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1. Introduction  

The study of magnetic nanoparticles and ferrofluids has gained considerable interests 
among research workers in recent years. The potential range of application that these novel 
magnetic nanomaterials can offer is gradually being recognized and continues to be 
explored. As described in a recent review article (Pamme, 2006), magnetic particles have 
already been used for such diverse applications as the fabrication of ferrofluidic pumps, 
solid supports for bioassays, fast DNA hybridization, giant magnetoresistive sensors and 
superconducting quantum interference devices (SQUID). At a more fundamental level, one 
of the most important and widely investigated aspects of magnetic nanoparticles and 
ferrofluids is the formation of self-organized microstructures under the influence of an 
externally applied magnetic field. A suspension of magnetic nanoparticles in a fluid 
medium can generally be considered as a single magnetic domain with macroscopic 
properties that are dependent on the properties of individual nanoparticles as well as the 
interactions between them (Rosensweig, 1985). In the presence of an external magnetic field, 
the magnetic domain will be oriented in the direction of the field and may approach 
saturation magnetization. When the external magnetic field is removed, the domain will 
revert to a randomly oriented state which exhibits no macroscale magnetism. Although it is 
well-established that the magnetization of a magnetic fluid or ferrofluid is related to the 
arrangement of the suspended magnetic nanoparticles, which in turn arises due to the 
effects of interactions between various types of forces present such as Brownian and dipole-
dipole interactions for example, current understanding of the kinetics, dynamics and 
resulting microstructure of the nanoparticle aggregation process is far from complete. 

In the research literature, a variety of experimental, theoretical and computational 
approaches have been applied towards studies of the aggregation and microstructure 
formation process of magnetic nanoparticles and ferrofluids. In particular, the 
computational techniques that have been used for such investigations include Monte 
Carlo simulations (Davis et al., 1999; Richardi et al., 2008), Brownian dynamics (Meriguet 
et al., 2004, 2005; Yamada and Enomoto, 2008), lattice-Boltzmann method (Xuan et al., 
2005), molecular dynamics simulations (Huang et al., 2005), combination of analytical 
density functional theory and molecular dynamics (Kantorovich et al., 2008), stochastic 
dynamics (Duncan and Camp, 2006) and analytical methods (Furlani, 2006; Furlani and 
Ng, 2008; Nandy et al., 2008). Further, several recent studies have also reported 
comparisons between experimental and theoretical or computational results. For example, 
the chain formation process of magnetic particles in an external magnetic field and under 
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the effects of shear in microchannels was analyzed and the chain growth rate predicted by 
the Smoluchowski model was observed to be consistent with experimental observations 
(Brunet et al., 2005). The transport of an isolated magnetic microsphere or of very dilute 
suspensions where dipole-dipole interactions are negligible through a microchannel have 
also been investigated both experimentally and numerically (Sinha et al., 2007). The 
controlled aggregation of Janus magnetic nanoparticles was studied using dynamic light 
scattering and cryo-TEM imaging techniques and the main features of the aggregation 
behavior were consistent with predictions provided by a modified version of the classic 
Monte Carlo simulation algorithm (Lattuada and Hatton, 2007). Brownian dynamics has 
also been applied towards the study of motion of magnetic particles in a magnetic field 
gradient and shown to be in agreement with experimental measurements based on an 
optical detection method (Schaller et al., 2008). 

While most of the investigations of magnetic nanoparticles dispersions have targeted 

colloidally stable systems, a few studies have also focused on suspensions undergoing 

aggregation. Colloidal systems undergoing aggregation exhibit complex behaviors due to 

several factors such as particle-particle interactions, fractal structure of individual clusters 

and the aggregation mechanism and kinetics. Several modeling approaches have been 

proposed in the literature to simulate the aggregation kinetics of colloidal systems, either 

based on Monte-Carlo simulations, or on population balance equations, or on a combination 

of the cluster mass distribution computed based on the population balance equations with 

the structure properties of individual clusters determined by Monte-Carlo simulations 

(Lattuada et al., 2004a). It was found that the average sizes and structure properties 

predicted in both the diffusion-limited and reaction-limited aggregation regimes were in 

good agreement with light scattering measurements (Lattuada et al., 2004b). In the case of 

magnetic nanoparticles aggregation, both experimental and computational studies have 

underlined substantial differences between diffusion limited aggregation in the absence and 

in the presence of an applied magnetic field (Tsouris and Scott, 1995; Promislow et al., 1995; 

Miyazima et al., 1987). In the presence of magnetic fields, clusters grow as chains aligned in 

the direction of the applied magnetic field. The kinetics of chain growth has been modeled 

using Monte-Carlo methods (Miyazima et al., 1987), Brownian Dynamics simulations 

(Dominguez-Garcia et al., 2007), and population balance equations (Martinez-Pedrero et al., 

2008). All of these studies have demonstrated how the average size of chains grows as a 

power law of time, with an exponent that depends upon the particle volume fraction and 

the strength of the dipolar interactions (Climent et al., 2004). However, no studies to the best 

of our knowledge have focused on gelation and percolation of magnetic dispersions at high 

particles volume fractions. 

In this work, we report the first application of a modified version of the Discrete Element 

Method (DEM) towards the simulation of magnetic nanoparticle aggregation with and 

without an external magnetic field. The various types of interparticle forces that are 

important in the dynamics of the aggregation process, such as dipole-dipole interactions, 

van der Waals forces, electrostatic forces and Brownian effects, are taken into account 

through the incorporation of the respective force models into the classical DEM model. The 

effects of overall solid fraction and the presence or absence of an external magnetic field on 

the propensity of such magnetic nanoparticles to aggregate and the microstructure of the 

resulting clusters or chain-like assemblies formed are investigated computationally. 
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2. Computational model 

2.1 Discrete element method 

The molecular dynamics approach to modeling of particulate systems, otherwise known as 

the Discrete Element Method (DEM), has been applied extensively for studies of flow 

behaviors in various types of granular and multiphase systems (Lim et al., 2006a, 2006b; Lim 

and Wang, 2006; Lim et al., 2007; Lim, 2007, 2008, 2009, 2010a, 2010b; Lim et al., 2011). For a 

comprehensive review, the interested reader is referred to a recent review article by Zhu et 

al. (2008). The methodology of DEM and its corresponding governing equations have also 

been presented numerous times in the research literature and only a brief description will be 

presented here for sake of completeness. 

The translational and rotational motions of individual solid particles are governed by 
Newton’s laws of motion: 

  , , , , , , , lub,
1

N
i

i c ij d ij f i dd ij vdw ij e ij B i ij
j

dv
m f f f f f f f f

dt 
         (1) 

 
1
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i ij
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d
I T

dt




  (2) 

where mi and vi are the mass and velocity of the ith particle respectively, N is the number of 

particles in contact with the ith particle, fc,ij and fd,ij are the contact and viscous contact 

damping forces respectively, ff,i is the fluid drag force that is governed by Stokes’ Law, fdd,ij 

is the dipole-dipole interaction between particles i and j in the presence of an applied 

magnetic field, fvdw,ij and fe,ij are the van der Waals interaction and electrostatic repulsion 

between particles i and j respectively, fB,i is the random force arising due to Brownian 

effects, flub,ij is the lubrication force due to hydrodynamic effects, Ii is the moment of inertia 

of the ith particle, i is its angular velocity and Tij is the torque arising from contact forces 

which causes the particle to rotate. The effect of gravity is neglected in the present study. 

Contact and damping forces have to be calculated using force-displacement models that 

relate such forces to the relative positions, velocities and angular velocities of the colliding 

particles. A linear spring-and-dashpot model is implemented for the calculation of these 

collision forces. With such a closure, interparticle collisions are modeled as compressions of 

a perfectly elastic spring while the inelasticities associated with such collisions are modeled 

by the damping of energy in the dashpot component of the model. The normal (fcn,ij, fdn,ij) 

and tangential (fct,ij, fdt,ij) components of the contact and damping forces are calculated 

according to the following equations: 

  , , ,cn ij n i n ij if n    (3) 

  , , ,ct ij t i t ij if t    (4) 

  , ,dn ij n i r i if v n n    (5) 
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     , ,dt ij t i r i i i i j jf v t t R R          (6) 

where n,i, n,ij, ni, n,i and t,i, t,ij, ti, t,i are the spring constants, displacements between 

particles, unit vectors and viscous contact damping coefficients in the normal and tangential 

directions respectively, vr is the relative velocity between particles and Ri and Rj are the radii 

of particles i and j respectively. If , , tanct ij cn ijf f  , then ‘slippage’ between two contacting 

surfaces is simulated based on Coulomb-type friction law, i.e. , , tanct ij cn ijf f  , where tan 

 is analogous to the coefficient of friction. 

2.2 Long range interactions 

In the presence of an externally applied magnetic field, paramagnetic nanoparticles can be 

considered as magnetic single-domains with a permanent magnetic moment, i proportional 

to their volume, 
3

6
i

i i

d
M

  , where Mi is the intensity of magnetization. By the 

superparamagnetic magnetization law for a monodisperse, colloidal ferrofluid (Rosensweig, 
1985), 

 
1

cothi
i

s d i

M

M


 
   (7) 

where 
3

6
o d i

i

M Hd

kT

  , o is the magnetic permeability of free space, Md is the saturation 

magnetization of the bulk magnetic solid, H is the magnetic field strength, k is the 

Boltzmann’s constant, T is thermodynamic temperature and s is the volume fraction of 
solid present. The anisotropic dipole-dipole interaction energy Edd,ij is then given by 

(Rosensweig, 1985) 

   , 3 5

1 3

4

i j
dd ij i ij j ij

o ij ij

E r r
r r

 
 



 
    
  

 (8) 

where i and j are the magnetic moments of particles i and j respectively and rij is the 

displacement vector between the two particles. The dipole-dipole force of interaction acting 

on particle i is then derived from fdd,ij = -Edd,ij. 

The van der Waals forces of interaction and electrostatic repulsion between particles are 

calculated as follows (Russel et al., 1989): 

 

   
6

, 2 326 2

a i
vdw ij i

ij i ij ij i

H d
f n

h d h h d


 
 (9) 

where Ha is the Hamaker constant and hij is the surface-to-surface separation distance along 

the line of centers of particles i and j. When the actual surface-to-surface separation distance 

between two particles is less than 1 nm, hij is fixed at 1 nm to avoid the singularity in the 

above equation. 
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The electrostatic repulsion between particles due to the so called double layer forces is 
described by the DLVO theory (Russel et al., 1989): 

 
 
 

2
2

,

exp
2

1 exp

ij

e ij o i

ij

hkT
f R q

ze h


 



   
   

 (10) 

where  is relative permittivity, o is the absolute permittivity of free space, z is the valency 

of ions, q is the surface charge, e is the fundamental electronic charge, κ-1 is the Debye decay 

length given by 

1
2

1
2 22
o

b

kT

e z n

   
   
 

, nb is the concentration of ions. 

For the size of nanoparticles simulated, it is also pertinent to consider the random forces 
arising due to Brownian effects. The algorithm for simulating Brownian forces is similar to 
that for generating a Gaussian white noise process (Russel et al., 1989): 

 '
, 12

2
i

B i f i

d
f kT t n    

 
 (11) 

where t is the time step used in the simulation and ni’ is a unit vector with a random 

direction. It is well-established that Brownian effects become less significant at small 

separation distances between particles due to the presence of hydrodynamic lubrication 

effects. As such, Brownian forces were set to zero for surface-to-surface distances less than 1 

nm in all simulations. 

2.3 Hydrodynamic interactions 

Hydrodynamic interactions due to lubrication effects become important at small surface-to-

surface separation distances between particles. The lubrication force between two spheres is 

described by the lubrication theory and may be calculated as follows (Russel et al., 1989): 

 
  2

lub,

6

16
r i i

ij i
ij

v n d
f n

h

 
  (12) 

Here, as with the calculation of van der Waals forces described earlier, when the surface-to-

surface separation distance between two particles is less than 1 nm, hij is fixed at 1 nm to 

avoid the singularity in the above equation. 

3. Simulation conditions 

The simulation conditions applied were based as much as possible on the materials and 

methods used for experimental studies reported in the literature so that a meaningful 

comparison between the simulations and experiments can be made. Spherical nanoparticles 

of diameter 70 nm and density 1000 kg m-3 were simulated within a pseudo-three-

dimensional computational domain. The dimensions of the computational domain were 5 

m  5 m with thickness in the spanwise direction equivalent to one particle diameter. The 
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numbers of nanoparticles simulated were 485, 975, 1460 and 1950 which correspond to solid 

volume fractions of 0.05, 0.10, 0.15 and 0.20 respectively. Here, solid volume fraction is 

defined to be the ratio of the total volume of all nanoparticles present to the volume of the 

pseudo-three-dimensional domain. To ensure numerical stability and accuracy, a relatively 

small time step of 10 ps was applied for all simulations carried out in this study. Table 1 

summarizes the values of pertinent material properties and system parameters applied in 

the simulations. At the start of each simulation, the positions of all nanoparticles were 

assigned randomly within the computational domain such that no overlap between any two 

nanoparticles occurred. Periodic boundary conditions were applied on all four sides of the 

computational domain so as to eliminate any possible effects that may arise due to the 

presence of boundaries. The application of such boundary conditions also allowed the 

possibility of simulating a large system using a significantly smaller computational domain 

which leads to more efficient utilization of computing resources. 

 

Shape of particles Spherical 

Number of particles, N 485, 975, 1460, 1950 

Solid volume fraction 0.05, 0.10, 0.15, 0.20 

Particle diameter, d 70 nm 

Particle density, p 1000 kg m-3 

Spring constant in force model,  1.0  10-3 N m-1 

Viscous contact damping coefficient,  1.0  10-12 

Coefficient of restitution 0.99 

Coefficient of friction 0.5 

Saturation magnetization, Md 1.0  105 A m-1 

Hamaker constant, Ha 1.0  10-19 J 

Surface charge, q 1.6  10-15 C 

Ion concentration, nb 1.0 M 

Temperature, T 298 K 

Domain size 5 m  5 m  70 nm 

Simulation time step, t 10 ps 

Table 1. Material properties and system parameters for DEM simulations 

4. Results and discussion 

Fig. 1 shows the aggregation patterns of magnetic nanoparticles formed in the absence of an 

external magnetic field obtained from computer simulations with the modified DEM 

methodology. It may be seen that small isolated aggregates of nanoparticles are observed at 

low solid volume fractions while at high solid volume fractions, an extended network of 

nanoparticles usually referred to as a percolated network is observed to form 

spontaneously. The former is typically associated with gelation experiments carried out at 

insufficient concentrations of nanoparticles resulting in simple destabilisation of the 

suspension and formation of a collapsed structure. 
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Fig. 1. Aggregation patterns of magnetic nanoparticles in the absence of an external 
magnetic field at 10-3 s physical time obtained from the modified DEM simulations. The 
solid volume fractions applied were (a) 0.05, (b) 0.10, (c) 0.15 and (d) 0.20. 

(a) (b) 

(c) (d) 
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Fig. 2. Aggregation process of magnetic nanoparticles of solid volume fraction 0.20 in the 
absence of an external magnetic field. The states of aggregation correspond to (a) 0.0 s, (b) 
2.0 × 10-4 s, (c) 4.0 × 10-4 s, (d) 6.0 × 10-4 s, (e) 8.0 × 10-4 s and (f) 10-3 s. 

(a) (b) 

(c) (d) 

(e) (f) 
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To observe gelation of nanoparticle suspensions, the present simulations have shown that 
solid concentrations must be sufficiently high and beyond the percolation threshold in order 
for a stable network structure to form. Although the simulations presented here are 
computationally expensive and so have been carried out at smaller length and time scales 
than those associated with experiments, it may be seen that the main qualitative features  
of the type of gel networks formed in the absence of an external magnetic field have  
been reproduced computationally. In particular, Fig. 2 shows that the gelation process takes 
place with the initial formation of small random aggregates throughout the domain  
which then join to form a fairly open network with no specific orientation of the various 
branches. 

The intermediate states of the gel during its formation process that are unobservable 
experimentally with present day technology are readily available from DEM simulations. 
With the advent of computing power, this computational technique is expected to become 
more important in this research field as such information will be necessary for more 
fundamental and mechanistic understanding of nanoparticle gelation processes. Fig. 3 
shows that in the presence of an external magnetic field, the aggregates of nanoparticles are 
aligned along the direction of the magnetic field due to the anisotropic nature of the 
magnetic forces exerted on each nanoparticle and aggregate. At low solid volume fractions, 
individual elongated strands of aggregates are formed while at high solid volume fractions, 
such aggregates are capable of joining together due to smaller distances between aggregates. 
In comparison with the previous case where an external magnetic field was absent, the 
branches of the network that is beginning to form here are composed of more particles and 
are thus longer. This can be understood from inspection of the intermediate states of 
aggregation obtained from the simulations. 

Fig. 4 shows that the aggregation process in the presence of an external magnetic field 
starts, as in the previous case, with the formation of random aggregates throughout  
the domain. However, due to the anisotropic magnetic forces, aggregates formed are 
rotated to align along the direction of the magnetic field. Elongation of aggregates occurs 
as the growth of these aggregates also occurs along the direction of the magnetic field 
imposed. The final network structure consisting of long, parallel chains of nanoparticles is 
also in good agreement with structures of gels obtained experimentally with an applied 
magnetic field. 

Fig. 5 shows quantitatively the time evolution of the average sizes of clusters formed by the 

magnetic nanoparticles both in the absence and presence of an external magnetic field. Here, 

average cluster size is defined as the average number of nanoparticles forming a cluster or 

aggregate. It may be observed that average cluster sizes increase with increasing total 

number of nanoparticles present within the domain or, equivalently, the overall solid 

volume fraction. Interestingly, the average size of clusters formed at each solid volume 

fraction evolves in a similar fashion with respect to time regardless of the presence or 

absence of an external magnetic field. This is despite the fact that the morphologies of the 

clusters or aggregates formed are significantly different as seen earlier. At the end of 1 ms, 

the average cluster sizes for N = 485 and N = 975 both in the absence and presence of an 

external magnetic field have reached more or less steady values. In contrast, the clusters 

formed for N = 1460 and N = 1950 are still growing in size, indicating that the percolation 

process is not completed yet at the end of 1 ms. 

www.intechopen.com



 
Molecular Dynamics – Theoretical Developments and Applications in Nanotechnology and Energy 

 

224 

 

 

 

 

 

 

 

Fig. 3. Aggregation patterns of magnetic nanoparticles in the presence of an external 
magnetic field at 10-3 s physical time obtained from the modified DEM simulations. The 
orientation of the simulated magnetic field was in the vertical direction. The solid volume 
fractions applied were (a) 0.05, (b) 0.10, (c) 0.15 and (d) 0.20. 

(a) (b) 

(c) (d) 
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Fig. 4. Aggregation process of magnetic nanoparticles of solid volume fraction 0.20 in the 
presence of an external magnetic field. The states of aggregation correspond to (a) 0.0 s, (b) 
2.0 × 10-4 s, (c) 4.0 × 10-4 s, (d) 6.0 × 10-4 s, (e) 8.0 × 10-4 s and (f) 10-3 s. 

(a) (b) 

(c) (d) 

(e) (f) 
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Fig. 5. Time evolution of average size of clusters formed by magnetic nanoparticles (a) in the 
absence of an external magnetic field and (b) in the presence of an external magnetic field. 

5. Conclusions 

The process of gelation with and without the application of an external magnetic field giving 
rise to the different internal pore structures could be understood mechanistically by results of 
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the simulations performed using a modified Discrete Element Method. Gelation occurred by 
the formation of random aggregates of nanoparticles within the domain which then joined 
with one another to form a network. However, in the presence of anisotropic magnetic forces, 
these aggregates were rotated to align along the direction of the magnetic field. Elongation of 
aggregates occurred and the final network formed consisted largely of such elongated 
branches of magnetic nanoparticles arranged more or less parallel to one another. 
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