
Selection of our books indexed in the Book Citation Index

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us?
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

186,000 200M

TOP 1%154

6,900

11

Video Compression from
 the Hardware Perspective

Grzegorz Pastuszak
Warsaw University of Technology

Poland

1. Introduction

Many advanced multimedia applications require image compression technology with ever

higher compression ratios and better visual quality. The need for the real-time high-

efficiency video compression usually involves the use of hardware accelerators. In general,

the development of architectures mapped into integrated circuits allows simultaneous

processing of various data. On the other hand, the hardware framework suffers from

limitations on the algorithm flexibility due to timing dependencies coming from the

designed dataflow. Thus, the development of efficient video codecs in integrated circuits

should take into account the algorithm details of the video codec. The following sections

address various aspects of the video-compression design at the hardware architecture level.

Section 2 analyzes the video coding dataflow and the design efficiency regarding timing and

resources. To illustrate challenges in the hardware design, Section 3 reviews architectures of

main modules of the H.264/AVC hardware encoder. The implementation results are given

in Section 4.

2. High-performance coding

The real-time performance means that the encoder (decoder) must process all input

(produce all output) video frames/fields/macroblocks in a limited amount of time. The

section analyzes the codec structures in terms of timing properties and resource

consumptions.

2.1 Dataflow

Video systems for the compression of greyscale visual information operate on the three-

dimensional signal. An additional dimension is added to index colour and auxiliary

components. Colour components refer to one of some colour spaces such as RGB, YUV, and

YCbCr.

The dataflow in the encoder of visual data is depicted in Fig. 1. A video encoder consists of

four main functional parts related to temporal modelling, spatial modelling, quantization,

and binary coding. Frame (or field) in a video sequence can be processed in two basic

modes. The first is called INTRA and exploits only spatial modelling, as for images. The

second is called INTER and uses both modelling parts.

www.intechopen.com

Cutting Edge Research in New Technologies

234

Input

video

Frame Buffer

Motion

Estimation

Motion

Compensation

DCT Quant

DequantIDCT

Reorder

(zig-zag)

Binary

Encoding
Codestream

+
-

+
+

residue

motion vectors

coefficients

Fig. 1 Block diagram of the video encoder

The temporal model attempts to reduce temporal redundancy by exploiting similarities

between neighbouring frames, usually by constructing a prediction of the current frame.

The prediction is formed from one or more frames preceding or following the current one.

When a selected reference frame is a previously encoded frame, the current one is referred

to as a P-frame (see Fig. 2). When both a previously encoded frame and a future frame are

chosen as reference frames, the current one is referred to as a B-frame. For a selected

frame(s), the motion estimation (ME) module compares allowable pixel blocks (e.g.,

macroblocks) in the current frame with its surrounding area in the previous frame(s) and

attempts to find the best match. The matching area (the prediction) is subtracted from the

current macroblock in the motion compensation module. The difference between positions

in the current and referred frames identifies motion vectors (MVs). If the motion estimation

and compensation process is efficient, the remaining residual data should contain only a

small amount of information. The temporal model outputs a residual frame and a set of

parameters, typically the set of motion vectors.

Fig. 2. I/P/B frames in a video sequence.

The spatial model exploits correlations between neighbouring samples within one frame to

reduce spatial redundancy. This can be achieved by applying transform and/or prediction.

The transform converts the samples into another domain in which they are represented by

spatial frequency coefficients. Typically, the transforms operate on a two-dimensional block

www.intechopen.com

Video Compression from the Hardware Perspective

235

of pixels rather than on a one-dimensional signal. Their ability to concentrate the signal

energy enables few coefficients to recreate a recognizable copy of the original block of pixels.

Apart from transform techniques, the spatial redundancy can be reduced using the

prediction from neighbouring pixels within the same frame (interpolation and

extrapolation).

For a typical block of pixels, most of the coefficients produced by the transform are close to

zero. The quantization reduces the precision of each coefficient so that the near-zero

coefficients are set to zero and only a few significant non-zero coefficients are left. Note that

the quantization removes less important information.

The I- and P-frames must be stored in the buffer to be used as references when the INTER

frames are encoded. The content of frames buffered in the encoder should be identical to the

content of frames buffered in the decoder. Therefore, instead of simply copying frames into

the buffer at the encoder side, they undergo some operations as in the decoder. In particular,

to create a reconstructed frame, the quantized coefficients are rescaled, inverse transformed,

and added to the motion-compensated reference block. These operations make up the

feedback loop in the encoder. When the INTER frame is encoded, the motion estimator uses

frames stored in the buffer to determine the best matching area for motion compensation.
The last step in the video coding process is binary coding that produces the output
codestream. Inputs to the binary coder include transform coefficients for the residual data,
motion vectors, frame pointers, block sizes, and other control information. The variety of
these parameters, correlations between them, and their statistics affect the algorithm of
binary coding, especially its complexity. The algorithm can adopt one or more coding
methods. Finally, the type of binary coding depends on the application.

2.2 Timing

The section will analyze the number of clock cycles the codec can allocate to pixel-domain
coding units. Moreover, the codec structure will be related the processing latency.

Pixel resolution Time resolution Throughput
[MB/sec]

Max clock cycles per MB

576x720 25 40600 2461

480x640 30 36000 2777

720x1280 25 90000 1111

720x1280 30 108000 925

1080x1920 25 204000 490

1080x1920 30 244000 408

Table 1. Summary of timing requirements for different video formats

In order to satisfy real time requirements, the encoder throughput should be high enough.
In practice, the required throughput depends on the video resolution related to time and
pixel domains. They are measured in frames per second (fps) and pixel area, respectively.
Additionally, subsampling of chroma components can affect the performance. As the video
compression processes pixels in 16x16 pixel macroblocks, it is convenient to use the number
of macroblocks per second to specify the throughput. Having a specified architecture, the
performance depends on the clock frequency. In particular, the throughput is proportional
to the frequency. Table 1 shows average macroblock throughputs required for different

www.intechopen.com

Cutting Edge Research in New Technologies

236

resolutions and the average number of clock cycles allocated to each macroblock at 100
MHz. In practice, the hardware encoder performance should have a computation margin to
compensate for wait states caused by initializations (e.g. probability models, rate control),
the fullness of the output stream buffer, etc.
Apart from clocking the video codec core, it is important to provide the sufficient

bandwidth to the external memory used to buffer original and reference frames.

Particularly, each macroblock involves read access to one 16x16 original pixel block and

some (N+5)x(M+5) reference pixel blocks. Note that N and M are the horizontal and vertical

sizes of the reference area, respectively. The increase by five is the overlap which results

from the subpixel interpolation. It is possible that the codec accesses to some smaller

reference areas when a macroblock is partitioned and the partitions have different motion

vectors and/or reference frames. Using more reference frames proportionally increases the

number of read accesses to the reference area. As each reconstructed macroblock must be

stored in this area, one 16x16 write access is performed for a macroblock. At the encoder

side, input pixels should be stored in the external memory prior to reading original

macroblock pixels, whereas the reconstructed frames are read and formed into output pixel

stream at the decoder side. Thus, both sides need similar bandwidth to provide a pixel

interface. If the bandwidth is not wide enough, the codec can encounter wait states

decreasing its performance. In order to optimize communication with the external memory,

one must employ efficient access scheduling between multiple write and read ports.

The video codec latency comes mainly from buffering input and output streams. In the

encoder, the input pixel stream must be first stored in the memory line by line. If the

number of pixel lines is sufficient to form 16x16 macroblocks, read access can start. In the

case of emerging H.265 video standard, the traditional processing based on macroblocks is

generalized to larger-size coding units (16x16, 32x32, and 64x64). As a consequence, the

required number of buffered pixel lines increases accordingly. If the latency is not crucial

parameter, the input buffer can keep more frames, i.e., the delay between writing and

reading of the same pixels can be significant. In contrary to pixel streams, the amount of

data in the code streams varies in time. Apart, from the bit-rate instability, transmission

conditions change. When the bandwidth of the transmission channel between the encoder

and decoder is limited, the buffer fullness also varies in terms of the amount of both code-

stream and corresponding-pixel data. As the decoder buffer can underflow, the delay

between decoding and displaying should be set to avoid situations when there are no

decoded pixels to display in the output buffer.

Efficient hardware video codecs exploits the macroblock-level pipeline. The pipeline stages
are distinguished with reference to mutual dependencies of processing blocks. In practice,
the encoder embeds at least three stages associated with the motion estimation, internal loop
(intra prediction, transforms, quantization, and reconstruction), and entropy coding in
parallel with the deblocking filter. In the decoder, it is enough to exploit two macroblock-
level stages since the motion estimation is not present.
The internal loop in the encoder involves some computation cycles for each macroblock

when the Intra mode is analyzed. Particularly, the prediction for Intra 4x4 and 8x8 blocks is

computed with reference to reconstructed pixels of blocks adjacent to the current one to the

top and left side. Therefore, the processing of a block of the same size in the in the loop can

start when the reconstruction for the top and left neighbours is finished. Owing to the

number of blocks within the macroblock, the total number of clock cycles sacrificed to the

www.intechopen.com

Video Compression from the Hardware Perspective

237

Intra 4x4 mode is equal to 16xN in the straightforward approach. N denotes the number of

clock cycles between starting the prediction and finishing the reconstruction. Computations

for other Intra and Inter (chroma/luma) modes can be interlaced with those for the Intra 4x4

blocks to reduce the number of clock cycles. This schedule does not have to decrease the

total throughput as there are usually significant time gaps within all N-clock periods.

Moreover, it is possible to schedule the processing so that some pairs of Intra 4x4 blocks can

be computed immediately one by one without waiting for the reconstruction, i.e.,

reconstructions do not affect each other (Roszkowski & Pastuszak, 2010).

2.3 Resources

The section will review practical limitations on the amount of resources in available

technologies and relate them to the complexity of video codecs. In general, it is possible to

design the dataflow with very-high throughputs. In practice, the design should minimize

the resource consumption due to the cost of silicon area and power consumption. When

Application Specific Integrated Circuits (ASIC) are taken into account, encoder architectures

(with the Inter prediction) reported in scientific literature consumes above 500K gates (see

Table 2). For the Intra encoders the resource consumption can be significantly reduced

below 100K gates. Note that the gate unit is equivalent to the basic two-input NOR/NAND

gate. Additionally, designs embed some on-chip memories used as buffers with relatively

quick data access. On contrary to the ASIC technology, the Field Programmable Gate Array

(FPGA) devices embed other logic units which group the functionality of several gates.

However, a simple mapping between the number of gates and logic units is difficult as it

depends on the design, synthesis tools, and specific technologies. Due to the amount of logic

resources, only the designs limited to the Intra mode can be easily mapped to FPGA

technologies. The decoders are much simpler as they do not embed mode selection

algorithms (Roszkowski et al., 2010).

Design technology Gate
count

On-chip
Memory
[bit]

Max clock
frequency
[MHz]

Clock cycle
per
macroblock

features

Y. W. Huang,
et. All (2005)

TSMC 0.25
µm

85K 14336 54 1300 Baseline SDTV,
Intra

Lin Y.-K., et.
All (2009)

TSMC 0.13
µm

94.7K 14720 140 560 Baseline 1080p,
Intra

Lin Y.-L. S et.
All (2010)

TSMC 0.13
µm

1697K 87040 158 632 High 1080p, Inter
SR: 64x64

Liu Z. et. All
(2009)

0.18 µm 1140K 887193 200 672 Baseline 1080p,
Inter SR: 196x128

Chen Y.-H.
et. All (2009)

TSMC 0.13
µm

452K 138854 54 ~1330 Baseline D1, Inter
SR: 64x32

Table 2. Comparison of different architectures

Important modules coupled with the hardware video codec with the support for Inter
pictures are the external memories. They are used to store reference pictures and buffer
original pictures (in the encoder). For high resolutions, a wide data width should provide a
sufficient bandwidth. In practice, it can be achieved using several DDR(1/2/3) memories,

www.intechopen.com

Cutting Edge Research in New Technologies

238

where the address/control bus is common, and the data bus distributed between memory
chips (to increase data width). The memories and associated connections occupy the board
area. Furthermore, the coupling with the external memories requires the memory controller
with the scheduler to support some different ports. In practice, the controller embeds some
on-chip memories to provide burst data access. Although, these resources are not taken into
account when comparing different designs, their area cost can be significant.

3. Architecture design

The multimedia compression employs the sequence of processing steps, and each of them

must apply separate approaches to optimize performance and resource consumption.

Firstly, each processing block operates on different type of data at input/output ports.

Secondly, the type of an operation involves specific timing dependencies and requires

specific amount of resources. Thirdly, the block-level pipeline should be balanced in terms

of throughput to utilize maximally all hardware resources. In the area of integrated circuit

design for video technologies, most efforts concentrate on the development of standardized

codecs from MPEG and H.26x series. The latest standard H.264/AVC allows the best

compression ratio at the cost of computationally-intensive algorithms. Following

subsections describe main processing blocks in the developed H.264/AVC video codec. This

review allows the identification some challenges when facing the vide compression in the

hardware framework.

3.1 Motion estimation

Block diagram of the developed ME system is presented in Fig. 3. The system is composed

of the motion vector generator, compensator, the bank of 64 memories (fine search area and

original data), the coarse-level full-search (FS) estimator, the interpolator, and the external

memory controller. The architecture employs two-level hierarchical ME procedure. Thus, at

the first stage, the coarse FS module performs FS on the whole search area (SA) subsampled

with 16:1 ratio. To reduce the noise influence on initial MV accuracy, each pixel of the coarse

SA is obtained by averaging of 16 pixels of the reference frame (Jakubowski 2008). The

search range of the coarse FS is [-64, 63] pixels at most in both horizontal and vertical

direction. When the coarse FS is completed, the interpolator fetches fine 40x40 reference

samples from the external memory and generates quarter-pel ones within [-8, 7] range in

both directions around the initial MV obtained from the coarse FS. The interpolator accepts

eight column-oriented samples in a clock cycle. Therefore, processing of one colour

component takes at least 200 clock cycles. Since every eight samples at the input

corresponds to 128 ones at the output, memory write ports work at the doubled clock

frequency.

Samples generated by the interpolator are loaded into the Fine Search Area space in SRAM.

Thus, any search point inside the fine SA can be checked instantly with quarter-pel accuracy

using the same hardware as for integer-pel MVs. For the sake of limited resources, ordinary

SAD is used for evaluation of sub-pel MVs instead of sum of absolute transformed

differences which requires the Hadamard transform. When interpolated fine SA is available

in the Fine Search Area SRAM, the MV generator can perform adaptive ME according to the

Multi-Path-Search algorithm described in (Jakubowski 2008). The MV generator sends MVs

to the memories to obtain predictions. Based on these predictions the compensator

www.intechopen.com

Video Compression from the Hardware Perspective

239

calculates residua and SAD values. The MV generator can determine the next step of the

adaptation algorithm with reference to SAD values.

The compensator architecture is based on the pipeline design. It operates on 8×8 partitions
and employs a SAD tree with four pipeline stages to generate SADs for all partition modes.
Original and reference data are transferred from the local memories with double clock rate
in the alternating way. Thus, in a single cycle of master clock, 64 samples of original and
reference 8×8 blocks are fed to the SAD tree. Hence, to obtain SAD for the whole 16×16 MB,
four clock cycles are necessary. Since during SAD calculation the next MV can be processed,
every four clock cycles a new MV can be sent to the compensator. With such a setup, it is
particularly beneficial to send MVs in long series, since it reduces the average time of single
MV processing and increases the hardware utilization (avoiding wait states). Apart from the
inter prediction, the compensator computes residua for intra predictions, which are first
written to memories using 16x16-sample port.

MV

Generator

External RAM Controller

Interpolator

Compensator

Original Data &

Fine Search Area

SRAM

Coarse FS

Encoder Controller Residua
Intra

 prediction

Coarse MV

SAD

Fig. 3. Block diagram of motion estimator.

3.2 Intra prediction

High Profile of H.264/AVC standard defines three different kinds of INTRA prediction
modes to be used for luma samples, and separate modes for chroma samples. Modes to be
used for the luma sample prediction are: 4x4, 8x8, and 16x16, and are named after block
sizes they operate on. The most commonly-used prediction modes are 4x4 ones. There are
nine 4x4 modes, and eight of them are directional extrapolations of reconstructed samples
from two neighbouring blocks (see Fig. 4). The ninth DC mode assigns the average of all
reconstructed samples neighbouring with the current 4x4 block to predicted values. The 8x8
prediction modes are simple extensions of the 4x4 ones to blocks of the larger size.
Therefore, there are also nine 8x8 modes, labelled identically as 4x4 ones. Except for the
block size, the only difference comes from the prefiltering process. In particular, reference
samples neighbouring with currently processed block undergo filtering before they are used
for the prediction. Two of the directional modes: horizontal and vertical are the simplest
since the prediction is equal to the copy of samples located to the left and above of the
processed block, respectively. The remaining modes require some more complicated
calculations according to the equations defined in H.264/AVC standard. Particularly,

www.intechopen.com

Cutting Edge Research in New Technologies

240

predictors are determined using two simple equations where the result is the weighted
average from two or three reference samples.

Fig. 4. Intra prediction modes for 4x4 blocks

Fig. 5. Intra prediction block diagram

There are four 16x16 prediction modes defined by the H.264/AVC standard. Three of them:
horizontal, vertical, and DC are simple extensions of corresponding 4x4 modes to 16x16
blocks. The fourth is the plane mode, the most computationally intensive one.
There are four chroma prediction modes defined for 4:2:0 and 4:2:2 sub-samplings. In fact,
they are 16x16 luma prediction modes adapted to chroma block sizes. For 4:2:0 and 4:2:2, the
prediction block size is 8x8 and 8x16 samples, respectively. In the case of 4:4:4 sampling
scheme, there is no sub-sampling, and chroma predictions are obtained as the luma ones.
The Intra prediction architecture is described in details in (Roszkowski & Pastuszak, 2010).

The architecture incorporates two important sub-modules that can be distinguished in the

INTRA prediction module. These are: the neighbouring-sample buffer and the INTRA

www.intechopen.com

Video Compression from the Hardware Perspective

241

prediction arithmetic core. The first sub-module is responsible for tracking which 4x4 block

is to be processed next and the selection of neighbouring samples as the reference. The

second sub-module calculates all prediction modes for the 4x4 block selected by the first

one. Fig. 5 presents the neighbouring sample buffer sub-module. The most important part is

the on-chip dual-port RAM module. It keeps reconstructed samples neighbouring with the

currently processed macroblock and reconstructed samples inside the macroblock, which

are needed to calculate the prediction for next 4x4 blocks. The raster order of macroblocks

involves keeping the whole frame line in the RAM to provide adjacent samples from the

top-neighbouring macroblock. Since both 4x4 and 8x8 predictions are computed in the

interleaved manner, reconstructed samples for the two modes must be stored, which

increases the memory space. Each memory cell keeps four adjacent samples.

Fig. 6. Intra prediction arithmetic core

Plane prediction mode parameters are calculated in a separate sub-module in parallel with

the calculation of 16x16 or chroma vertical and horizontal prediction modes. This allows a

significant complexity reduction of the calculations of plane mode parameters as the

multiplications can be replaced by the series of shift, addition, and accumulation operations.

The input values to the prediction core are kept in nine intermediate registers. The rest of

the module consists of the two levels of adders and multiplexers (see Fig. 6). The first and

second levels of adders are responsible for the computation of the prediction values using

three and two reference samples, respectively. As the result of the calculation, 15 different

prediction values are obtained, out of which only up to 10 are valid for a 4x4 block. Those 10

are selected by the output multiplexer (MUX). The DC mode requires the reconfiguration of

the adder structure, which is accomplished by multiplexers coloured dark grey in Fig. 7. The

new configuration, together with the extra adder, allows the calculation of the prediction of

the whole 4x4 block in one clock cycle. The prediction for 8x8 and 16x16 blocks, done by the

www.intechopen.com

Cutting Edge Research in New Technologies

242

accumulation, takes 2 and 4 clock cycles, respectively. The remaining multiplexers are used

to reconfigure the core for the plane prediction.

Fig. 7. Intra prediction modes for 4x4 blocks

3.3 Transforms

The primary transform applied in H.264/AVC is an exact-match integer 4×4 spatial block

transform, which approximates DCT. The forward and inverse 4x4 transforms are shown in

the Equation 1 and 2, respectively.

 _ 4 4

1 1 1 1

2 1 1 2

1 1 1 1

1 2 2 1

FORWARD xT

 (1)

1
2

1
2

_ 4 4 1
2

1
2

1 1 1

1 1 1

1 1 1

1 1 1

INVERSE xT

 (2)

A secondary transform (Hadamard) performed on DC coefficients of the primary transform

(for chroma DC coefficients and also luma in the 16x16 mode) allows for even more

compression in smooth regions. Both transforms are similar, i.e., the secondary uses only 1

and -1 values in the matrix. For High Profile, the encoder can adaptively select between a

4×4 and 8×8 transform size for luma. The forward and inverse 8x8 transforms are shown in

the Equation 3 and 4, respectively. As can be seen, the inverse matrix is a transposed version

of the forward one.

www.intechopen.com

Video Compression from the Hardware Perspective

243

3 5 3 3 3 3 5 3
2 4 4 8 8 4 4 2

1 1 1 1
2 2 2 2

5 3 3 3 3 3 3 5
4 8 2 4 4 2 8 4

_ 8 8

3 3 3 5 5 3 3 3
4 2 8 4 4 8 2 4
1 1 1 1
2 2 2 2
3 3 5 3 3 5 3 3
8 4 4 2 2 4 4 8

1 1 1 1 1 1 1 1

1 1 1 1

1
1 1 1 1 1 1 1 1

1 1 1 1

FORWARD xT

 (3)

3 5 3 31
2 4 4 2 8
5 3 3 31
4 2 8 2 4
3 3 3 51
4 2 2 8 4
3 3 5 31
8 4 4 2 2

_ 8 8 3 3 5 31
8 4 4 2 2
3 3 3 51
4 2 2 8 4
5 3 3 31
4 2 8 2 4
3 5 3 31
2 4 4 2 8

1 1 1

1 1 1

1 1 1

1 1 1

1 1 1

1 1 1

1 1 1

1 1 1

INVERSE xT

 (4)

To simplify computations, all the transforms should be decomposed into two or three stages

using butterfly structures. Actually, the standard defines the inverse transforms in this form.

Thus, rounding operations must be performed in the decomposed form to keep the

specification consistency. For a block, appropriate matrix is applied on each row and then

on each column to obtain the 2D transform.

 x[0] +

x[1]

x[2]

x[3]

+

-
+

+
-

+

+

-
+

+
-

X[1]

X[3]

x2

X[2]

X[0]
a[0]

a[1]

a[2]

a[3]

 +

+

-+

+
-

X1/2

+

+

-+

+
-X[1]

X[3]

X[2]

X[0] x[0]

x[1]

x[2]

x[3]
X1/2

(a) (b)

Fig. 8. Diagram of the forward and inverse transforms for 4x4 blocks

The best way to implement a transform is to use its decomposed form. Such a decomposed

form is depicted in Fig. 8 for the 4x4 blocks and in Fig. 9 for 8x8 blocks. The forward 4x4

transform in Fig. 8.a supports both the approximate DCT and the Hadamard transform.

Particularly, additional multiplexers enable a small reconfiguration of the connectivity. The

transforms for 8x8 blocks are more complex. They consist of four processing stages, whereas

two processing stages are used for 4x4 blocks.

www.intechopen.com

Cutting Edge Research in New Technologies

244

 y[0] +

y[3]

y[4]

y[7]

+

-
+

+
-

+

+

-
+

+
-

a[0]

a[3]

a[7]

a[4]

+

+

b[0]

b[2]

b’[6]

b’[5]

+

+-

+

+

Y[0]

Y[2]

Y[3]

Y[5]

y[1] +

y[2]

y[5]

y[6]

+

-
+

+
-

+

+

-
+

+
-

a[1]

a[2]

a[6]

a[5]

+

+

b[1]

b[3]

b’[4]

b’[7]

+

+-

>>2

Y[4]

Y[6]

Y[1]

Y[7]

-

-
+

+

X3/2

X3/2

X3/2

X3/2

b[6]

b[5]

b[4]

b[7]
>>2

>>2

>>2

>>1 >>1

 Y[0] +

Y[6]

Y[3]

Y[5]

+

+

+
-

+

+

-
+

+
-

a[0]

a[6]

a[1]

a[7]+ +-

+

+

y[0]

y[3]

y[4]

y[7]

Y[4]

Y[2]

Y[1]

Y[7]

+

-
+

+
-

+

+

+-

a[4]

a[2]

a[3]

a[5]

+

+-

+

+

y[1]

y[2]

y[5]

y[6]

x3/2

x3/2

x3/2

-
+

-
+

x3/2

+
-

+-

-+

+-

b[0]

b[6]

b[1]

b[7]

b[2]

b[4]

b[3]

b[5]

>>2
>>2

>>2

>>2

>>1

>>1

(a) (b)

Fig. 9. Diagram of the forward and inverse transform for 8x8 blocks

4x4 or 8x8

1D

Transform

4x4 or 8x8

1D

Transform

4x4 or 8x8

1D

Transform

4x4 or 8x8

1D

Transform

4x4 or 8x8

1D

Transform

4x4 or 8x8

1D

Transform

4x4 or 8x8

1D

Transform
REG

4x4 or 8x8

1D

Transform

Transposition

8x8 input block

8x8 output block

Fig. 10. Block diagram of the transform module

When multiple transforms are to be supported, the encoder can simply embed dedicated

modules, each of which supports one transform type. To keep dataflow regularity in the

forward or inverse transform, two modules for the four-element transform (4x4 blocks) and

one for the eight-element transform (8x8 blocks) should be employed. The selection between

two transform types is done by multiplexers placed at the output stage. Such a design is

inefficient in terms of hardware resources since only one branch is used at one time. Thus,

the efficient solution should utilize the same resources with the overhead as little as

possible. The transform architecture with higher throughput can be easily designed by

employing eight parallel eight-point transform logic units, as shown in Fig. 10. The result is

computed in two clock cycles, 1D transform is performed in one cycle. More details about

sharing resources between the two transform types can be found in (Pastuszak, 2008.a).

3.4 Quantization

The forward and inverse transform matrices are not orthogonal. To achieve this feature in

the whole processing, quantization step sizes are modified. As a consequence, the step size

depends on the position in the coefficient block. Actually, the quantization and

dequantization are accomplished by the multiplication and shifting operations. Equations 5

and 6 show formulas for the quantization and the dequantization, respectively.

 11 /61
3

(,) { (,)}(| (,)| (%6, ,) 2) (11 /6)L Qp
qX i j sign X i j X i j A Qp i j L Qp (5)

www.intechopen.com

Video Compression from the Hardware Perspective

245

 /6(,) ((,) (%6, ,) 2) (/6)L Qp
r qX i j X i j B Qp i j Qp L (6)

In these equations, L is equal to either 4, 5, or 6 and depends on the transform size.

Functions A and B include values of multiplicands for each location in the block. The values

depend on the quantization parameter (Qp) and the transform size. Note that the position

inputs identify the coefficient location in the rectangular structure (4x4 or 8x8). Block

diagrams in Fig. 11 show dataflow of the quantizer and the dequantizer. In contrary to the

dequantization, the quantizer embeds the addition of a fraction dependent on the coefficient

sign. Since the units map one input into one output, it is easy to parallelize them to increase

the throughput.

3

2

3

1

Fig. 11. Block diagram of the quantization (A) and dequantization (B)

3.5 Reconstruction

Following dequantization, reconstructed residuals are added to the prediction (intra or

inter) to obtain reconstructed samples. As prediction samples in the encoder are computed

in the motion estimation and intra prediction units, their bypassing to the reconstruction

stage involves significant storage resources and write conflicts. An alternative is to refer to

original residuals (registered at the transform input) and original samples in two successive

clock cycles. In the first cycle, this approach allows the computation of the reconstruction

error equal to the difference between original and reconstructed residuals. The

reconstruction error subtracted from original samples gives reconstructed samples in the

second cycle. In the high-throughput datapath, many subtractors can be utilized to perform

the parallel reconstruction (see Fig. 12). To avoid underflow/overflow, the result is limited

to the pixel sample range in the following pipeline stage.

Fig. 12. Block diagram of the reconstruction unit

www.intechopen.com

Cutting Edge Research in New Technologies

246

3.6 Mode selection

The simplest way to select the coding mode is to compute Sum of Absolute Differences
(SAD) for each tested prediction and to select the case with the minimal SAD. This approach
does not provide the optimal mode selection. A more advanced approach refers to actual
code-stream rates and distortions. However, this involves much more computations and
storage resources. The cost measure for a given mode is based on the cost functions,
according to the following equations:

 1(,)J R D D R (7)

 1
2(,)J R D D R (8)

Note that λ is the Lagrangian multiplier whose value is adjusted to the desired compression
ratio. The J1 and J2 cost measures are expressed in distortion and rate domain, respectively.
In the developed architecture the second measure has been selected as the multiplication is
performed only once after obtaining the distortion. The distortion is computed based on the
reconstruction error (see previous section). Particularly, the error for each sample should be
squared, and the results can be summed within 4x4 partitions. Such Sum of Squared Errors
(SSE) can be multiplied by the Lagrangian multiplier. As the developed architecture
operates on 8x8 blocks, the distortions for four 4x4 subpartitions are summed, and only one
multiplication circuit is enough for the assumed throughput of 32 samples/coefficients per
clock cycle. The cost for larger partitions can be obtained by summing costs for smaller ones.
The second factor in the cost function is the rate measured in bit units. To estimate actual
rates, the analysis of quantized coefficients following the binarization schemas is
indispensible. There are two entropy coding modes with different schemas. When the
CABAC is used, coefficients are coded using Exp-Golomb schema before arithmetic coding.
Although the estimation of rates based on single coefficient values is easy, the probability
adaptation can affect the estimation accuracy. On the other hand, the CAVLC binarization is
based on the concatenation of successive codewords. Thus, the total rate is the sum of
codeword rates. Since the CAVLC adapts binarization schemas while coding coefficients
within 4x4 blocks, the estimation of coefficient rates involves the signal chain between 16
subcircuits corresponding to each coefficient. To shorten critical paths, the subcircuits
should be placed in successive pipeline stages.
The block diagram of the mode selection module is depicted in Fig. 12. The parallelism
employed in the developed encoder enables the repetition of quantization and
transformation for different coding options to select the best one. In particular, it is assumed
that the pipeline can process 8x8 blocks at the average throughput of 32
samples/coefficients per clock cycle. Hence, the module is able to check four 8x8, two 16x8,
and two 8x16 partitions in successive eight clock cycles. The 16x16 partition (not partitioned
macroblock) is analyzed in the separate path that simply aggregate costs of four successively
analyzed 8x8 partitions. Addition of side cost (e.g., motion vectors, intra directions,
macroblock/submacroblock types) allows a more reliable cost comparison. Actually, motion
vectors and intra directions are coded using the prediction from the top and left neighbours.
The dedicated memory (context) keeping picture line data allows the reference to the top
neighbours, excluding cases when the reference partition belongs to the same macroblock.
As the mode selection for a macroblock and its partitions takes some time, it is necessary to

buffer quantized coefficients for some different modes. When the macroblock mode is

www.intechopen.com

Video Compression from the Hardware Perspective

247

selected, quantized coefficients comprising a 4x4 block are accessed concurrently at the

entropy coder side, so that they are read in form 16x8-bit memory buffer. This parallel

access results from the fact that such an order is at the write port. The analysis path uses

pointers to identify addresses of 8x8 blocks stored in the buffer. Additionally, a vector of

three-bit registers (kept in the write stage) identifies how many references to an 8x8 partition

at a given address are valid. 8x8 partitions are written at four address identified by one

pointer, and each address corresponding to a 4x4 block is distinguished by two bits based

on its location. If intra and inter blocks are written, the corresponding register is set to one

and four, respectively. If a reference is no longer valid, the pointers select which register

should be decremented (discarded pointer). Four references match the case when an 8x8

partition contributes to the macroblock mode selection for four portioning types. Actually,

each partition can have a different motion vector and reference picture selected based on the

cost minimization. While the final macroblock mode is not selected, the best partition mode

for both transform sizes and some quantization parameters should be looked for. This

requires additional storage resources to save pointers, costs, motion vectors, and reference

pictures (partition cost buffer and 16x16 cost buffer with pointers). Also intra modes should

have storage space assigned. Taking into account the throughput, it can be seen that the

analysis of partitions larger than 8x8 requires the pipeline registers carrying coding mode

parameters and costs. This correspond to the first part (partition cost) of the mode selection

block diagram in Fig. 13.

D
is

c
a
rd

e
d
 p

o
in

te
rs

Fig. 13. Block diagram of the mode selection module

3.7 Entropy coding

In H.264/AVC two modes are employed for binary coding: Context Adaptive Binary

Arithmetic Coding (CABAC) and Context Adaptive Variable Length Coding (CAVLC). The

first mode provides higher compression efficiency at the cost of computational complexity.

www.intechopen.com

Cutting Edge Research in New Technologies

248

The following subsections review the processing blocks for the two modes. More details can

be found in the reference (Pastuszak, 2008.b).

3.7.1 Variable length coding

Since residual coefficients comprise the largest part of the codestream, exploiting
correlations between them considerably improves the compression efficiency. Five types of
syntax elements are processed in the CAVLC mode:

 For luma blocks, the total of non-zero coefficients and trailing ones (series of high-
frequency coefficients equal to one) are coded as one element by the use of four look-up
tables (three VLC tables and one 6-bit fixed table, each having 64 entries). The tables are
selected adaptively based on the number of non-zero coefficients in the neighbouring
4x4 blocks. Besides, there are three additional tables for chroma blocks.

 Sign coding does not require context modelling, since one bit per non-zero coefficient is
enough to convey this information.

 The code for each coefficient level is made up of a prefix and a suffix. The length of the
latter one is initialized to either 0 or 1 and incremented every time when consecutive
levels exceed predefined thresholds. This adaptation is due to the observation that
statistically values of coefficients increase while passing from high to low frequencies.

 The total of zero-valued coefficients (total_zeros) preceding the last non-zero coefficient
in the coding order refers to some VLC tables. One table is selected based on the
number of non-zero coefficients coded earlier.

 The number of zeros preceding each non-zero coefficient (run_before) is encoded in
reverse order. The adaptation is performed by the selection of codes dependent on the
number of zero-valued coefficients left to be coded in this order.

The developed architecture of the H.264/AVC binary coder embeds the binarization unit as
a part sufficient to support the CAVLC mode and perform the binarization in the CABAC
mode. The binarization unit embeds four pipeline stages, as depicted in Fig. 14. Most of
registers incorporated to the architecture are shared in both coding modes. Input data are
submitted through dedicated ports, each of which matches one type of syntax element.

Fig. 14. Block diagram of the double-mode binarization unit

The binary coder processes syntax elements in the order defined in the standard. The order
depends on selected options and previous data. Therefore, the architecture incorporates a

www.intechopen.com

Video Compression from the Hardware Perspective

249

Finite State Machine (FSM) to determine the type and the order of the processed data.
Transitions of the FSM depend on the values of syntax elements available on parallel input
ports. The first stage selects one input port and loads corresponding data to the syntax-
element buffer on the basis of the state of the FSM, counters, and a significance map. The
FSM determines the type of the syntax element, whereas the counters point one subunit of a
given macroblock such as a partition and a block (4x4). One FSM used in two modes
simplify the design as states and transitions are almost the same. The main difference in
transitions comes from the order of syntax elements within a 4x4 block. In the CAVLC
mode, each block is scanned two times (i.e., non-zero coefficient levels precede runs of zero
coefficients) whereas in the CABAC mode, just one scan is enough.
The first stage analyzes each 4x4 block to compute the number of non-zero (Total

Coefficients) and zero-valued (Total Zeros) coefficients, the number of trailing ones, and the

significance map. The significance map consists of 16 bits, where each bit is set active when

the corresponding coefficient is non-zero. This allows the selection of coefficients to be

processed. When a coefficient is selected, the corresponding significance indicator is set

inactive. In the CAVLC mode, the first stage performs also the reference to a total of non-

zero coefficients and trailing ones for the upper- and the left-neighbouring blocks. The

referred numbers are used to compute the average (nC) forwarded to the second stage.

Raster scanning of macroblocks involves the use of an on-chip memory to convey references

between rows. The memory incorporated into the architecture has the bit width equal to 48.

This value matches the accumulated length of reference registers on one macroblock edge.

The number of entries determines the maximal frame width in macroblocks and is set to 128

allowing HDTV resolutions.

Although context-formation rules for the CABAC differ from those for the CAVLC, it is

possible to share storage elements in both modes. Thus, in the CABAC mode, the

architecture keeps motion vectors differences instead of non-zero coefficients in the

neighbourhood registers and the on-chip memory. However, the storage space is doubled

since four six-bit MVD can be used for the smallest 4x4 partition. Nevertheless, sharing

enables the efficient reduction of hardware resources. Additionally, the control subcircuit is

common to both modes.

The second stage maps syntax elements onto their binary representation using the set of

primitives (subcircuits) implemented as a combinational logic. Apart from a binary string,

the primitives produce the corresponding length. For a given syntax element, a one-cycle

delayed FSM selects the outcome of one primitive. The primitives support Unary, Exp-

Golomb, macroblock, and submacroblock binarizations. The second stage includes

dedicated subcircuits for adaptively-coded syntax elements in the CAVLC mode (i.e., 4x4

residual blocks).

The third stage forwards all code strings produced in the second stage to one of two

paths. The first path, which supports the CABAC mode, assembles a binarized

representation of a syntax element along with control data into 16-bit words and submits

them to the context formatter. Each syntax element allocates bits in a specific way. The

control information data includes the number of valid bits, indicators of the last syntax

element in a series (e.g., coefficients), and the information about the neighbouring

subunits within the current macroblock (e.g., coded block flag). When a binary string is

long, it is divided into parts conveyed in successive output words to the CABAC path. A

www.intechopen.com

Cutting Edge Research in New Technologies

250

relevant part is selected using the barrel shifter driven by the register which identifies the

number of released bits (invalid). In practice, some particular values are allowed, such as

0, 12, and multiplications of 7.

The second path, which supports VLC binarization schemas, concatenates code strings to

form a codestream. The concatenation is performed in the VLC buffer and code strings are

appended in successive clock cycles using a barrel shifter. Particularly, the shifter is

driven by the number of valid bits kept in a separate register. It is increased by the length

of a code string and decreased by the number of bits (eight-byte units) forwarded to the

next stage.

The last fourth stage combines codestreams produced by the binarization and CABAC paths

and encapsulates them into Network Abstraction Layer units. Note that data are accepted

only from one path at a time depending on the selected mode and the processing state. The

encapsulation amounts to adding one-byte header and the start code byte sequence at the

beginning of each slice and sequence/picture headers. Additionally, an emulation

prevention three byte (0x03) has to be inserted into the codestream when there is a

forbidden byte sequence encountered. To facilitate the insertion process, previous pipeline

stages (including CABAC path) are halted for one clock cycle. A dedicated subcircuit is

responsible for the detection of the forbidden byte sequence. The subcircuit searches for 22

zero-valued bits starting from byte-aligned positions. All the processes are controlled by a

dedicated FSM.

3.7.2 Arithmetic coding

The CABAC keeps up to 1024 probability models to increase the coding efficiency. Each

type of syntax elements corresponds to a set of probability models pointed by different

context labels. Each model is a Finite State Machine (FSM) that consists of the value of the

more probable symbol (MPS) and the probability of the less probable symbol (LPS). The two

variables are initialized based on the quantization parameter Qp with reference to the

initialization set and the frame type. The FSMs are updated according to pre-defined

adaptation rules. Context labels are computed as a sum of an offset ordered to a syntax

element and an increment. Some increments are generated by referring to two adjacent

macroblocks (16x16) or blocks (8x8 or 4x4) located on the left and the top of the current one.

For other kinds of context labels, increments are formed on the basis of the previous bin

value and the position in the binary string.

The main process in the CABAC is the recursive subdivision of a probability interval. In
order to subdivide a probability interval length (range) into two subranges, probability
estimates are determined on the basis of the probability model. The length of the first
subinterval (LPS) is equal to the probability estimate, whereas that of the second one (MPS)
is obtained by subtraction of the estimate from the current interval length. Depending on
LPS/MPS coding, one of these subintervals is selected as a new interval length and
renormalized to have the non-zero bit in the MSB position. While coding LPS, the
subtraction outcome is added to the interval base (low). Successive renormalization shifts
for the interval length trigger analogous modifications of the interval base. Bits released
from MSB positions of the interval base drive the codestream formation process.
As some contexts are generated with reference to two adjacent macroblocks located to the
left and on the top of the current one, the information relevant to form future contexts is

www.intechopen.com

Video Compression from the Hardware Perspective

251

stored in registers and a double-port RAM memory, respectively. Access to the memory is
performed on the macroblock basis. In the memory, 29 bits are required.
The architecture of the context formatter embeds one processing stage with an additional

output stage as shown in Fig 15.a. Input data are produced by the binarization block and

stored in the FIFO buffer. Loading of these data into registers is controlled by the FSM.

Transactions of the FSM are driven by the counter (COUNT) and values of bits in the

binarized representation. For each binarized syntax element, the counter determines the

position of the bit for which context is generated. In fact, the position indicates the number

of bits that have already been processed. On the basis of the state of the FSM, the context

offset corresponding to a given syntax element is generated. Several offset-increment pairs

are generated and stored in a small buffer. The adjustment of the context generation ratio is

achieved by reading two pairs from the buffer. Having processed a syntax element, the

input registers (CUR REG) are reloaded by the data for the following syntax element. If the

information in the left-neighbouring registers (LEFT REG) is no longer referenced, the

registers are successively rewritten by states of relevant registers for the current macroblock.

This information is also stored in the context memory when all data for the current

macroblock are released.

The block diagram of the CABAC initialisation unit is depicted in Fig. 15.b. The unit sets

states of the CABAC probability model prior to submitting context-symbol pairs form the

context formatter. To perform this task, one pair consisting of an index and a binary value of

MPS is generated in each clock cycle. Although the initialisation procedure stops the main

coding routine of the CABAC, associated time intervals have a small impact on the

throughput. The initialisation unit applies three pipeline stages. The first stage generates the

address to the 4Kx16-bit ROM memory used to keep initialisation parameters for four sets of

parameters (one for INTRA and three for INTER) for High Profile (460 contexts). The second

stage computes the internal variable denoted as preState on the basis of the quantization

parameter Qp and parameters read from the memory. The computation is accomplished

with the use of the multiplication and addition units. Apart from this, the subtraction of an

offset value from the address taken from the previous stage provides the context label. The

third stage maps the preState variable onto a MPS value and an index.

FIFO
binarized

data

CUR

REG

RAM

FSM

+

COUNT

OFFSET

ADDR REG

INCREMENT

contexts

LEFT

REG

a)

Fig. 15. Architectures of the context formatter (a) and the initialization unit (b)

The architecture of the arithmetic coder core with the enhanced bypass mode applies 9

pipeline stages (see Fig 16). This allows the minimization of critical paths and the adaptation

to timing constraints resulting from reading the probability state memory. The first delay

stage for input data is introduced to adjust input data to those read data from the

probability state memory (addressed by the context label). As a consequence, the second

www.intechopen.com

Cutting Edge Research in New Technologies

252

stage receives simultaneously values of contexts, symbols, indices, and the most probable

symbols. On the basis of these variables, the circuit calculates a new indices and new values

of the most probable symbols and stores them into the memory. Moreover, there are control

signals to indicate either LPS or MPS coding. The memory operates at the doubled

frequency to overcome problem of the simultaneous access to two entries corresponding to

contexts ordered to symbols submitted in the same clock cycle of the main clock. If any same

context labels are submitted in consecutive clock cycles, the first stage takes actual indices

and MPS values from the following stage to keep the data consistency.

Fig. 16. Arithmetic Coding Pipeline

length

-

rLPS(I(CX0))

RENORM
<<1

MPS/LPS_0

-

rLPS(I(CX1))

RENORM
<<1

MPS/LPS_1

next_length

2

2

MSB

MSB

A)

length

0 0

prev_length-rLPS

+

base_increase

bypass_en &

symbol = 1 lps/mps

shift

>>1

B)

Fig. 17. Arithmetic Coding Stages 4th-6th

The LPS/MPS signal, along with the old index value, is forwarded to the third stage, which

calculates probability estimates rLPS using four LUTs. The next stage reduces the interval

length as shown in Fig. 17.a. The fifth stage computes the cumulated variables

corresponding to the regular and bypass-mode symbols as shown in Fig. 17.b. They are used

to increase the base register at the sixth stage (see Fig. 17.c). Bits released from this register

are formed into codestream at the eight stage. Here, the outstanding bit counter collects

series of ones and looks for a zero-valued bit or a carry to produce a part of the codestream.

www.intechopen.com

Video Compression from the Hardware Perspective

253

It may occur that the number of bits to release is greater than the buffer size in the following

stage. Such an event implicates the insertion of wait states, which stop all preceding pipeline

stages, and the context-formation unit. A hold signal is driven directly by a register to

optimize the clock rate. This involves a one-clock-cycle delay, which in turn imposes the use

of an additional seventh stage to prevent loses of data between stopped and unstopped

registers. The final tenth stage collects codestream into 32-bit words and releases them

outside of the CABAC block.

3.8 Deblocking

The deblocking filter is applied to minimize artefacts on block/macroblock boundaries

along both horizontal and vertical edges. The filtering is a two-phase non-linear operation

that affects samples adjacent to boundaries and sometimes also their direct neighbours. Both

phases are similar. In the first phase, the horizontal filter operates on vertical edges, whereas

the vertical filter operates on horizontal edges in the second phase. The deblocking-filter

data path is shown in Fig. 18. The module accepts one sample per clock cycles and the same

throughput is at the output. Samples are carried by the pipeline registers. When a block

edge samples are in q0 and p0 registers, the filter is activated (writing samples form the

filter logic to registers). Since macroblocks are coded in the raster order, it sis necessary to

incorporate a dedicated memory to buffer four picture lines (line of MB) for the filtering

horizontal edges between macroblocks. One macroblock memory (MB1) is used to transpose

the horizontally-filtered samples before the vertical filter. Another one (MB2) keeps left

neighbouring samples form the previous macroblock.

Fig. 18. Dataflow in the deblocking filter

There are four filter strengths, and the selection depends on two variables written into the

codestream, the quantization parameters (alpha and beta), and edge type (macroblock or

block). Horizontal and vertical filter logic embeds all the functionality that modifies

samples based on the filter strength value. In particular, the non-linear filter logic

analyzes input samples according to predefined formulas and compares the result with

thresholds determined by the filter strength. If the threshold is exceeded, the filter is

activated.

www.intechopen.com

Cutting Edge Research in New Technologies

254

4. Implementation results

There are many complete video coding solutions developed by the scientific teams and

commercial companies. The performance and resource cost is summarized in Section 2.3 for

some of H.264/AVC encoders. This Section provides the implementation results of the

developed architecture for key modules and compares them with other works.

Table 3 summarizes the resource consumption for modules described in Section 3. Note that

the full encoder architecture needs more resources for the control and additional buffering

between some modules. Moreover, the real hardware implementation requires some

communication interfaces, i.e., the external memory controller, the codestream port, and the

configuration port. Maximal clock rates obtained for the architecture are equal 100 MHz and

250 MHz for Aria and TSMC technologies, respectively.

Compared to other designs (see Section 2.3.), the developed architecture needs more on-chip

memoires. The higher memory consumption results from the buffers incorporated to

support the mode selection based on the rate-distortion analysis. This feature makes the

architecture suitable for FPGA devices equipped with a significant amount of on-chip

memories. Compared other designs, the logic consumption is relatively low when taking

into account the encoder capability. Particularly, it can support High Profile options and

HDTV at 200 MHz. Moreover, the advanced mode selection based on the rate-distortion

criteria allows a better compression ratio for a given bit rate.

Module Aria II [ALUT] TSMC 0.13 µm [gate] Memory [Kbit]

INTER PRED. 18756 140413 1300

INTRA PRED. 4599 23197 64

DCT 5279 37178 0

IDCT 5468 65869 0

QUANT 32xDSP+5236 78038 0

DEQUANT 32xDSP+2221 35421 0

RECONSTR. 3175 23420 0

DEBLOCKING 2395 17910 26

MODE SEL. 1xDSP+10646 39333 148

ENTROPY 66xDSP+6682 33206 105

ENCODER 72419 673256 2250

Table 3. Resource consumption for main modules of the hardware video encoder

5. Conclusion

The complexity of the state-of the-art video compression is high. The real-time

performance requires the use of most advanced IC technologies to support high-definition

www.intechopen.com

Video Compression from the Hardware Perspective

255

resolutions. Additionally, the need for buffering at different processing steps requires on-

chip and external memories. The improvement in the compression efficiency requires

more resources to tests many prediction modes and perform the rate-distortion analysis.

The architecture described in the chapter is still developed. Particularly, it includes more

advanced methods for the mode selections (alternative distortion measures, different

quantization parameters, adaptive quantization), multi-view coding, and the robust rate

control.

6. Acknowledgment

The work presented was developed within the research project LIDER/05/8/L-

2/10/NCBiR/2011 founded by the Notional Centre for Research and Development,

Warsaw, Poland.

7. References

Chen Y.-H., Chen T.-C., Tsai C.-Y., Tsai S.-F., & Chen L.-G.; Algorithm and Architecture

Design of Power-Oriented H.264/AVC Baseline Profile Encoder for Portable

Devices, IEEE Transactions on Circuits and Systems for Video Technology, vol.19, no.8,

pp.1118-1128, ISSN 1051-8215, Aug. 2009

Jakubowski, M. & Pastuszak, G.; (2008). Data Reuse in Two-Level Hierarchical Motion

Estimation for High Resolution Video Coding, Proceedings of SIGMAP 2010

International Conference on Signal Processing and Multimedia Applications, pp. 159-162,

Athens, Greece, July 26-28, 2010

Lin Y.-K., Ku C.-W., Li D.-W., & Chang, T.-S.; (2009). A 140-MHz 94 K Gates HD1080p 30-

Frames/s Intra-Only Profile H.264 Encoder. IEEE Transactions on Circuits and

Systems for Video Technology, Vol.19, No.3, (March 2009), pp. 432-436, ISSN 1051-

8215

Lin Y.-L. S, Kao C.-Y., Kuo H.-C., & Chen J.-W., VLSI Design for Video Coding: H.264/AVC

Encoding from Standard Specification to Chip, Springer, 2010, ISBN 978-1-4419-

0958-9

Liu Z.; Song Y., Shao M., Li S., Li L., Ishiwata S., Nakagawa M., Goto S. & Ikenaga, T.;

HDTV1080p H.264/AVC Encoder Chip Design and Performance Analysis, IEEE

Journal of Solid-State Circuits, vol.44, no.2, pp.594-608, Feb. 2009

Pastuszak, G.; (2008). Transforms and Quantization in the High-Throughput H.264/AVC

Encoder Based on Advanced Mode Selection, Proceedings of ISVLSI 2008 IEEE

Annual Symposium on VLSI, pp. 14-17, Montpellier, France, April 7-9, 2008

Pastuszak, G. (2008). A High Performance Architecture of the Double-Mode Binary Coder

for H.264.AVC. IEEE Transactions on Circuits and Systems for Video Technology,

Vol.18, No.7, (July 2008), pp. 949-960, ISSN 1051-8215

Roszkowski, M.; Abramowski, A.; Wieczorek, M. & Pastuszak, G. (2010). Architecture

design of the hardware H.264/AVC video decoder. Journal of Electronics and

Telecommunications, Vol.55, No.3, (3/2010), pp. 291-300, ISSN 0867-6747

www.intechopen.com

Cutting Edge Research in New Technologies

256

Roszkowski, M. & Pastuszak G.; (2010). Intra Prediction Hardware Module for High-Profile

H.264/AVC Encoder, Signal Processing - Algorithms, Architectures, Arrangements, and

Applications (SPA 2010), Poznań, Poland, 23-25 September 2010.

Y. W. Huang, B. Y. Hsieh, T. C. Chen, and L. G. Chen, “Analysis, fast algorithm, and VLSI

architecture design for H.264/AVC intra frame coder,” IEEE Trans. Circuits Syst.

Video Technol., vol. 15, no. 3, pp. 378–401, Mar. 2005.

www.intechopen.com

Cutting Edge Research in New Technologies

Edited by Prof. Constantin Volosencu

ISBN 978-953-51-0463-6

Hard cover, 346 pages

Publisher InTech

Published online 05, April, 2012

Published in print edition April, 2012

InTech Europe

University Campus STeP Ri

Slavka Krautzeka 83/A

51000 Rijeka, Croatia

Phone: +385 (51) 770 447

Fax: +385 (51) 686 166

www.intechopen.com

InTech China

Unit 405, Office Block, Hotel Equatorial Shanghai

No.65, Yan An Road (West), Shanghai, 200040, China

Phone: +86-21-62489820

Fax: +86-21-62489821

The book "Cutting Edge Research in New Technologies" presents the contributions of some researchers in

modern fields of technology, serving as a valuable tool for scientists, researchers, graduate students and

professionals. The focus is on several aspects of designing and manufacturing, examining complex technical

products and some aspects of the development and use of industrial and service automation. The book

covered some topics as it follows: manufacturing, machining, textile industry, CAD/CAM/CAE systems,

electronic circuits, control and automation, electric drives, artificial intelligence, fuzzy logic, vision systems,

neural networks, intelligent systems, wireless sensor networks, environmental technology, logistic services,

transportation, intelligent security, multimedia, modeling, simulation, video techniques, water plant technology,

globalization and technology. This collection of articles offers information which responds to the general goal of

technology - how to develop manufacturing systems, methods, algorithms, how to use devices, equipments,

machines or tools in order to increase the quality of the products, the human comfort or security.

How to reference

In order to correctly reference this scholarly work, feel free to copy and paste the following:

Grzegorz Pastuszak (2012). Video Compression from the Hardware Perspective, Cutting Edge Research in

New Technologies, Prof. Constantin Volosencu (Ed.), ISBN: 978-953-51-0463-6, InTech, Available from:

http://www.intechopen.com/books/cutting-edge-research-in-new-technologies/video-compression-from-the-

hardware-perespective

© 2012 The Author(s). Licensee IntechOpen. This is an open access article

distributed under the terms of the Creative Commons Attribution 3.0

License, which permits unrestricted use, distribution, and reproduction in

any medium, provided the original work is properly cited.

