5  4/5   8/35   1/35   

Amw, M=5 1  105/63   60/63   45/126   5/63   1/126  

Amw, M=6 1  396/231   495/462  110/231  33/231   6/231  1/462

Table 1. Coefficients Amw for Rife-Vincent class I windows (10) 

Other examples of popular cosine windows are Hamming window (M=1, A0w=0.54, 
A1w=0.46), and Blackman window (M=2, A0w=0.42, A1w=0.5, A2w=0.08). 

Cosine windows (10) are the sum of frequency modulated rectangular windows, thus the 
spectrum of order M cosine window is 

 ( ) ( )

0

( ) ( 1) ( ) ( 1) ( )
2 2

m m

w wM
j j jm R m Rm m

M
m

A A
W e W e W eω ω ω ω ω− +

=
= − + −∑ . (11) 

where ωm=(2π/N)m and WR(ejω) is the spectrum of rectangular window 

 
1

( 1)/2

0

sin( / 2)
( )

sin( / 2)

N
j j n j NR

n

N
W e e eω ω ω ω

ω

−
− − −

=
= =∑ . (12) 
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Optimal due to main lobe width and side lobes level are non cosine Kaiser-Bessel and 

Dolph-Chebyshev windows (Harris, 1978). Those windows generally perform well as 

highlighted in (Harris, 1978 Fig. 12). 

Fig. 4 shows comparison of windows spectra for RVCI, Kaiser-Bessel and Dolph-Chebyshev 

windows for similar attenuation of the first side lobe approx -31.5 dB (Fig. 4a) and approx  

-101 dB (Fig. 4b). RVCI window has the fastest decay of side lobes and the widest main lobe. 

Kaiser-Bessel window has narrow main lobe and slowly decay side lobes, and Dolph-

Chebyshev window has the narrowest main lobe and the side lobes on the same level. The 

markers in Fig. 4 denote DFT bins. Cosine RVCI window has M+1 nonzero DFT coefficients 

as stated by (11). For non cosine Kaiser-Bessel and Dolph-Chebyshev windows all DFT 

coefficients are non zero. 

 

                                                (a)                                                                                    (b) 

Fig. 4. Amplitude spectra of RVCI, Kaiser-Bessel (K) and Dolph-Chebyshev (Ch) windows 

with similar attenuation of the first side lobe, markers denote DFT bins; a) attenuation 

approx -31.5 dB, b) attenuation approx -101 dB 

3. Interpolated DFT algorithms  

IpDFT algorithm for sinusoidal signal analyzed with rectangular window was introduced in 

(Jain et al., 1979). In (Grandke, 1983) similar derivation was presented for sinusoidal signal 

analyzed with Hanning window. IpDFT algorithms for higher order RVCI windows are 

given in (Andria et al., 1989). In (Offelli & Petri, 1990) IpDFT algorithm for arbitrary cosine 

window was proposed based on polynomial approximation. In (Agrež, 2002) multipoint 

IpDFT was introduced with the feature of reducing long range leakage and thus reducing 

systematic estimation errors. IpDFT algorithm for the signal analyzed with arbitrary, even 

non cosine window was given in (Duda, 2011a). 

IpDFT algorithms for damped sinusoidal signal analyzed with rectangular window are 

described in (Yoshida et al., 1981, Bertocco et al., 1994). In (Duda et al., 2011b) those 

algorithms were put in the same framework, and new algorithms for damped signal with 

rectangular window were proposed. Application of RVCI windows for damped signals in 

IpDFT algorithms was discussed in (Agrež, 2009, Duda et al., 2011b). 
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The IpDFT problem for sinusoidal and damped sinusoidal signals is depicted in Fig. 5 and 
may be formulated as follows. Based on the DFT spectrum Vk (5) of the signal xn analyzed 
with the known window wn (6) find the frequency correction δ so to satisfy the equation 

 0

2
( ) , 0 0.5k

N

πω δ δ= ± < ≤ , (13) 

where ω0 is signal’s frequency, N is the number of samples and k is the index of DFT bin 
with the highest magnitude. If |Vk+1|>|Vk-1|, as in Fig. 5, then there is '+' in (13). 

For coherent sampling depicted in Fig. 2 frequency correction δ=0, and there is no need to 
use IpDFT algorithm. For the example of non coherent sampling shown in Fig. 3 frequency 
correction is δ=0.2 and it would be δ=-0.2 if the signal’s frequency was ω0=1.8(2π/N)≈0.71 
rad. 

 

Fig. 5. Illustration of IpDFT problem; ωk–1, ωk, ωk+1 frequencies of DFT bins, ω0 - signal’s 
frequency, δ - frequency correction 

 Let us define the following ratio of modulus of DFT bins with the highest amplitude 

 1 1 0

0

| | | ( )| | ( 2 / 2 / )|

| | | ( )| | ( 2 / )|
k k

k k

V V V N N

V V V N

ω ω δ π π
ω ω δ π

+ + − +
= =

−
, (14) 

where it was used ωk=ω0-δ2π/N, ωk+1=ω0-δ2π/N+2π/N that goes from Fig. 5 and (13). As 
stated by (9) the spectrum of the sinusoidal signal consists from the spectrum of the window 
moved from the position ω=0 to ω=ω0, thus the ratio of signal DFT (14) may be substituted 
by the ratio of window DFT 

 1| | | ( 2 / 2 / )|
( )

| | | ( 2 / )|
k

k

V W N N
R

V W N

δ π πδ
δ π

+ − +
= ≈

−
. (15) 

The approximation sign '≈' is used in (15) instead of equality, because the ratios may slightly 
differ due to spectral leakage. Solving (15) for frequency correction δ we obtain two-point 
(2p) IpDFT formulas. Analytic solution of (15) is only possible for RVCI windows. 

The ratio of DFT bins may also be defined with three bins as 
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 1 0 0

1 0 0

| | | | | ( 2 / )| | ( 2 / 2 / )|

| | | | | ( 2 / )| | ( 2 / 2 / )|
k k

k k

V V V N V N N

V V V N V N N

ω δ π ω δ π π
ω δ π ω δ π π

+

−

+ − + − +
=

+ − + − −
, (16) 

which may be substituted by 

 1

1

| | | | | ( 2 / )| | ( 2 / 2 / )|
( )

| | | | | ( 2 / )| | ( 2 / 2 / )|
k k

k k

V V W N W N N
R

V V W N W N N

δ π δ π πδ
δ π δ π π

+

−

+ − + − +
= ≈

+ − + − −
. (17) 

Solving (17) for δ we obtain three-point (3p) IpDFT algorithm. 

Let us define the following summation 

 
0

| |

for 0 '( 1) '
,

( ) for 0 ' / 2

wm nM
mm

k n w
m M m m

m A AA
S

m n m A Aδ

+

+
=−

⎧ = =− ⎪= ⎨
− + ≠ =⎪⎩

∑ , (18) 

where M is the order of cosine window (10) and Amw is the vector of window coefficients. 
Then (15) and (17) may be rewritten in the form 

 1 1| |

| |
k k

k k

V S

V S
+ +≈  (19) 

 1 1

1 1

| | | |

| | | |
k k k k

k k k k

V V S S

V V S S
+ +

− −

+ +
≈

+ +
 (20) 

In the next subsections IpDFT algorithms will be derived and explained. In all derivations 
the spectrum of the sinusoidal signal (9) is approximated by 

 0( )0( ) ( ), 0
2

j j jA
V e e W eω ϕ ω ω ω π−≈ ≤ < . (21) 

3.1 Sinusoidal signal – RVCI windows 

3.1.1 Rectangular window (RVCI M=0) 

Rectangular window wnR is defined by (7) and the spectrum of this window is given by (12). 
From (15) we get 

 1| | sin( ) sin( / )

| | sin( / / ) sin( )
k

k

V N

V N N

δπ π δπ
δπ π δπ

+ − + −
≈

− + −
. (22) 

By approximating sine functions by their arguments in (22) we have 

 1| | /

| | / / 1
k

k

V N

V N N

δπ δ
δπ π δ

+ ≈ =
− + −

. (23) 

From (23) frequency correction is 

 1

1

| |

| | | |
k

k k

V

V V
δ +

+
=

+
. (24) 
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Signal’s frequency in next computed from (13).  

The amplitude of the frequency bin ω0 may be found from the following proportion 

 0| ( )| | (0)| sin( / )

| ( )| sin( ) sin( )| ( 2 / )|

R

R
k

V W N
N

V W N

ω δπ δπ
ω δπ δπδ π

= = ≈ . (25) 

From (25) signal’s amplitude is 

 0| ( )|| | | |
sin( ) sin( )

k kV V V
δπ πω δ
δπ δπ

= = . (26) 

The phase of the frequency bin ω0 may be found from the following equation 

 ( / )( 1)
0arg{ ( )} arg{ ( )} arg{ (0)} arg{ ( 2 / )} arg{ }j N NR R

kV V W W N e δ πω ω δ π − −− = − = − . (27) 

From (27) signal’s phase is 

 ( / )( 1)
0arg{ ( )} arg{ ( )} arg{ }j N N

kV V e δ πω ω − −= ± . (28) 

The sign '+' or '-' in (28) is selected the same way as in (13). 

In similar way, for the three-point interpolation we get from (17) and (12) 

 1

1

| | | | | 1|

| | | | | 1|
k k

k k

V V

V V

δ
δ

+

−

+ +
≈

+ −
 (29) 

and finally 

 1 1

1 1

| | | |

2| | | | | |
k k

k k k

V V

V V V
δ + −

− +

+
=

− +
. (30) 

3.1.2 Hanning (Hann, RVCI M=1) window 

Periodic Hanning window is defined as 

 

2
0.5 0.5cos , 0 ,

0, 0 .

H
n

n n N
w N

n N

π⎧ ⎛ ⎞− ≤ <⎪ ⎜ ⎟= ⎝ ⎠⎨
⎪ > ≥⎩

 (31) 

Hanning window (31) may be interpreted as the sum of rectangular window and frequency 
modulated rectangular window, thus based on FT properties, the spectrum of the Hanning 
window is the following sum of the spectra of rectangular windows 

 1 1( ) ( )
1( ) 0.25 ( ) 0.5 ( ) 0.25 ( ), 2 /j j j jH R R RW e W e W e W e Nω ω ω ω ω ω ω π− += − + − =  (32) 

Inserting (12) into (32), taking the approximation ej(π/N)(N-1)≈-1+j π/N, and assuming π/N<<1 
the modulus of Hanning window spectrum is 
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 0.25 0.5 0.25
| ( )||sin( /2)|

sin( /2 / ) sin( /2) sin( /2 / )
jHW e N

N N

ω ω
ω π ω ω π

≈ − + −
− +

  (33) 

By calculating modulus of DFT bins in (15) we get 

 1| | 0.25 0.5 0.25 0.25 0.5 0.25
/

| | 1 2 1 1
k

k

V

V δ δ δ δ δ δ
+ = − + − + −

− − + −
, (34) 

which may be rewritten as 

 
2

1
2

| | (2 0.25 0.5) (2 0.5 4 0.25) 2 0.25 ( 1)( 1)

| | ( 1)( 2) (0.5 2 0.25) 0.5
k

k

V

V

δ δ δ δ δ
δ δ δ δ

+ ⋅ − + ⋅ − ⋅ + ⋅ − +
=

− − − ⋅ −
. (35) 

As seen in (35) coefficients by the powers of δ equal zero, and we get simple equation 

 1| | 1

| | 2
k

k

V

V

δ
δ

+ +
=
− +

, (36) 

with the solution for frequency correction 

 1

1

2| | | |

| | | |
k k

k k

V V

V V
δ +

+

−
=

+
. (37) 

Signal’s frequency is next computed from (13). 

Similarly to (26), signal’s amplitude is 

 0

| (0)| 0.5 0.25 0.5 0.25
| ( )|| | | | /

sin( ) 1 1| ( 2 / )|

H

k kH

W
V V V

W N

πω
δπ δ δ δδ π

= = − + −
− +

. (38) 

Signal’s phase, computed as by (28), is 

 ( / )( 1)
0arg{ ( )} arg{ ( )} arg{ }j N N

kV V e δ πω ω − −= ±  (39) 

with the difference that in (28) frequency correction (24) is used and in (39) frequency 
correction (37) is used. 

3.1.3 Higher order RVCI windows 

Rectangular window and Hanning window are RVCI windows of order M=0 and M=1. For 

rectangular window M=0, A0w=1 and from (18) 1

1

| 1|
kS

δ− =
+

, 0

1

| |
k kS S

δ+ = = , 

1

1

| 1|
kS

δ+ =
−

. IpDFT formulas for two-point and three-point interpolation may next be 

calculated from (19) and (20). For Hanning window M=1, A0w=0.5, A1w=0.5 and from (18) 

0

0.25 0.5 0.25

1 1
k kS S

δ δ δ+
− −

= = + +
+ −

 and 1

0.25 0.5 0.25

1 2
kS

δ δ δ+
−

= + +
− −

. 
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For higher order cosine windows (M>1) we may write down (19) and demand that the 
coefficients by the powers of δ equal zero, as in (35) for Hanning window, and next solve the 
equations for δ. Described procedure allows us to find cosine window coefficients Amw that 
give analytic IpDFT solutions, and it turns out that by this procedure RVCI windows are 
found. For example, for M=2 grouping coefficient by the powers of δ gives 

 

4
0 1 2

3
0 1 2

2
0 1 2

( 2 2 ) 0

( 4 8 8 ) 0

( 4 10 ) 0

w w w

w w w

w w w

A A A

A A A

A A A

δ

δ

δ

⎧ − + − =
⎪⎪ − + − =⎨
⎪ − + − =⎪⎩

, 

0 2

1 2

2

6

4

w w

w w

w

A A

A A

A

⎧ =
⎪⎪ =⎨
⎪
⎪⎩

, (40) 

which are RVC1 M=2 coefficients listed in Tab. I. 

For the signal analyzed with RVCI window for two-point interpolation we get 

 1

1

( 1)| | | |

| | | |
k k

k k

M V M V

V V
δ +

+

+ −
=

+
, 0,1,2,...M = . (41) 

For M=0 and M=1 (41) agrees with previously derived formulas (24) and (37) for rectangular 
and Hanning window. Signal’s frequency is next computed from (13). Signal’s amplitude is 

 0

| || (0)| 2
| ( )|| |

| ( 2 / )| sin( )
k

k
k

VW
V V

W N S

πω
δ π δπ

= =  (42) 

For three-point interpolation from (20) we get 

 1 1

1 1

| | | |
( 1)

2| | | | | |
k k

k k k

V V
M

V V V
δ + −

− +

−
= +

+ +
, 1,2,3,...M = . (43) 

For three-point interpolation and rectangular window frequency correction δ is computed 
from (30) and not (43). Equation (43) does not hold for rectangular window, i.e. M=0, 
because the spectrum of rectangular window contains only one nonzero DFT bin. 

Signal’s amplitude for three-point interpolation may be computed from the proportion 

 

0 0 0

1 1

| ( 2 / )| 2| ( )| | ( 2 / )|

| | 2| | | |

| ( 2 / )| 2| (0)| | (2 / )|

| ( 2 / 2 / )| 2| ( 2 / )| | ( 2 / 2 / )|

k k k

V N V V N

V V V

W N W W N

W N N W N W N N

ω π ω ω π

π π
δ π π δ π δ π π

− +

− + + +
=

+ +
− + +

=
− − + − + − +

 (44) 

as 

 1 1
0

1 1

| | 2| | | |2
| ( )|

sin( ) 2
k k k

k k k

V V V
V

S S S

πω
δπ

− +

− +

+ +
=

+ +
. (45) 

The phase of the frequency bin ω0 for two-point and three-point interpolation is estimated 
the same way as for rectangular window (28) and Hanning window (39) 

 ( / )( 1)
0arg{ ( )} arg{ ( )} arg{ }j N N

kV V e δ πω ω − −= ± . (46) 
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For higher order RVCI windows better accuracy in phase estimation may be obtained by 
replacing angle correction, that is second term in (46), by the angle of the following 
frequency bin 

 ( 1)/2

0

| |

( )

sin( / 2)
( 1) '[| |](1 / ) ,

sin( / 2 / )

for 0 ' ,

for 0 ' / 2.

j

M
j N n

m M

w
m

w
m m

W e

N
e A m jm N

m N

m A A

m A A

ω

ω ω
π

ω π
− −

=−

≈

⎛ ⎞
≈ − +⎜ ⎟

+⎝ ⎠
⎧ = =⎪
⎨

≠ =⎪⎩

∑  (47) 

For known frequency ω0 amplitude and phase of the signal may also be computed from the 
definition of Fourier transform (4) or in the least squares (LS) sense. 

3.2 Sinusoidal signal – arbitrary windows 

IpDFT formulas (41), (43) are only valid for RVCI windows, which have wide main lobe that 
deteriorates frequency resolution and noise performance. In practice it is often desired to 
analyze the signal with the window having better properties. It is known from literature, 
e.g. (Harris, 1978), that optimal parametric non cosine Kaiser-Bessel and Dolph-Chebyshev 
windows often perform superior over other windows including RVCI windows. In the 
following part IpDFT algorithm for arbitrary, even non cosine, windows is described for 
two- and three-point interpolation. The algorithm is based on polynomial approximation of 
the ratio R(δ) (15), (17) for the window of interest.  

First, the ratio R(δ) (15), (17) is computed numerically for the selected window based on 
window spectrum, and then the dependence δ=fδ(R) is approximated by polynomial. During 
analysis the ratio R(δ) (15), (17) is evaluated from DFT bins, and frequency correction is 
estimated from previously computed δ=fδ(R). 

From the LS polynomial approximation we get 

 
0

( ), ( )
L

l
d d l

l

P R P R a Rδ
=

≈ =∑ , (48) 

where Pd denotes L degree polynomial, and R is computed from window’s spectrum. 
Signal’s frequency is given by 

 0 [ ( )](2 / )dk P R Nω π= ± , (49) 

but this time R is computed from DFT bins of the analyzed signal. 

Signal’s amplitude is determined from the dependence XN=fX(δ), where for two-point 
interpolation 

 0| ( )| | (0)|

| | | ( 2 / )|
N

k

V W
X

V W N

ω
δ π

= ≈ , (50) 

and for three-point interpolation 

www.intechopen.com



 
Fourier Transform – Signal Processing 

 

16 

 

0

1 1

| ( )|

| | 2| | | |

| ( 2 / )| 2| (0)| | (2 / )|
/

| ( 2 / 2 / )| 2| ( 2 / )| | ( 2 / 2 / )|

/(2 2| (2 / )|/| (0)|).

N
k k k

V
X

V V V

W N W W N

W N N W N W N N

W N W

ω

π π
δ π π δ π δ π π

π

− +
= ≈

+ +

⎛ ⎞− + +
≈ ⎜ ⎟

− − + − + − +⎝ ⎠
+

 (51) 

Ratios (50), (51) are next approximated by polynomial Px 

 ( )N xX P δ≈ . (52) 

Signal’s amplitude for two-point interpolation is 

 0| ( )| ( )| |x kV P Vω δ= , (53) 

and signal’s amplitude for three-point interpolation is 

 0 1 1| ( )| ( )(| | 2| | | )x k k kV P V V Vω δ − += + + . (54) 

Signal’s phase is computed the same way for two-point and three-point interpolation based 
on the dependence PN=fP(δ) 

 arg{ ( 2 / )}NP W Nδ π= . (55) 

Signal’s phase is 

 0arg{ ( )} arg{ } ( )k pV V Pω δ= ± , (56) 

where Pp is polynomial approximating PN=fP(δ), i.e. PN≈Pp(δ). 

Fig. 6 shows the dependence δ=fδ(R) for RVCI windows for two-point and three-point 
interpolation. Fig. 7 presents systematic errors of frequency estimation in dependence of the 
order of approximation polynomial for selected RVCI, Kaiser-Bessel and Dolph-Chebyshev 
windows for signal’s frequencies ω0=0.05 rad and ω0=1 rad and signal’s length N=512. 

 
                                                 (a)                                                                                       (b) 

Fig. 6. Dependence δ=fδ(R) for RVCI windows for: a) two-point and b) three-point interpolation 
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Approximation polynomial was fitted to 64 points of window spectrum computed 
numerically via Fourier transform (4) in the frequency range from 0 to 2π/N rad, i.e. W(e-jω) 
was computed by (4) for the set of frequencies from ω=0 to ω=2π/N rad with the increment 
(2π/N)/63 rad. Systematic errors were defined similar to (Schoukens et al., 1992), for each 
frequency ω0, test signals were generated with the phase from the interval <–π/2, π/2> 
changed with the step π/20 and the maximum absolute value of differences between 
estimated and true frequency was selected. It is seen from Fig. 7 that approximation 
polynomial of order 5 may give acceptable small systematic errors, nevertheless, in results 
shown in section 4 approximation polynomial of order 10 is used. For that order systematic 
errors, in Matlab 64 bit precision, for RVCI windows are practically the same for analytic 
IpDFT formulas (41), (43) and described approximation based IpDFT (49). 

 

                                              (a)                                                                        (b) 

Fig. 7. Systematic errors of frequency estimation for 3p IpDFT for selected RVCI, Kaiser-
Bessel and Dolph-Chebyshev windows for: a) ω0=0.05 rad, and b) ω0=1 rad 

3.3 Damped sinusoidal signal – Bertocco-Yoshida algorithms 

We start this section with derivation of DFT for damped sinusoidal signal (2). Let us rewrite 
signal (2) in the complex form 

 0 0( ) ( )
0cos( ) ( )

2

j n j ndn dn dn
n

A
v A n e e e e eω ϕ ω ϕω ϕ + − +− − −= + = + . (57) 

From the definition (5) DFT of the first term in the sum (57) is 

 0 0 0

1 1
( ) ( ) (2 / ) ( )

0 0

DFT{ } k

N N
j n j n j N kn j j j d ndn dn

n n

e e e e e e eω ϕ ω ϕ π ϕ ω ω
− −

+ + − − −− −

= =
= =∑ ∑ , (58) 

where ωk=(2π/N)k. Using the formula for the sum of the geometric series (58) becomes 

 
0

0

0

( )
( ) 1

DFT{ }
1

k

k

j j d N
j n jdn

j j d

e
e e e

e

ω ω
ω ϕ φ

ω ω

− −
+−

− −
−

=
−

. (59) 
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Going the same way for the second term in (57) we finally obtain the DFT of the damped 
sinusoidal signal (2) 

 
0 0

0 0

( ) ( )1 1

2 1 1

k k

k k

j j d N j j d N
j j

k j j d j j d

A e e
V e e

e e

ω ω ω ω
ϕ φ

ω ω ω ω

− − − − −
−

− − − − −

⎛ ⎞− −
= +⎜ ⎟⎜ ⎟− −⎝ ⎠

, (60) 

which may be rewritten considering that 1kj Ne ω− =  and 0d je ωλ − +=  in the form 

 
*

*

1 1

2 1 1k k

N N
j j

k j j

A
V e e

e e

ϕ ϕ
ω ω

λ λ
λ λ

−
− −

⎛ ⎞− −
= +⎜ ⎟⎜ ⎟− −⎝ ⎠

. (61) 

In the following derivation of Bertocco-Yoshida IpDFT algorithms it is assumed that 

 1
, 0

2 1 k

N
j

k j

A
V e

e

ϕ
ω

λ ω π
λ −

⎛ ⎞−
≈ ≤ <⎜ ⎟⎜ ⎟−⎝ ⎠

. (62) 

3.3.1 Bertocco (BY-0) algorithm 

Let us define the following ratio of complex DFT bins 

 
1 1

1 1 1 1
/

2 21 1 1

k

k k k

jN N
j jk

j j j
k

V A A e
R e e

V e e e

ω
ϕ ϕ

ω ω ω
λ λ λ

λ λ λ+ +

−
+

− − −

⎛ ⎞ ⎛ ⎞− − −
= ≈ =⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟− − −⎝ ⎠ ⎝ ⎠

, (63) 

where Vk is the DFT bin with the highest magnitude. From (63) we get 

 
2 /

1

1
kj

j N

R
e

Re

ω
πλ −

−
=

−
. (64) 

Considering 0d je ωλ − +=  damping and frequency are given by 

 Re{ln( )}d λ= − , 0 Im{ln( )}ω λ= . (65) 

3.3.2 BY-1 algorithm 

Let us define the ratio of the first order differences of the complex DFT bins in the form 

 1

1

k k

k k

V V
R

V V
−

+

−
=

−
. (66) 

where Vk is the DFT bin with the highest magnitude. Substituting (62) into (66) we get 

 
1 1

1 1

1

1

1
,

1

k k k

k k k

j j j
k k

j j j
k k

V V e e e
R r r

V V e e e

ω ω ω

ω ω ω
λ
λ

+ −

− +

− − −
−

− − −
+

− − − +
= = =

− − − +
, (67) 

 
2 / 2 /

kj
j N j N

r R
e

re Re

ω
π πλ −

−
=

−
. (68) 

Damping and frequency are given by (65). 
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3.3.3 Yoshida (BY-2) algorithm 

Let us define the ratio of the second order differences of the complex DFT bins in the form 

 
1

2

2 1

1 1

2 1

2 1

k

k

j
k k k

j
k k k

V V V e
R r

V V V e

ω

ω
λ
λ

+

−

−
− −

−
− +

− + −
= =

− + −
, (69) 

where 

 1 2 2 1

1 1 1 1

1 2

1

2

/

(1 )(1 ) 2(1 )(1 ) (1 )(1 )

(1 )(1 ) 2(1 )(1 ) (1 )(1 )

k k k k k k

k k k k k k

j j j j j j

j j j j j j

r r r

r e e e e e e

r e e e e e e

ω ω ω ω ω ω

ω ω ω ω ω ω

λ λ λ λ λ λ

λ λ λ λ λ λ

− − − −

+ − + −

− − − − − −

− − − − − −

=

= − − − − − + − −

= − − − − − + − −

 

and λ is evaluated from (68). From (69) we get 

 
2 / 2(2 / )

1
kj

j N j N

R
e

e Re

ω
π πλ −

−
=

−
. (70) 

Damping and frequency are given by (65). 

Second order differences may also be defined as 

 
2

1

1 1

1 2

2 1

2 1

k

k

j
k k k

j
k k k

V V V e
R r

V V V e

ω

ω
λ
λ

+

−

−
− +

−
+ +

− + −
= =

− + −
, (71) 

where 

 1 1 1 1

1 2 2 1

1 2

1

2

/

(1 )(1 ) 2(1 )(1 ) (1 )(1 )

(1 )(1 ) 2(1 )(1 ) (1 )(1 )

k k k k k k

k k k k k k

j j j j j j

j j j j j j

r r r

r e e e e e e

r e e e e e e

ω ω ω ω ω ω

ω ω ω ω ω ω

λ λ λ λ λ λ

λ λ λ λ λ λ

+ − + −

+ + + +

− − − − − −

− − − − − −

=

= − − − − − + − −

= − − − − − + − −

  

and λ is evaluated from (68). From (71) we get 

 
2(2 / ) 2 /

1
kj

j N j N

R
e

e Re

ω
π πλ −

−
=

−
. (72) 

Damping and frequency are given by (65). 

Fig. 8 illustrates cases for definitions of the ratio (69) and (71). Four successive DFT bins are 

always taken for interpolation and the DFT bin Vk has the highest magnitude. For (69) DFT 

bins with the highest magnitudes are k-2, k-1, k, k+1 (Fig. 8a) and for (71) k-1, k, k+1, k+2 (Fig. 

8b). 

In the original derivation of Yoshida algorithm the ratio (69) is used and damping and 

frequency are given by 

 
2

Im{ 3 /( 1)}d R
N

π
= − − , 

2
Re{ 3 /( 1)}k R

N

πω = − − . (73) 
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                                                (a)                                                                                    (b) 

Fig. 8. DFT of the damped sinusoidal signal. Solid circles denote DFT bins taken for Yoshida 
(BY-2) algorithm: a) ratio defined by (69), b) ratio defined by (71) 

3.3.4 BY-3 algorithm 

Let us define the ratio of the third order differences of the complex DFT bins in the form 

 
2

2

2 1 1

1 1 2

3 3 1

3 3 1
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j
k k k k
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V V V V e
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λ
λ

+
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, (74) 

where 
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and λ is evaluated from (68). From (74) we get 

 
2(2 / ) 2(2 / )

kj
j N j N

r R
e

re Re

ω
π πλ −

−
=

−
. (75) 

Damping and frequency are given by (65). 

3.4 Damped sinusoidal signal – RVCI windows 

In the derivation of IpDFT algorithms for RVCI windows we treat damped signal with RVCI 
window as sinusoidal signal with damped window i.e. 

 0 0cos( ) cos( )dn
n n n n nv w x w A n e w A nω ϕ ω ϕ−= = + = + , (76) 

where dn
n nw w e−=  is damped time window. 
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3.4.1 Rectangular window (RVCI M=0) 

Based on the spectrum of rectangular window (12) the spectrum of the damped rectangular 
window is 

 
1 1

( ) ( 1)/2

0 0

sin( / 2)
( , ) ( )

sin( / 2)

N N
j j n j jd n j N jR dn R

n n

N
W e d e e e e W eω ω ω ω ωω

ω

− −
− − − − −−

= =
= = = =∑ ∑ , (77) 

where jdω ω= − . Let us define following ratios of the squares of frequency bins of the 
damped rectangular window spectrum 

 
2 2

1 1
1 22 2

| ( )| | ( )|
,    ,

| ( )| | ( )|

R R
k k

R R
k k

W W
R R

W W

ω ω
ω ω
+ −= =  (78) 

where | ( )|R
kW ω  is a frequency bin with the highest modulus, see Fig. 5. Using (77) the 

ratios (78) are 

 
22 2 2 2

1 1
1 2 2 2 2 2

| || ( )| | |

| ( )| | | | 1 | ( 1)

R
k k

R
k k

jDW V D
R

W V jD D

δω δ
ω δ δ
+ + + +

= ≈ ≈ =
− + − +

, (79) 

 
22 2 2 2

1 1
2 2 2 2 2 2

| || ( )| | |

| ( )| | | | 1 | ( 1)

R
k k

R
k k

jDW V D
R

W V jD D

δω δ
ω δ δ
− − + +

= ≈ ≈ =
+ + + +

, (80) 

where D=dN/(2π). In derivation of (79-80) sine functions were approximated by theirs 
arguments and it was assumed that (N-1)/N≈1. 

By comparing D2 in (79) and (80) we get desired frequency correction defined by (13) 

 1 2

1 2 1 2

1

2 2

R R

R R R R
δ −
= −

− −
. (81) 

The damping computed from (79) is 

 
2 2

1

1

2 ( 1)
, 0.5

1

R
d

N R

π δ δ δ− −
= ≠

−
, (82) 

and damping computed from (80) is 

 
2 2

2

2

2 ( 1)
, 0.5

1

R
d

N R

π δ δ δ− +
= ≠ −

−
. (83) 

For δ=0.5 (82) must not be used. In implementation if δ=0.5 then zero sample should be 
appended at the end of the signal to change δ. Equation (83) may always be used, as from 
definition (13) frequency correction is never equal -0.5. 

Modulus of the frequency bin ω0 may be computed from the proportion 

 0 | ( )|| ( )| | (0)|

| | | ( )| | ( 2 / )|

RR

R R
k k

W jdV W

V W W N jd

ω
ω δ π

−
= =
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. (84) 
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From (84) we get 

 
2 2

0

|sin( / 2)|
| ( )|| | , 0

sin( / 2)
k

jdND
V V d

D jdN

δω
δπ

+
= ≠

+
, (85) 

and signal’s amplitude is 

 ( 1)/2
0| ( )|/ d NA V eω − −= . (86) 

Signal’s phase may be computed as in case of sinusoidal signals (27) 

 0arg{ ( )} arg{ ( )} arg{ ( 2 / )}R
kV V W N jdω ω δ π= ± − . (87) 

Sign '+' or '-' in (87) is taken the same way as in (13). 

3.4.2 Hanning (Hann, RVCI M=1) window 

The spectrum of damped Hanning window H H dn
n nw w e−=  is given by 

 1 1( ) ( )
1( ) 0.25 ( ) 0.5 ( ) 0.25 ( ), 2 /j j j jH R R RW e W e W e W e Nω ω ω ω ω ω ω π− += − + − = , (88) 

where ( )jRW e ω  is the spectrum of damped rectangular window (77) and jdω ω= − . 
Inserting (77) into (88) and assuming ( / )( 1) 1 /j N Ne j Nπ π− ≈ − +  and π/N<<1 the spectrum of 
damped Hanning window is further approximated by 

( 1)/2 0.25 0.5 0.25
( ) sin( /2)

sin( / 2 / ) sin( / 2) sin( / 2 / )
j j NHW e e N

N N
ω ω ω

ω π ω ω π
− − ⎛ ⎞

≈ − + −⎜ ⎟
− +⎝ ⎠

. (89) 

The ratios of the squares of frequency bins of the damped Hanning window spectrum are 
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, (90) 
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+ +

, (91) 

where D=dN/(2π). From (90) and (91) we get desired frequency correction defined by (13) 

 1 2

1 2 1 2

3

2 4 2

R R

R R R R
δ −
= −

− − −
. (92) 

The damping computed from (90) and (91) are 

 
2 2

1

1

2 ( 1) ( 2)
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π δ δ δ+ − −
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−
, 

2 2
2

2

2 ( 1) ( 2)
, 0.5

1

R
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−
 (93) 

Signal’s amplitude and phase are next computed as 
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 0| ( )|| || (0)|/| ( )|H H
k kV V W Wω ω= , ( 1)/2

0| ( )|/ d NA V eω − −= , (94) 

 0arg{ ( )} arg{ ( )} arg{ ( 2 / )}H
kV V W N jdω ω δ π= ± − . (95) 

3.4.3 Higher order RVCI windows 

In general, the spectrum of the damped dn
n nw w e−=  RVCI window order M is a sum of 

rescaled and moved in frequency spectra of damped rectangular window 

 ( ) ( )

0

( ) ( 1) ( ) ( 1) ( )
2 2

m m

w wM
j j jm R m Rm m

M
m

A A
W e W e W eω ω ω ω ω− +

=
= − + −∑ . (96) 

For damped RVCI window the ratios of the squares of frequency bins are 
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, (98) 

where D=dN/(2π) and M is the order of RVCI window. For M=0 (rectangular window) (97-

98) becomes (79-80), and for M=1 (Hanning window) (97-98) is (90-91). 

By comparing D2 in (97) and (98) we get general formula for frequency correction defined by 

(13) for damped RVCI order M window 

 1 2

1 2 1 2

2 1

2 2( 1) 2

M R R

M R R R R M
δ + −
= −

+ − − −
. (99) 

The damping computed from (97) and (98) are 
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π δ δ δ+ − − −
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−
, 

2 2
2

2

2 ( ) ( 1)
, 0.5

1

M R M
d

N R

π δ δ δ− − + +
= ≠ −

−
.(100) 

Signal’s amplitude and phase are next computed as 

 0| ( )|| || (0)|/| ( )|k kV V W Wω ω= , ( 1)/2
0| ( )|/ d NA V eω − −= , (101) 

 0arg{ ( )} arg{ ( )} arg{ ( 2 / )}kV V W N jdω ω δ π= ± − . (102) 

4. Some properties of IpDFT algorithms 

In this section we present results of simulations that describe systematic errors and noise 
immunity of IpDFT methods. Because of space constrains, only the results of frequency or 
frequency and damping estimation are presented. Including results for amplitude and phase 
estimation would multiply the number of figures by three. Furthermore, in practice 
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estimation of frequency and damping is of primary importance, and once having frequency 
and damping the amplitude and phase may be estimated by LS or FT. It is also true that 
amplitude and phase estimation errors, not shown in this section, behave similarly to 
frequency estimation errors. 

First, systematic errors of IpDFT algorithms for sinusoidal and damped sinusoidal signals 
are presented, and then robustness against additive, zero-mean, Gaussian noise is shown. In 
all simulations number of samples N=512 was chosen. 

Simulations were conducted in Matlab 64-bit floating point precision. Accuracy of this 
precision determined by the function eps (Matlab) is on the level 10–15–10–16, and estimation 
errors cannot be lower than this accuracy. 

4.1 Systematic errors 

In this section systematic errors of frequency estimation for sinusoidal signals and frequency 

and damping estimation for damped sinusoidal signals are presented. For each frequency ω0 
or damping d, test signals were generated with the phase from the interval <–π/2, π/2> 
changed with the step π/20 and the maximum absolute difference between estimated and 

true value was selected. 

For obtaining general conclusions the frequency of the test signals was swept in the whole 
range from 0 to π rad. For easier interpretation the frequency of the test signal is also given 
in DFT index k. 

Fig. 9 shows two sinusoidal test signals with N=512 samples. The signal in Fig. 9a with 
frequency ω0=1.5·(2π/N) contains 1.5 periods, whereas signal in Fig. 9b with frequency 
ω0=249.5·(2π/N) rad contains 249.5 periods. Frequencies of those signals scaled in DFT index 

k are 1.5 and 249.5 and it means, that in the frequency spectrum those signals lie in the half 
way between DFT bins k=1 and k=2 and bins k=249 and k=250, respectively, and in both 
cases frequency correction δ (13) equals 0.5. The first signal is sampled approx 341 times per 
period and the second only approx 2.05 times per period. 

 

                                              (a)                                                                                        (b) 

Fig. 9. Sinusoidal test signals N=512, a) signal with frequency ω0=1.5·(2π/N) rad containing 
1.5 periods, b) signal with frequency ω0=249.5·(2π/N) rad containing 249.5 periods 
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Fig. 10 depicts damped sinusoidal test signals with frequency ω0=10.2(2π/N) rad, i.e. δ=0.2. 

In simulations the range of damping from d=0.0001 (Fig.10a) to d=0.01 (Fig.10b) is 

considered. 

 

                                              (a)                                                                                        (b) 

Fig. 10. Damped sinusoidal test signals N=512, ω0=10.2·(2π/N) rad, a) d=0.0001, b) d=0.01 

Figs. 11-12 present systematic errors of sinusoidal signal frequency estimation for selected 

RVCI, Kaiser-Bessel and Dolph-Chebyshev windows for two-point and three-point 

interpolation. The frequency of the test signals in Fig. 11 was changed from ω0=1.5·(2π/N) to 

ω0=249.5·(2π/N) with the step 8·(2π/N), and the frequency of the test signals in Fig. 12 was 

changed from ω0=2·(2π/N) to ω0=6·(2π/N) with the step (2π/N)/5. In the first case test 

signal was newer coherently sampled (i.e. signal never contained integer number of 

periods), whereas in the second case coherent sampling occurred for test signals containing 

exactly 2, 3, 4, 5, 6 periods.  

It is seen from Figs. 11-12 that 3p interpolation gives smaller systematic errors than 2p 

interpolation. Increasing the order of RVCI window results in significant reduction of 

systematic errors. High order RVCI M=6 window may give negligible small estimation 

errors as visible in Fig. 11 which is the effect of the fastest decay of the sidelobes. Still, due to 

wide main lobe of RVCI M=6 window, the signal has to contain sufficient number of 

periods. Systematic errors for Kaiser-Bessel and Dolph-Chebyshev windows are significantly 

higher then for RVCI M=6 window because sidelobes of those windows does not decay so 

fast. However, it is seen from Fig. 12 that for analysis of the short signal containing 2-4 

periods it is advantageous to use, narrow main lobe, Dolph-Chebyshev 120 dB and Kaiser-

Bessel ┚=15.8 windows over RVCI windows. Local minima for integer values of k in Fig. 12 

occur for coherent sampling and cosine windows. For the case of coherent sampling 

frequency correction is δ=0, DFT analysis is correct and there is no need to use IpDFT 

algorithms. 

Figs. 13-14 present systematic errors of damped sinusoidal signal frequency and damping 

estimation for BY algorithms and IpDFT with RVCI windows. The frequency of the test 

signals in Fig. 13 was changed from ω0=1.5·(2π/N) to ω0=249.5·(2π/N) with the step 

8·(2π/N), and damping was set to d=0.01 (compare Fig. 10b). In Fig. 14 the damping was 
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swept from d=10-4 to 10-2 with equidistant steps in logarithmic scale, and the frequency 

was set to ω0=10.2·(2π/N) (i.e. δ=0.2). It is seen from Figs. 13-14 that by choosing high 

order RVCI windows significant reduction of systematic errors may be obtained, 

however, the price for this gain is the need for longer signal (in the sense of number of 

cycles) as explain previously for sinusoidal signals, and higher noise sensitivity as shown 

in the next section. 

 

                                               (a)                                                                                        (b) 

Fig. 11. Systematic errors of sinusoidal signal frequency estimation for selected RVCI, 

Kaiser-Bessel and Dolph-Chebyshev windows: a) 2p interpolation, b) 3p interpolation 

 

                                              (a)                                                                                        (b) 

Fig. 12. Systematic errors of sinusoidal signal frequency estimation for selected RVCI, 

Kaiser-Bessel and Dolph-Chebyshev windows: a) 2p interpolation, b) 3p interpolation 
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                                                (a)                                                                                       (b) 

Fig. 13. Systematic errors of damped sinusoidal signal frequency and damping estimation 

for BY algorithms and RVCI windows 

 

                                                (a)                                                                                         (b) 

Fig. 14. Systematic errors of damped sinusoidal signal frequency and damping estimation 

for BY algorithms and RVCI windows 

4.2 Noise 

Noise performance is typically illustrated by comparison with Cramér-Rao Lower Bound 

(CRLB). Unbiased estimator that reaches CRLB is optimal Minimum Variance Unbiased 

(MVU) estimator. CRLB for sinusoidal signal (1) disturbed by zero-mean Gaussian noise 

with variance σ2 is given by (Kay, 1993) 
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and for damped sinusoidal signal (2) by (Yao & Pandit, 1995) 
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, | |d jz e ω− += ,  (104) 

where E in subscripts stands for estimated value, and η is signal to noise ratio defined as 

 2 2/(2 )Aη σ= , 10/ 10log ( ) (dB)S N η= .  (105) 

It is seen from (103-104) that the variance of frequency estimator is inverse proportional to 

the third power of signal length N. This strong dependence suggests high number of 

samples for frequency estimation, i.e. high sampling frequency or/and long observation 

time. 

Fig. 15 shows exemplary realization of the sinusoidal signal disturbed by the zero-mean 

Gaussian noise with S/N=10 dB (105) and its DFT spectrum. Mean value and standard 

deviation of estimation errors, shown in Figs. 16-18, were computed from 1000 realizations 

of the test signal. Signal’s phase was generated as a random variable with uniform 

distribution on the interval <-π/2, π/2>. 

Fig. 16 presents results of frequency estimation of sinusoidal signal analyzed with different 

windows for three-point interpolation. It is seen from Fig. 16 that for S/N from approx 15 

dB to 40 dB rectangular window (RVCI M=0) has the best noise immunity. For the lower 

disturbance (higher S/N) systematic errors become more significant than noise for 

rectangular window and better results are obtained with RVCI M=1 (Hanning) window, 

Kaiser-Bessel ┚=4.86 window, and Dolph-Chebyshev 50 dB window. RVCI M=6 has the 

highest noise sensitivity due to the widest main lobe. 

 

                                              (a)                                                                                        (b) 

Fig. 15. a) Exemplary realization of sinusoidal test signal disturbed by 10 dB noise, N=512, 
ω0=10.2·(2π/N) rad; b) DFT spectrum 

www.intechopen.com



Interpolation Algorithms of DFT for Parameters  
Estimation of Sinusoidal and Damped Sinusoidal Signals 

 

29 

 

                                                (a)                                                                                          (b) 

Fig. 16. a) Mean value and b) standard deviation of frequency estimation error for sinusoidal 

signal for different time windows 

Figs. 17-18 present results of frequency and damping estimation for damped sinusoidal 
signal. It is seen that for high S/N systematic error is dominant for BY-0, and RVCI M=0 
window. BY-1 algorithm gives the best results in the wide range of S/N. It is seen from 
Fig. 18b that BY methods are better estimators of damping than IpDFT with RVCI 
windows. 

 
                                                (a)                                                                                          (b) 

Fig. 17. a) Mean value and b) standard deviation of frequency estimation error for damped 

sinusoidal signal for different IpDFT algorithms 
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                                               (a)                                                                                           (b) 

Fig. 18. a) Mean value and b) standard deviation of damping estimation error for damped 

sinusoidal signal for different IpDFT algorithms 

5. Conclusion 

This chapter describes DFT interpolation algorithms for parameters estimation of sinusoidal 

and damped sinusoidal signals. IpDFT algorithms have two main advantages: 

1. Low computational complexity attributed to fast algorithms of DFT computation. 

2. No need for the signal model (as opposed to parametric methods). 

IpDFT methods may be used as fully functional estimators, especially when noise 

disturbance is not very strong. If the signal model is known IpDFT may be used for 

providing starting point for LS optimization that is optimal for Gaussian zero-mean noise 

disturbance. 

For the signals with disturbances not possible to include in the signal model, as e.g. 

unknown drift, IpDFT with adequate time window may offer better performance than 

optimization. 
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