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1. Introduction

Ab initio calculation starting from the bare nuclear interactions is one of recent major
theoretical subjects in nuclear physics. One hopes to understand the property of nuclei
based on the nuclear forces against the background of the progress of the fundamental
understanding of bare nuclear interactions and the study of unstable nuclei far from the beta

stable line, which are expected to have structures different from stable nuclei. Nowadays, one
can obtain the three-, four-, or few-body wave functions starting from the bare Hamiltonian by
applying many kinds of few-body exact methods (Kamada et al., 2001). It is difficult to apply
such methods directly to heavier nuclei in viewpoint of computational costs at this stage,
therefore, in many of ab initio approaches, the effective interaction is constructed based on the
bare interaction by applying, for example, the unitary correlated operator method (UCOM)
(Neff & Feldmeier, 2004) and so on. As one of remarkable achievements in ab initio approaches,
the quantum Monte Carlo method (Wiringa et al., 2000) has presented the appearance of the
two-alpha (4He) cluster structure in 8Be starting from the bare interactions. That suggests that
one has the ability to discuss cluster structures based on the bare nuclear forces.

The existence of cluster states appearing around thresholds, which are weakly bound systems
of subunits consisting of several nucleons to be strongly correlated each other, is predicted
by the Ikeda diagram and the cluster models (Ikeda et al., 1972). The cluster states in
some excited states of a light nucleus can be described as the states different from the
mean-field-like structures. Cluster models in nuclear physics are able to describe these states
successfully. In unstable nuclei, it is expected that mean-field-like and cluster-like structures
coexist because their ground states often exist around the thresholds of decaying particles.
The antisymmetrized molecular dynamics (AMD) (Kanada-En’yo et al., 1995) to be one of
the recent developments of the cluster model has succeeded in understanding and predicting

many properties of unstable nuclei. AMD can describe the nuclear structures without any
assumption of configurations as the results of the energy variation in quantum mechanics.
However, it is difficult for the bare nuclear interactions to be applied straightforwardly to
the AMD framework because of the singularity and complexity in the interactions. Hence,
AMD calculations have been performed with phenomenological interactions represented by

 

Antisymmetrized Molecular Dynamics with Bare 
Nuclear Interactions: Brueckner-AMD, and Its 

Applications to Light Nuclei 

 

8

www.intechopen.com



2 Will-be-set-by-IN-TECH

the simple forms and adjusted parameters to be suitable for the wave functions of AMD so
far.

For the purpose of the fundamental understanding of nuclear structures, we have recently
developed a new AMD framework, “Brueckner-AMD” (Togashi & Katō, 2007; Togashi et al.,
2009), which makes AMD available to us with bare nuclear interactions. It is the basic idea
of Brueckner-AMD that the effective interaction with no singularity to be applicable to the
AMD wave functions is constructed starting from the bare interaction. Instead of the unitary
transformation of the bare Hamiltonian, we introduce the effective interaction, G-matrix,
based on the Brueckner theory to be combined with the single-particle orbits and energies
solved by the AMD+Hartree-Fock (AMD-HF) method (Doté et al., 1997). In this framework,
the G-matrix and single-particle states of AMD can be solved self-consistently so as to reflect
structural changes of nucleus to the effective interactions. In that sense, Brueckner-AMD is a
kind of ab initio calculations.

The appearance of alpha clusters has been studied in many light nuclei for many years. It
is well known that the alpha particle, 4He, which is the unit of alpha clusters, has the strong
stability as its threshold energy for a nucleon is about 20 MeV, while normal nuclei have about
8 MeV. Theoretical few-body studies (Kamada et al., 2001) have proven that the tensor force
in the bare nuclear interaction, which has the operator: S12 = 3(σ1 · r̂)(σ2 · r̂)− σ1 · σ2 where
σ1,2 represent the Pauli matrices, contributes more than half of the binding potential energy
of the alpha particle, and the correlations induced by the tensor force play an important
role in the structure of 4He (Myo et al., 2009). Therefore, it is considered that the peculiar

stability of the alpha particle supported by the tensor force contributions induces the strong
correlations to realize the alpha clusters. However, the reason for the stability of alpha clusters
in a nucleus has not yet been clarified, and it is still one of the central problems in nuclear
theories at present. Although the recent ab initio approach (Wiringa et al., 2000) has provided
the result of the alpha-alpha cluster structure in 8Be as previous mentioned, it has been
difficult to explain the reason why the alpha-alpha cluster in 8Be appears for the complicated
wave function solved from the bare Hamiltonian. Therefore, as our works, we present the
prescription to simulate and visualize the development of alpha-alpha clustering in 8Be, and
elucidate its mechanism of the clustering as the result of effects of nuclear interactions in the
Brueckner-AMD framework.

In this chapter, we plan to introduce the formulation and applications of Brueckner-AMD. In
the second section, we present the formulation of Brueckner-AMD and focus on the details
of the way how to solve the G-matrix in this framework. In the third section, we show
the applications to several light nuclei and the study of alpha-alpha clustering in 8Be in
Brueckner-AMD. Finally, in the forth section, we conclude our works in this chapter.

2. Formulation

In this section, we explain the formulation of Brueckner-AMD. In the first subsection 2.1, we
explain the concept of Brueckner-AMD, in which the G-matrix within the AMD framework
can be calculated straightforwardly. In the second subsection 2.2, the detail of the way how to
solve the G-matrix in Brueckner-AMD and its explicit examples are presented, and then the
energy variation method in Brueckner-AMD is explained in the third subsection 2.3.
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2.1 G-matrix in Brueckner-AMD

In this framework, we use the A-nucleons wave function of AMD, which represents the Slater
determinant of Gaussian wave packets to be satisfied with the Fermi statistics in quantum
mechanics as

|Φ〉 = 1√
A!

det
{

|�Zi〉 · |χi〉
}

, 〈�r |�Zi〉 =
(

2ν

π

)3/4

exp

⎡

⎣−ν

(

�r −
�Zi√

ν

)2

+
�Z2

i

2

⎤

⎦ , (1)

where |�Zi〉 and |χi〉 represent the spatial and spin-isospin parts of a nucleon, respectively. The
spin-isospin functions |χi〉 are given by spin-up (or spin-down) protons (or neutrons) in this

work. The complex vector �Zi represents the position of a nucleon in the phase space.

The bare nuclear interactions have the high repulsive potential at a short distance and the
non-central potentials to induce the admixture of high orbital angular moments (Wiringa
et al., 1995). Every pair wave function in AMD is too simple to describe their induced
nucleon-nucleon correlations. Therefore, we construct the effective interactions to be
applicable to AMD, G-matrix (Ĝ), starting from bare interactions as

Ĝ = v̂ + v̂
Q

εα + εβ − (t̂1 + t̂2)
Ĝ , (2)

where v̂, Q, ε i and t̂i represent the bare interaction, the Pauli projection operator, the
single-particle energy and kinetic operator, respectively. The above equation called
“Bethe-Goldstone equation” denotes an infinite sum of scattering processes of two nucleons
in the medium. In this equation, several methods of choosing the energy denominator of the
propagator have been proposed. Here, we adopt the “QTQ(gap) choice” (Baldo et al., 2001)
where only kinetic energy appears and there is no single-particle potential in intermediate
states, as seen in Eq. (2). In the nuclear matter theory, it is known that the convergence of the
hole-line expansion in the QTQ choice is inferior to that in the “continuous choice” (Baldo et
al., 2001). However, at this stage, we check the adequacy of the QTQ choice in finite nuclei.

In the Brueckner theory, single-particle orbits and energies are needed to determine the
G-matrix self-consistently. The single-particle orbits and energies in AMD can be defined
by the AMD+Hartree-Fock (AMD-HF) method (Doté et al., 1997). Following AMD-HF, we
construct an orthonormal basis { f̃p} for single-particle orbits by diagonalizing the overlap
matrix Bij expressed as

Bij = 〈 �Zi | �Zj 〉 · 〈 χi | χj 〉 , (3)

and then we have

∑
j

Bij · C̃jp = µp · C̃ip, ∑
j

C̃∗
jp C̃jq = δp,q , (4)

| f̃p 〉 =
1√
µp

∑
j

C̃jp | �Zi 〉 · | χi 〉, 〈 f̃p | f̃q 〉 = δp,q. (5)

The Hartree-Fock Hamiltonian matrix can be written with { f̃p}:

hpq = 〈 f̃p | t̂ | f̃q 〉+ ∑
r
〈 f̃p f̃r| Ĝ | f̃q f̃r − f̃r f̃q 〉. (6)
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Then we obtain the single-particle orbit as the solution { fα} for the following equations:

∑
q

hpq · gqα = εα · gpα, ∑
q

g∗qα gqβ = δα,β , (7)

| fα 〉 = ∑
q

gqα | f̃q 〉 = ∑
j

(

∑
q

C̃jq√
µq

· gqα

)

| �Zj 〉 · | χj 〉 = ∑
j

Cjα | �Zj 〉 · | χj 〉,

〈 fα | fβ 〉 = δα,β. (8)

And then the single-particle energy is solved as

εα = 〈 fα | t̂ | fα 〉+ ∑
γ
〈 fα fγ | Ĝ | fα fγ − fγ fα 〉. (9)

In Brueckner-AMD, both the single-particle energies (εα) of the wave function and the
G-matrix (Ĝ) are determined self-consistently. That means that the G-matrix within the AMD
framework can be determined theoretically without any corrections.

2.2 Details of the G-matrix calculation

2.2.1 How to treat the Pauli projection operator

The Pauli projection operator Q in the Bethe-Goldstone equation, Eq. (2), is introduced in
order to take account of the Pauli principle in the scattering processes in the medium. In this
framework, the Pauli projection operator Q is represented as

Q = 1 − P = 1 − ∑
α<β

| fα fβ 〉〈 fα fβ | , (10)

where P is the projection operator for occupied states. In the nuclear matter, the occupied
states are represented as the Fermi gas states below the Fermi momentum kF and the operator
Q can be defined in terms of kF . In Brueckner-AMD, the occupied states are composed of
single-particle orbits with AMD single-particle wave functions, and so it is hard to solve the
Bethe-Goldstone equation directly because of treating the Q-operator. Therefore, following
the prescription formulated by Bandō et al. (Bandō et al., 1970), which presents an appropriate
means of treating Eq. (2) in the finite nuclear systems, we calculate the G-matrix in the
following two steps: First, ignoring the Q-operator (Q → 1), we solve the equation for G0:

Ĝ0 = v̂ + v̂
1

εα + εβ − (t̂1 + t̂2)
Ĝ0. (11)

Second, we solve the following equation to take into account the Q-operator:

Ĝ = Ĝ0 + Ĝ0 Q − 1

εα + εβ − (t̂1 + t̂2)
Ĝ. (12)

The explicit form of Eq. (12) becomes the algebraic equations as

∑
α<β

{

δγ1, α δδ1, β +
〈 fγ1 fδ1

| Ĝ0 | fα fβ − fβ fα 〉
e(γ0δ0, αβ)

}

〈 fα fβ | Ĝ | fγ0 fδ0
− fδ0

fγ0 〉

= 〈 fγ1 fδ1
| Ĝ0 | fγ0 fδ0

− fδ0
fγ0 〉, (13)

e(γ0δ0, αβ) = εγ0 + εδ0
− 〈 fα | t̂ | fα 〉 − 〈 fβ | t̂ | fβ 〉. (14)
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2.2.2 How to solve the Bethe-Boldstone equation

In order to see the way how to solve Eq.(11), we use another expression of the Bethe-Goldstone
equation with wave functions as

ψkl = ϕkl +
Q

εα + εβ − (t̂1 + t̂2)
Ĝ · ϕkl

= ϕkl +
Q

εα + εβ − (t̂1 + t̂2)
v̂ · ψkl , (15)

where the following relationship is used:

〈 ϕij | Ĝ | ϕkl 〉 = 〈 ϕij | v̂ | ψkl 〉 . (16)

In the above equations, ψkl and ϕkl represent the solution of the Bethe-Goldstone equation
and the two-body part of the AMD wave function, respectively. As any analogy of Eq. (15),
the equation for G0, Eq. (11), becomes

ψ0
kl = ϕkl +

1

εα + εβ − (t̂1 + t̂2)
v̂ · ψ0

kl , (17)

where ψ0
kl represents the solution of Eq. (11) and it has

〈 ϕij | Ĝ0 | ϕkl 〉 = 〈 ϕij | v̂ | ψ0
kl 〉 . (18)

Then, Eq. (17) can be solved as the differential equation for every pair (kl) of particles:

[ T̂rel − ω ]
{

δl ′, l0
· ϕl0m

(

r ; �Zrel
kl

)

− ψ0 JS
l ′l0m(r)

}

= ∑
l ′′

V JS
l ′l ′′(r) ψ0 JS

l ′′l0m(r) , (19)

where T̂rel represents the relative kinetic energy operator and ω = εα + εβ − Tcm (ij : kl). In

this case, T̂rel can be expressed as

T̂rel = − h̄2

M

1

r

d2

dr2
r +

h̄2

M

l ′(l ′ + 1)

r2
, (20)

and Tcm (ij : kl) is the expectation value of the two-body center-of-mass kinetic energy:

Tcm(ij : kl) =
〈 �Zcm

ij | T̂cm | �Zcm
kl 〉

〈 �Zcm
ij | �Zcm

kl 〉
, (21)

where T̂cm represents the two-body center-of-mass kinetic energy operator and | �Zcm
kl 〉 is the

two-body AMD wave function of the center-of-mass part: �Zcm
kl = (�Zk + �Zl)/

√
2. Note that

the two-body AMD wave function is decomposed into the center-of-mass and relative parts

and its relative one can be applied directly to Eq. (17). In Eq. (19), ϕl0m

(

r ; �Zrel
kl

)

represent the

two-body AMD wave function of the relative part | �Zrel
kl 〉: �Zrel

kl = (�Zk − �Zl)/
√

2 for the partial
wave having the orbital angular momentum l0 and its z component m as

〈�r | �Zrel
kl 〉 =

(

2νrel

π

)3/4

exp

⎡

⎣−νrel

(

�r −
�Zrel

kl√
νrel

)2

+
�Zrel 2

kl

2

⎤

⎦ = ∑
l0, m

ϕl0m

(

r ; �Zrel
kl

)

| l0m 〉 ,

(22)
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where νrel = ν/2 and the explicit expression of ϕl0m

(

r ; �Zrel
kl

)

is given later. ψ0 JS
l ′l0m(r) is the

solution of Eq. (19) which has the dependence on (i, j, k, l, α, β) due to ω and ϕl0m

(

r ; �Zrel
kl

)

,

and V
JS

l l ′ (r) is the potential for the two-body channel of total angular momentum J and total
spin S with the transition between the angular momenta l and l ′ in the bare interaction v̂,

V JS
l l ′ (r) =

∫

spin

∫

dΩ�r yM ∗
lSJ (Ω�r) v̂ yM

l ′SJ (Ω�r) , (23)

where yM
lSJ (Ω�r) represents the eigenfunction of two-body total angular momentum.

Here, we present explicit expressions of Eq.(19). In the nucleon-nucleon interaction, two-body
total angular momentum J, total spin S, total isospin T, and parity are conserved. However,
due to the Fermi statistics of two nucleons, two-body states are restricted to the four states
under conditions of S + T + l = odd where l is the two-body angular moment: in the case
of even parity (l = 0, 2, 4, · · · ), the spin-triplet S = 1 state called “triplet-even (3E)” with
the isospin-singlet T = 0 and the spin-singlet S = 0 state called “singlet-even (1E)” with the
isospin-triplet T = 1; in the case of odd parity (l = 1, 3, 5, · · · ), the spin-triplet S = 1 state
called “triplet-odd (3O)” with the isospin-triplet T = 1 and the spin-singlet S = 0 state called
“singlet-odd (1O)” with the isospin-singlet T = 0. Hence, the expressions of Eq. (19) for the
above four two-body channels with the lowest allowed angular momentum are presented in
the following.

At this stage, one has no unique nucleon-nucleon interaction and many varieties. However,
at least, nucleon-nucleon interactions have central (v̂c), spin-orbit (v̂ls), and tensor (v̂t) forces.
Here, we consider only the case of the interaction with the above three forces. For spin-singlet
states, the interaction has only the central force, and then, Eq. (19) for the singlet-even (1E)
with l = 0 becomes

[− h̄2

M

1

r

d2

dr2
r − ω ]

{

ϕ0m

(

r ; �Zrel
kl

)

− ψ0 J=0 S=0
00m (r)

}

= v (1E)
c (r) ψ0 J=0 S=0

00m (r) , (24)

and that for the singlet-odd (1O) with l = 1 becomes

[− h̄2

M

1

r

d2

dr2
r +

h̄2

M

2

r2
− ω ]

{

ϕ1m

(

r ; �Zrel
kl

)

− ψ0 J=1 S=0
11m (r)

}

= v (1O)
c (r)ψ0 J=1 S=0

11m (r). (25)

For spin-triplet states, nucleon-nucleon interactions include central, spin-orbit, and tensor
forces. Note that the orbital angular momentum l state may be admixed with higher angular
momentum l ′ state by the tensor force. Hence, Eq. (19) for the triplet-even (3E) with l = 0
becomes the coupled equation to l ′ = 2 as

[− h̄2

M

1

r

d2

dr2
r − ω ]

{

ϕ0m

(

r ; �Zrel
kl

)

− ψ0 J=1 S=1
00m (r)

}

= 2
√

2 v (3E)

t (r)ψ0 J=1 S=1
20m (r)

+v (3E)
c (r)ψ

0 J=1 S=1
00m (r) ,

− [− h̄2

M

1

r

d2

dr2
r +

h̄2

M

6

r2
− ω ] ψ0 J=1 S=1

20m (r) = 2
√

2 v (3E)

t (r) ψ0 J=1 S=1
00m (r)

+[ v (3E)
c (r)− 3v (3E)

ls (r)− 2v (3E)

t (r) ] ψ
0 J=1 S=1
20m (r). (26)
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For the the triplet-odd (3O) with l = 1, the cases of J = 0, 1, and 2 are considered. And then,
Eq. (19) for the 3O with J = 0 and l = 1 becomes

[− h̄2

M

1

r

d2

dr2
r +

h̄2

M

2

r2
− ω ]

{

ϕ1m

(

r ; �Zrel
kl

)

− ψ
0 J=0 S=1
11m (r)

}

= [ v (3O)
c (r)− 2v (3O)

ls (r)− 4v (3O)

t (r) ] ψ
0 J=0 S=1
11m (r) , (27)

that for the 3O with J = 1 and l = 1 becomes

[− h̄2

M

1

r

d2

dr2
r +

h̄2

M

2

r2
− ω ]

{

ϕ1m

(

r ; �Zrel
kl

)

− ψ
0 J=1 S=1
11m (r)

}

= [ v (3O)
c (r)− v (3O)

ls (r) + 2v (3O)

t (r) ] ψ0 J=1 S=1
11m (r) , (28)

and that for the 3O with J = 2 and l = 1 becomes the coupled equation to l ′ = 3 as

[− h̄2

M

1

r

d2

dr2
r +

h̄2

M

2

r2
− ω ]

{

ϕ1m

(

r ; �Zrel
kl

)

− ψ0 J=2 S=1
11m (r)

}

=
6
√

6

5
v (3O)

t (r) ψ0 J=2 S=1
31m (r)

+[ v (3O)
c (r) + v (3O)

ls (r)− 2

5
v (3O)

t (r) ] ψ
0 J=2 S=1
11m (r) ,

− [− h̄2

M

1

r

d2

dr2
r +

h̄2

M

12

r2
− ω ] ψ

0 J=2 S=1
31m (r) =

6
√

6

5
v (3O)

t (r)ψ
0 J=2 S=1
11m (r)

+[ v (3O)
c (r)− 4v (3O)

ls (r)− 8

5
v (3O)

t (r) ] ψ0 J=2 S=1
31m (r). (29)

In the following, we explain the partial-wave expansion of the two-body AMD wave function
of the relative part in Eq. (22). It becomes

〈�r | �Zrel
kl 〉 =

(

2νrel

π

)3/4

exp

[

−νrel�r
2 −

�Zrel 2
kl

2

]

· exp
[

2
√

νrel
�Zrel

kl ·�r
]

, (30)

where the complex vector �Zrel
kl = �ZR + i�ZI . Here, the term “exp

[

2
√

νrel
�Zrel

kl ·�r
]

” can be

expanded as multipole:

exp
[

2
√

νrel
�Zrel

kl ·�r
]

= (4π)2 ∑
l1, l2, m1, m2

Jl1
(2
√

νrelZRr) · il2 jl2
(2
√

νrelZIr)×

Y∗
l1m1

(ẐR)Y∗
l2m2

(Ẑ I)Yl1m1
(r̂)Yl2m2

(r̂) , (31)

where ZR, I = |�ZR, I | and ẐR, I = �ZR, I /|�ZR, I |. In Eq. (31), we use the formulas

exp[ i�k ·�r ] = 4π ∑
l, m

il jl(kr)Y∗
lm(k̂)Ylm(r̂) ,

exp[�k ·�r ] = 4π ∑
l, m

Jl(kr)Y∗
lm(k̂)Ylm(r̂) , (32)

where Jl(r) ≡ (−i)l jl(ir). We use the following formula for the product of two spherical
harmonics with 3-j symbols:

Yl1m1
(r̂)Yl2m2

(r̂) = ∑
l, m

√

(2l1 + 1)(2l2 + 1)(2l + 1)

4π

(

l1 l2 l
m1 m2 m

)(

l1 l2 l
0 0 0

)

Y∗
lm(r̂). (33)
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ZR

ZI
θ’R,I

ϕ’R,I

θI

x

y

z

xz-plane

Z’R,I

Fig. 1. The vectors �Zrel
kl = �ZR + i�ZI and �Zrel

ij = �Z′
R + i�Z′

I in the body-fixed frame we adopt in

this framework are schematically shown.

Thus, in the calculations of 〈 �Zrel
ij | Ô | �Zrel

kl 〉, the state of | �Zrel
kl 〉 can be expressed as the

expansion of angular momental states | lm 〉:

〈�r | �Zrel
kl 〉 = ∑

l, m

ϕlm

(

r ; �Zrel
kl

)

| lm 〉

=

(

2νrel

π

)3/4

exp

[

−νrel�r
2 −

�Zrel 2
kl

2

]

∑
l, m

zlm

(

2
√

νrel r ; �Zrel
kl

)

| lm 〉 , (34)

where

zlm

(

r ; �Zrel
kl

)

≡ (4π)3/2 ∑
l1, l2, m1, m2

√

(2l1 + 1)(2l2 + 1) Jl1
(ZRr) · il2 jl2

(ZIr)×

Y∗
l1m1

(ẐR)Y∗
l2m2

(Ẑ I)
√

2l + 1

(

l1 l2 l
m1 m2 m

)(

l1 l2 l
0 0 0

)

. (35)

In the case of the rotational-invariant operator, for example, nucleon-nucleon interaction,
its expectation value may be calculated in the arbitrary body-fixed frame because

〈 �Zrel
ij | Ô | �Zrel

kl 〉 = 〈 �Zrel
ij | R̂†(Ω)ÔR̂(Ω) | �Zrel

kl 〉 where R̂(Ω) is the operator of rotation by the

arbitrary Euler angle Ω. Here, we adopt the body-fixed frame shown in Fig. 1 where �ZR is

fixed along the z-axis with the angle ẐR = (θR = 0, ϕR = 0) and �ZI is in the xz-plane with the
angle Ẑ I = (θI , ϕI = 0).
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2.2.3 G-matrix calculations with correlation functions

In order to explain the way how to calculate the G-matrix element, we provide another
viewpoint of Eq. (15):

ψkl = ϕkl +
Q

εα + εβ − (t̂1 + t̂2)
Ĝ · ϕkl ≡ F̂kl · ϕkl , (36)

where we call F̂kl the “correlation function” defined schematically as F̂kl = ψkl/ϕkl which
represents nucleon-nucleon correlations induced by the interaction. From Eqs. (16) and (36),
one can obtain the G-matrix element as

〈 ϕij | Ĝ | ϕkl 〉 = 〈 ϕij | v̂ · F̂kl | ϕkl 〉 . (37)

The equation for Ĝ0 has the analogy to Eq. (37):

〈 ϕij | Ĝ0 | ϕkl 〉 = 〈 ϕij | v̂ · F̂0
kl | ϕkl 〉 , (38)

where the correlation function F̂0
kl is defined as F̂0

kl = ψ0
kl/ϕkl by using the solution ψ0

kl of Eq.

(17). Hence, Ĝ0 for each J and S channel becomes

G0 JS
l0l ′(r) = ∑

l ′′
V

JS
l ′ l ′′(r) F0

kl [
JS
l ′′l0

](ω, r) , (39)

where the correlation function is given by ψ
0 JS
l ′l0m(r) and ϕl0m

(

r ; �Zrel
kl

)

in Eq. (19) as

F0
kl [

JS
l ′l0

](ω, r) = ψ
0 JS
l ′l0m(r) / ϕl0m

(

r ; �Zrel
kl

)

. (40)

Note that the above correlation function has the dependence on (i, j, k, l, α, β) through

ϕl0m

(

r ; �Zrel
kl

)

and ω = εα + εβ − Tcm(ij : kl) of Eq. (19). The correlation function of Eq.

(40) is approximated as m = 0 in ψ
0 JS
l ′l0m(r) and ϕl0m

(

r ; �Zrel
kl

)

because we find that it has little

dependence on m. In order to carry the practical calculations, we determine Ĝ0 with explicit
operators as follows:

Ĝ0 S
l0l ′ =

2

∑
λ=0

G0 S
l0l ′, λ(r)(Rλ · Sλ) , (41)

where (Rλ · Sλ) is a scalar product of an orbital tensor Rλ and a spin tensor Sλ of rank λ.
The components of λ = 0, 1, and 2 correspond to the central, spin-orbit, and tensor forces in a
potential, respectively. And then, one can utilize the following equation

G0 S
l0l ′, λ(r) =

(2λ + 1)

〈 l0 || Rλ || l ′ 〉 〈 S || Sλ || S 〉 ∑
J

(−1)J−l0−S(2J + 1)W(l0l ′SS; λJ) G0 JS
l0l ′(r) , (42)

where the expressions with double bars such as 〈 l0 || Rλ || l ′ 〉 represent the reduced matrix
elements and W(l0l ′SS; λJ) is the Racah coefficient. In this calculation, the angular momenta l0
and l ′ in Eq. (42) are taken as the allowed lowest values for each two-body channel: l0 = l ′ = 0
in the 1E and 3E central force, l0 = l ′ = 1 in all forces of the 1O and 3O channels, l0 = l ′ = 2
in the 3E spin-orbit force, and l0 = 0, l ′ = 2 in the 3E tensor force. As a result, Ĝ0 becomes

Ĝ0 = G0
λ=0(r) + G0

λ=1(r)
�L · �S + G0

λ=2(r)S12. (43)
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Note that Ĝ0 has the dependence on (i, j, k, l, α, β) drived from the correlation function of Eq.
(40). By using the matrix element for Ĝ0, 〈 fγ fδ | Ĝ0 | fα fβ − fβ fα 〉, one can obtain the G-matrix

element 〈 fγ fδ | Ĝ | fα fβ − fβ fα 〉 from Eq. (13).

The G-matrix has the dependence on the bra state (i, j) and difficulty to treat the case of
superpostion of wave functions. In addition, the G-matrix is given by the matrix element
not to be easy to analyze its properties. Hence, in the following, we present the practical
alternative. In Eq. (19), we use Tcm(kl) instead of Tcm(ij : kl) in ω as

Tcm(kl) =
〈 �Zcm

kl | T̂cm | �Zcm
kl 〉

〈 �Zcm
kl | �Zcm

kl 〉
, (44)

which reprents the expectation value of the two-body center-of-mass kinetic energy for only
the ket state. We solve Eq. (19) using ω0 = εα + εβ − Tcm(kl) instead of ω, and then, by using

its solution, we determine the correlation function F0
kl [

JS
l ′l0

](ω0, r) with no dependence on the

bra state (i, j). One can obtain the alternative of the G0-matrix, 〈 fγ fδ | Ĝ′ 0 | fα fβ − fβ fα 〉, by

applying Eqs. (39) and (42) with the correlation function F0
kl [

JS
l ′l0

](ω0, r). Here, we consider

the ratio of the G-matrix element solved by 〈 fα fβ | Ĝ0 | fα fβ − fβ fα 〉 with F0
kl [

JS
l ′l0

](ω, r) from

Eq. (13), 〈 fα fβ | Ĝ | fα fβ − fβ fα 〉, to the matrix element 〈 fα fβ | Ĝ′ 0 | fα fβ − fβ fα 〉:

C
αβ
Q =

〈 fα fβ | Ĝ | fα fβ − fβ fα 〉
〈 fα fβ | Ĝ′ 0 | fα fβ − fβ fα 〉

, (45)

which represents the effects of the operator Q and Tcm(ij : kl). By using the above value C
αβ
Q ,

one can present the explicit form of the correlation function F̂kl in Eq. (36) as

Fkl [
JS
l ′l0

](ω0, r) = C
αβ
Q · F0

kl [
JS
l ′ l0

](ω0, r). (46)

Hence, the G-matrix for each J and S channel becomes

G
JS
l0l ′ (r) = ∑

l ′′
V

JS
l ′ l ′′(r) Fkl [

JS
l ′′l0

](ω0, r). (47)

Applying Eq. (42) with G JS
l0l ′ (r) instead of G0 JS

l0l ′(r), the G-matrix can be determined as

Ĝ = Gλ=0(r) + Gλ=1(r)�L · �S + Gλ=2(r)S12. (48)

Note that the expectation value for the potential of Eq. (48) reproduces the G-matrix element.
As seen in the above discussion, one can obtain the G-matrix as the effective interaction with
the explicit form by using the correlation function of Eq. (46).

2.2.4 Explicit examples of G-matrix

In order to see the properties of G-matrix in Brueckner-AMD, we present the G-matrix in
the specific case. As the bare nucleon-nucleon interaction, we adopt the Argonne v8′ (AV8′)
(Wiringa & Pieper, 2002). AV8′ is constructed by renormalizing the�L2 and (�L ·�S)2 terms in the
Argonne v18 (AV18) (Wiringa et al., 1995), which is the high accurate bare nucleon-nucleon
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interaction, into the central, spin-orbit, and tensor forces. And the iso-spin symmetry and
independence breaking included in AV18 are ignored in the case of AV8′. In the following, we
switch off the electromagnetic interactions.

As a preparation, several explicit terms of the G-matrix in Eq. (48) are shown. For the
spin-singlet states, the G-matrix has only the central force given by the simple product of
the bare interaction multiplied by the correlation function. For example, the singlet-even (1E)
central force of the G-matrix becomes

G (1E)
c (r) = v (1E)

c (r) · Fkl [
J=0 S=0
l ′=0 l0=0 ](ω0, r). (49)

The singlet-odd (1O) central G-matrix is given as the same way as the above equation.
On the other hand, for the spin-triplet states, the non-central forces in the bare interaction
are renormalized into the central G-matrix through the correlation functions. Hence, the
triplet-even (3E) central G-matrix becomes

G (3E)
c (r) = v (3E)

c · Fkl [
J=1 S=1
l ′=0 l0=0 ] + 2

√
2 v (3E)

t · Fkl [
J=1 S=1
l ′=2 l0=0 ] , (50)

and the triplet-odd (3O) central becomes

G (3O)
c (r) =

1

9
{ (v (3O)

c − 2v (3O)

ls − 4v (3O)

t ) · Fkl [
J=0 S=1
l ′=1 l0=1 ]

+ 3(v (3O)
c − v (3O)

ls + 2v (3O)

t ) · Fkl [
J=1 S=1
l ′=1 l0=1 ]

+ 5(v (3O)
c + v (3O)

ls − 2

5
v (3O)

t ) · Fkl [
J=2 S=1
l ′=1 l0=1 ] + 6

√
6 v (3O)

t · Fkl [
J=2 S=1
l ′=3 l0=1 ] } , (51)

where the (ω0, r) dependence in the above right hands is omitted for simplicity. In addition, as
examples, for the 3E tensor and 3O spin-orbit G-matrices, their expressions where the (ω0, r)
dependence is omitted as the aboves are given:

G (3E)

t (r) = v (3E)

t · Fkl [
J=1 S=1
l ′=0 l0=0 ] +

1

2
√

2
(v (3E)

c − 3v (3E)

ls − 2v (3E)

t ) · Fkl [
J=1 S=1
l ′=2 l0=0 ] , (52)

G (3O)

ls (r) = − 1

12
{ 2(v (3O)

c − 2v (3O)

ls − 4v (3O)

t ) · Fkl [
J=0 S=1
l ′=1 l0=1 ]

+ 3(v (3O)
c − v (3O)

ls + 2v (3O)

t ) · Fkl [
J=1 S=1
l ′=1 l0=1 ]

− 5(v (3O)
c + v (3O)

ls − 2

5
v (3O)

t ) · Fkl [
J=2 S=1
l ′=1 l0=1 ]− 6

√
6 v (3O)

t · Fkl [
J=2 S=1
l ′=3 l0=1 ] }. (53)

In Brueckner-AMD, the G-matrix for each pair have dependence on not only the paricle pair
(k, l) but also the single-particle orbits (α, β) due to the dependence on ω0 = εα + εα − Tcm(kl)
in the correlation function. Therefore, in general, one cannot abstract the explicit form as
the interaction between particles (k, l). However, as the special case, in the system of 4He
consisting of the spin-up proton, spin-up neutron, spin-down proton, and spin-down neutron,
the G-matrix is given as the interaction between particles (k, l) because the single-particle
orbits | fα,β 〉 are equal to the one-particle wave funcions, which means (α, β) = (k, l), on
condition that the overlap matrix Bij in Eq. (3) becomes a diagonal matrix such as this system.

Here, we consider the G-matrix between particles in the 3N-N cluster system of 4He where
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Fig. 2. The comparison of the G-matrix with the bare interaction AV8′ for the central
components of two-body four channels. In these graphs, the x- and y-axes represent the
distances between nucleons (fm) and the potential energies (MeV), respectively. The blue and
red lines represent the G-matrix and AV8′, respectively. The explanation of the G-matrix is in
text in detail. In the 3E channel, the attractive part is enlarged.

three nucleons (3N) located at the same positon are separated from one nucleon (N). We
assume that three nucleons consist of the spin-up proton, spin-up neutron, and spin-down
proton and one nucleon to be sperated is the spin-down neutron, and the distance between
three nucleons and one nucleon is 1.0 fm. The AMD wave funciton of Eq. (1) with ν = 0.238
(fm−2) is used in this calculation. In Figs. 2 and 3, we present all forces of the G-matrix
between the spin-up proton in three nucleons and the spin-down neutron to be one nucleon
sperated from three nucleons at a distance of 1.0 fm and compare them with those of the bare
interaction AV8′. As seen in Fig. 2, the central forces of the bare interaction AV8′ have huge
repulsive parts at a short distance, while, in the central G-matrices, the short range repulsion
is reduced to be applicable to the AMD wave function. At a long distance, each force of the
G-matrix except the 3E state agrees with the behaviour of the bare interaction. For the 3E
G-matrices, the renormalization of the strong 3E tensor force with a long range tail in the
bare interaction acts as the long range correlation to be large contributions. Especially, in the
3E central G-matrix, the renormalization of tensor force by the correlation for the admixture

of l ′ = 2, Fkl [
J=1 S=1
l ′=2 l0=0 ] in Eq. (50), induces the more attractive part than that of the bare

interaction and contributes largely to the binding energy of a nucleus.
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Fig. 3. The comparison of the G-matrix with the bare interaction AV8′ for the non-central
components of 3O and 3E channels in the upper and lower panels, respectively. In these
graphs, the meanings of the axes and lines are the same as Fig. 2.

2.3 Energy variation in Brueckner-AMD

In the AMD method, the wave-packet positions �Zi in Eq. (1) are complex variational
parameters in the A-nucleons wave function. In this method, one usually sets the initial

configuration of the wave-packet positions {�Zi} randomly and obtains the optimized solution
automatically with no assumption by using the frictional cooling method of molecular

dynamics (Kanada-En’yo et al., 1995) to determine �Zi. The brief expression of frictional
cooling equation is given by

d�Zi

dt
= − ∂〈H〉

∂�Z∗
i

,
d�Z∗

i

dt
= − ∂〈H〉

∂�Zi

, (54)

where 〈H〉 is the expectation value of Hamiltonian. In Brueckner-AMD, the expectation value
of Hamiltonian is expressed as 〈H〉 = 〈T〉− 〈TCM〉+ 〈G〉where 〈T〉, 〈TCM〉, and 〈G〉 represent
the expectation values of the A-body summation of the one-body kinetic energy operator t̂i

as T̂ = ∑
A
i t̂i, the center-of-mass kinetic energy of the system, and the G-matrix as two-body

interactions, respectively. In Eq. (54), the next positions of �Zi in the time evolution are decided
as

�Zi(t + ∆t) = �Zi(t)− ∆t · ∂〈H〉
∂�Z∗

i

. (55)
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If 〈H〉 converges in this time evolution, we consider that the optimized energy and state are

attained. In Brueckner-AMD, the derivative of �Zi in 〈H〉 cannot be calculated analytically
because the G-matrix depends on the change of the single-particle orbits and the Pauli

projection operator derived from the configuration of the wave-packet positions {�Zi}.
Therefore, we determine the G-matrix self-consistently for each small displaced configuration

of {�Zi + ∆�Zi} and calculate this derivative as the difference in �Zi.

3. Applications

We apply Brueckner-AMD to various light nuclei and present the applicability of this method.
In the subsection 3.1, we present the results of light nuclei with the mass number A < 10
to describe cluster structures and reproduce the energy level schemes in Brueckner-AMD.
Furthermore, we discuss the mechanism of clustering in 8Be which has the alpha-alpha cluster
structure in the subsection 3.2. In these calculations, we adopt the bare nuclear interaction of
the Argonne v8′ (AV8′) (Wiringa & Pieper, 2002) explained in the previous section and switch
off the electromagnetic interactions.

3.1 Description of the structures and energy-level schemes of light nuclei

In Brueckner-AMD, the bound states of nucleus can be obtained as the solution of
energy variation starting from the bare nuclear interactions without any assumption of
configurations. However, in general, since the AMD wave functions are not good quantum
states of the spin and parity (Jπ), one cannot calculate the energy-level scheme by a single
AMD wave function and must project out the AMD wave functions onto the spin and parity
eigenstates, which means the superposition of space-reflected and rotated Slater determinants
(Kanada-En’yo et al., 1995). The parity projection means a linear combination of two Slater
determinants:

| Φ± 〉 = 1√
2

(

1 ± P̂
)

| Φ 〉 , (56)

where P̂ is the space-reflection operator that operates at the spatial coordinate �Zi of each
nucleon. In projecting out the wave functions onto each spin-parity J± state, the spin- and

parity-projected state | Φ
J ±
MK 〉 is expressed as

| Φ
J ±
MK 〉 = 2J + 1

8π2

∫

dΩ D J ∗
MK(Ω) R̂(Ω) | Φ± 〉 , (57)

where D J
MK(Ω) is the Wigner D-function and R̂(Ω) is the rotational operator that makes

the spatial and spin coordinates rotated by the Euler angle Ω. In the above equation, the
integration means a linear combination of differential rotated Slater determinants. The energy

expectation value of | Φ
J ±
MK 〉 is given by

〈 Ĥ
J ±
K′ K 〉 ≡ 〈Φ

J ±
MK′ | Ĥ | Φ

J ±
MK 〉

〈 Φ
J ±
MK′ | Φ

J ±
MK 〉

=

∫

dΩ D J ∗
K′K(Ω)

{

〈 Φ | R̂(Ω) · Ĥ | Φ 〉 ± 〈 Φ | P̂R̂(Ω) · Ĥ | Φ 〉
}

∫

dΩ D J ∗
K′K(Ω)

{

〈Φ | R̂(Ω) | Φ 〉 ± 〈 Φ | P̂R̂(Ω) | Φ 〉
}

.

(58)
In order to calculate the energy expectation value of the J± state correctly, we perform

the K-mixing by diagonalizing the Hamiltonian matrix 〈 Φ
J ±
MK′ | Ĥ |Φ

J ±
MK 〉 and norm matrix

〈 Φ
J ±
MK′ | Φ

J ±
MK 〉 simultaneously for the quantum numbers of K and K′.
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Fig. 4. Intrinsic matter ρ densities as a half value, the proton ρπ and neutron ρν ones of the
lowest-energy parity solutions in 4He, 7Li, 8Be, and 9Be. The size of these squares is shown in
the panel of 4He.

In these calculations, we determine the wave functions | Φ 〉 by performing the energy
variation for the parity-projected states | Φ± 〉. Therefore, we can obtain not only the
lowest-energy parity solution corresponding to the ground state but also the excited parity
solution, whose parity is opposite to that of the lowest-energy state. Projecting out the
solutions of the energy variation, | Φ± 〉, onto each J state, we calculate the energy levels. In
the following, we present the results of 4He, 7Li, 8Be, and 9Be using the above procedure. As
the Gaussian width parameter ν for every wave packet in Eq. (1), we adopt ν = 0.222 (fm−2)
for 4He and ν = 0.208 (fm−2) for other nuclei. Fig. 4 shows the intrinsic densities obtained
from the wave functions | Φ 〉. For 9Be, both the lowest-energy negative-parity solution and
the excited positive-parity one are shown. In these figures, the X-, Y-, and Z-axes in the
body-fixed frame are chosen so as to be 〈∑i z2

i 〉 ≥ 〈∑i y2
i 〉 ≥ 〈∑i x2

i 〉, and each density

distribution in the Z-Y plane is displayed. As seen in Fig. 4, the alpha particle (4He) is
compactly spherical and 8Be consists of two-alpha cluster. In this result, the density of 7Li
does not present the explicit cluster structure as seen in an almost symmetric distribution. In
the densities of 9Be, the structures of two-alpha cluster plus a valence neutron can be seen. In
the negative-parity state of 9Be, the density distribution of the valence neutron corresponds
to a π-molecular orbit; on the other hand, that of the positive-parity state corresponds to a
σ-molecular orbit.
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In Table 1, the calculated binding energy of the ground state for each nucleus is listed
to be compared with the experimental one. Although the calculated ground states are
underbinding for the experimental ones, it is known that bare three nucleons interactions are
needed to reproduce the experimental binding energies from accurate few-body calculations
(Wiringa et al., 2000). However, in this work, there seems to be room for improvement to
develop these calculations to the superposition with the wave functions having different

configurations {�Zi} or Gaussian width parameters ν. The calculated energy-level schemes
of 7Li, 8Be, and 9Be are shown in Fig. 5. These energy levels are reproduced well. In the
result of 9Be, the energy levels including the first excited states, 3/2−2 , 5/2−2 , and 7/2−2 , which
can be described by the K-mixing, are also reproduced well. In these calculations, in the
negative-parity states of 9Be, the group of the dominant K = 3/2 i.e. Kπ = 3/2− band
contains 3/2−1 , 5/2−1 , and 7/2−1 states, while the 1/2−1 , 3/2−2 , 5/2−2 , and 7/2−2 states belong

to the Kπ = 1/2− band. The predicted 9/2−1 state is described coherently by the K = 1/2
and K = 3/2 states, which has almost equal weights to the K = 1/2 and K = 3/2. The
positive-parity states of 9Be are described as the Kπ = 1/2+ band.

nucleus Jπ B-AMD (MeV) EXP (MeV)
4He 0+ −24.6 −28.3
7Li 3/2− −29.6 −39.2
8Be 0+ −44.0 −56.5
9Be 3/2− −41.9 −58.2

Table 1. Total binding energies of the ground states for 4He, 7Li, 8Be, and 9Be. The column
labeled “Jπ” lists the spin and parity of the ground state for each nucleus, and the columns
labeled “B-AMD” and “EXP” list the calculated binding energies and the experimental ones,
respectively.

3.2 Investigation of the mechanism of alpha-alpha clustering

In the following, we simulate the development of the alpha-alpha cluster in 8Be and
investigate its mechanism by using the bare nuclear interaction AV8′ in the Brueckner-AMD
framework. In this work, we construct the states that have the definite distance between two
quasi-clusters consisting of four nucleons of the spin-up proton, spin-up neutron, spin-down
proton, and spin-down neutron by using the constraint cooling method (Yamamoto et al.,
2010). The definition of the distance between quasi-clusters in this case is represented as

〈 d2 〉1/2 = |�R1 − �R2|, �R1(�R2) =
1

4 ∑
i∈C1(C2)

Re�Zi√
ν

, (59)

where the �R1(�R2) represents the center of mass of the quasi-cluster C1(C2) consisting of four
nucleons. We take the z-axis as an inertia axis and the center of mass of quasi-clusters on the
z-axis. We define a quasi-cluster as an initial set of nucleons that are chosen arbitrarily and
determine a configuration of eight nucleons for 8Be by solving the following equation of the
constraint cooling method as an energy variation:

d�Zi

dt
= − ∂〈H〉

∂�Z∗
i

− ∂C

∂�Z∗
i

, C = C0 ·
(

〈 d2 〉1/2 − d
)2

, (60)
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Fig. 5. Low-lying energy-level schemes of the experiments and Brueckner-AMD calculations
labeled “EXP” and “B-AMD”, respectively. The groud states are normalized to zero energy in
these figures. Each energy level is represented as the line labeled its spin and parity.
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Fig. 6. Upper panel: Total binding energies of 8Be are shown as a function of the distance of
quasi-clusters. Lower panels: Density distributions of 8Be at d = 0.5, 3.0, 4.5 fm.

where C0 is the positive constant and d is the constraint parameter; in this work, d is the
distance of quasi-clusters. The above equation makes it possible to obtain the solution of the
energy variation under the constraint of a distance between two quasi-clusters. Note that
the set of nucleons is not assumed to be localized spatially in this case. As a parameter of
the wave function, we use the optimized Gaussian width for every wave packet in Eq. (1);
ν = 0.195 (fm−2). We perform the energy variation and calculate the total binding energy for
the parity-projected states corresponding to the lowest-energy parity solutions | Φ+ 〉 in Eq.
(56). In Fig. 6, the energy curve of calculated total binding energies are shown as a function
of the distance between two quasi-clusters in the upper panel, and we show the intrinsic
density distribution of wave functions obtained at different d-values (d = 0.5, 3.0, and 4.5 fm)
in the lower panels. As seen in Fig. 6, one can see that the optimum distances are around
3.0 fm, where the alpha-alpha structure is realized starting from the bare nuclear interaction
AV8′, and the situation that the localized clusters are more developed at larger distances is
reproduced as the results of the energy variation. In Fig. 7, we present single-particle energies
and orbits at different distances d. Single-particle energies of eight nucleons are degenerated
approximately into two types of energy ε1 and ε2 as seen in the upper panel of Fig. 7.
The two energy orbits correspond to gerade and ungerade orbits in the molecular orbital
method (Bandō et al., 1970). However, in the present approach without the molecular-orbit
assumption, the single-particle orbits describe not only molecular orbits but also atomic orbits
of a mean field. At the small distance d = 0.5 fm, ε2 − ε1 = 15 MeV are obtained in this
calculation. That energy difference between the lowest (ε1) and the excited (ε2) single-particle
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Fig. 7. Upper panel: Single-particle energies of 8Be are shown. Lower panels: The density
distributions of single-particle orbits for the two spin-up protons at d = 0.5, 3.0, 4.5 fm. The
other single-particle orbits also have similar behavior. The upper and lower density
distributions represent the higher-energy (ε2) and lower-energy (ε1) states, respectively.

orbits are consistent with h̄ω of a shell model in nuclear systems. At the large distance d = 4.5
fm, ε1 and ε2 degenerate within 5 MeV. This result suggests that the single-particle orbits for
ε1 and ε2 have configurations similar to each other. As shown in the lower panels of Fig.
7, at the small distance region of d = 0.5 fm, the two types of single-particle energy ε1 and
ε2 are understood as those of s-wave and p-wave orbits, respectively. The four nucleons of
the p-wave orbit (ε2), which has a node at the origin, occupy around the z-direction in the
intrinsic framework. This is the cause of the dumbbell shape of the density distribution at
the small distance. On the other hand, at the large distance region far from d = 4.5 fm,
these single-particle energies are expected to degenerate because all eight nucleons occupy the
same type of single-particle orbit around different alpha clusters. At the intermediate distance
region of d = 3.0 fm, they are interpreted to form gerade and ungerade orbits in the molecular
orbital picture. In this work, we discuss the mechanism to cause this energy curve focusing
on the state (d) dependence of the G-matrix. For this purpose, we decompose the G-matrix
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Fig. 8. Upper panel: Energy curves with and without odd-force contributions. The solid line,
“Even+Odd+kine”, and the dashed line, “Even+kine”, represent the energy curves with and
without the odd-force, respectively. Lower panel: the solid line, “G”, is the energy curve for
the distance of quasi clusters, which is identical with the curve in the upper panel of Fig. 6,
and the dotted line, “G1E (d=4.5)”, and dashed line, “G3E (d=4.5)”, are the energy curves
calculated using the fixed G-matrices at d = 4.5 fm for 1E and 3E channels, respectively.

into the two-body spin-parity channels and recalculate the energy curve fixing the G-matrix
calculated at the largest d = 4.5 (fm) for each two-body spin-parity channel. The upper panel
of Fig. 8 indicates that the energy surface does not change even if the odd-force contributions
of the triplet-odd (3O) and singlet-odd (1O) channels are taken off, and therefore, in the lower
panel of Fig. 8, we focus on only the even-force contributions of the triplet-even (3E) and
singlet-even (1E) channels. As seen in the lower panel of Fig. 8, the energy curve using the
fixed G-matrix for the 1E channel has no difference from the original energy curve; the energy
curve using the fixed G-matrix for the 3E channel is shifted largely from the original one.
That means the 1E G-matrix has no state dependence but the 3E one is responsible for the
state dependence of the G-matrix to cause the development of clusters in 8Be. This large state
dependence is caused by the contributions of the tensor force of the bare nuclear interaction

renormalized mainly by the correlation function Fkl [
J=1 S=1
l ′=2 l0=0 ] in Eq. (50). If the G-matrix had
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no state dependence, the energy curve would be deeper at a small distance, in other words,
the actual energy curve becomes shallow due to the suppression of contributions at a small
distance as the state dependence of the G-matrix and induces the separated clusters.

4. Conclusion

We develop a new ab initio framework, Brueckner-AMD, to makes AMD available with bare
nuclear interactions. In this theory, we focus on the fact that one can apply the Brueckner
theory straightforwardly to the AMD framework by using AMD-HF and the correlation
functions constructed by the solutions of the Bethe-Goldstone equation make it possible to
calculate the G-matrix in the AMD calculation. In these applications of Brueckner-AMD, we
show that one can describe various states of nucleus starting from bare nuclear interactions
with no assumption of a configuration. Furthermore, we simulate the development of
alpha-alpha cluster in 8Be and elucidate the origins of its formation in the Brueckner-AMD
framework. The alpha-alpha clustering of 8Be is induced by the contributions of the
interaction for the triplet-even (3E) channel, where the 3E G-matrix has large state dependence
caused by the correlations derived from the tensor force of the bare nuclear interaction.
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Togashi, T. & Katō, K. (2007). Brueckner-AMD Method and Its Applications to Light Nuclei.
Progress Theoretical Physics, Vol.117, No.1, (January 2007), pp.189-194, ISSN 1347-0481
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