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1. Introduction

Discrete-time wavelet transform (DWT) is found to be better than other transforms in the

time-varying system analysis, e.g. for time-varying parametric modelling [16], time-varying

systems identification [17], time-varying parameter estimation [18] and time domain signal

analysis [19]. In the literature the common method to analyze the time-varying system using

discrete-time wavelet transform is to model the time-varying system with a time-invariant

system firstly, because a general analysis of time-varying discrete-time wavelet transform

(TV-DWT) is still missing. To analyze the time-varying system directly using the time-varying

discrete-time wavelet transform, we need the theory for the time-varying discrete-time

wavelet transform.

The theory of time-invariant discrete-time wavelet transform (DWT) are quite complete

[1,2,3]. For time-varying discrete-time wavelet transform, in literature there are some papers

related with this topic by studying the changes of two different filter banks [10,11,12]. In [10]

the authors analyzed the time-varying wavelet transform through changing the two-band

filter banks used in the tree-structured implementation of DWTs with an simple example.

In [11] the time-varying wavelet packets built with time-varying cosine-modulated filter

banks were investigated. Similar with [10], in [12] the authors studied time-varying wavelet

packets more theoretically with changing the two orthogonal two-band filter banks used in

tree-structure of DWTs. Generally, in the existed theory of time-varying discrete-time wavelet

transform it lacks a basic definition and description of the time-varying discrete-time wavelet

transform. A basic analysis of time-varying discrete-time wavelet transform is also missing.

The author has studied TV-DWT since some years and has published a series of papers about

this topic. In this Chapter we summarize the author’s main research results.

In our method the time-varying discrete-time wavelet transform is studied using a

time-varying octave-band filter bank with tree structure. With this implementation the

analysis of the time-varying discrete-time wavelet transform is equal to the analysis of

the time-varying discrete-time octave-band filter bank. Then, the time-varying filter bank

theory can be used in TV-DWT analysis. In this chapter we provide some theorems for the

time-varying discrete-time wavelet transform with proofs.
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2. Formulation of time-varying discrete-time wavelet transforms

From the point of view of digital signal processing, the time-varying discrete-time wavelet

transform can be implemented by a time-varying octave-band filter bank with tree structure.

Fig. 1 shows the most general time-varying discrete-time wavelet transform implemented

with a time-varying octave-band filter bank, where the lowpass and highpass filter Hl(z, m),

Hu(z, m), the stage number of the split-merge J(m), all are varying with time index m. In other

words, both the frequency characteristic and the time-frequency tiling of the discrete-time

wavelet transform are varying with time. Fig. 2 shows the time-varying nonuniform filter

bank implementation. With this implementation the analysis of the time-varying discrete-time

wavelet transform is equal to the analysis of the time-varying discrete-time octave-band filter

bank.

Note that we define the time-varying discrete-time wavelet transform varying with index m

which is equivalent to the output index at the last stage of octave-band filter banks. The time

indices of the other output are related to m by

mj = 2J(m)−i−j
· m, 0 ≤ j ≤ J(m)− 2. (1)

In the literature there are some papers related with this topic by studying changes between

two time-invariant filter banks [10,11,12]. In particular, in [10] the authors have discussed

the transition behavior during the change between two time-invariant discrete-time wavelet

transforms. Different from the existed publications, in this chapter we analyze the general

time-varying discrete-time wavelet transform in detail based on the octave-band filter bank

and the nonuniform filter bank implementation.

Fig. 1. Time-varying discrete-time wavelet transform implemented with time-varying
octave-band filter banks.

3. Implementation with time-varying octave-band filter Banks

To make the analysis simple, in the following analysis we suppose that the stage number J

does not change with time and is a constant. Then we get a J-stage time-varying octave-band

filter bank. Just as depicted in Fig. 1, a J-stage octave-band time-varying filter bank consists

of J stages of two-channel time-varying filter bank. In the analysis side, the input signal x(n)

is first split by the two-channel time-varying filter bank at the first stage, then the lowpass

output is spilt again by the same two-band time-varying filter bank at the second stage.
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Fig. 2. Time-varying nonuniform filter bank implementation, where M(m) = 2J(m).

The process is ongoing until J-stage. In the synthesis side, the signal is merged to generate

the reconstructed signal x̂(n). From the theorem of time-invariant discrete-time wavelet

transform [2], we know that if the individual two-channel filter bank, or each split-merge

pair is perfectly reconstructed, the octave-band filter bank is as well. Such statement is also

valid for the time-varying octave-band filter bank. Therefore, we have following theorem.

Theorem 1: A time-varying discrete-time wavelet transform implemented with a

time-varying octave-band filter bank is a biorthogonal time-varying transform if each

two-channel time-varying filter bank is perfectly reconstructed.

We cannot use the method used in the time-invariant case to prove the above theorem because

the system is time-varying. To prove theorem 1, we define analysis and synthesis matrices of

the j-stage two-channel time-varying filter bank shown in Fig. 3 as

T
(j)
ma =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

...
...

...
...

...
...

· · · h0(mj) h1(mj) · · · hN(j)−1(mj) hN(j)(mj) hN(j)+1(mj) · · ·

· · · 0 h0(mj) · · · hN(j)−2(mj) hN(j)−1(mj) hN(j)(mj) · · ·

· · ·
...

...
. . .

...
...

... · · ·

· · · 0 0 · · · h0(mj) h1(mj) h2(mj) · · ·

· · · 0 0 · · · 0 h0(mj + 1) h1(mj + 1) · · ·

...
...

...
...

...
...

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(2)
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T
(j)
ms =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

...
...

...
...

...

· · · g0(mj) 0 · · · 0 0 · · ·

· · · g1(mj) g0(mj) · · · 0 0 · · ·

· · ·
...

...
. . .

...
... · · ·

· · · gN(j)−1(mj) gN(j)−2(mj) · · · g0(mj) 0 · · ·

· · · gN(j)(mj) gN(j)−1(mj) · · · g1(mj) g0(mj + 1) · · ·

· · · gN(j)+1(mj) gN(j)(mj) · · · g2(mj) g1(mj + 1) · · ·
...

...
...

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (3)

where

N(j) = 2J−j, j = 1, 2, · · · , , (4)

and

hi(mj) =

[
hu(L − 2i − 1, mj) hu(L − 2i − 2, mj)

hl(L − 2i − 1, mj) hl(L − 2i − 2, mj)

]
, (5)

gi(mj) =

[
gu(2i, mj) gl(2i, mj)

gu(2i + 1, mj) gl(2i + 1, mj)

]
, (6)

where L is the filter length.

Fig. 3. The j-th stage two-channel time-varying filter bank.

Furthermore, we define two special matrices Λ0 and Λ1

Λ0 =

⎡
⎢⎢⎢⎢⎢⎣

...
...

...
...

...

· · · 1 0 0 0 0 · · ·

· · · 0 0 1 0 0 · · ·

...
...

...
...

...

⎤
⎥⎥⎥⎥⎥⎦

(7)

Λ1 =

⎡
⎢⎢⎢⎢⎢⎣

...
...

...
...

...

· · · 0 1 0 0 0 · · ·

· · · 0 0 0 1 0 · · ·

...
...

...
...

...

⎤
⎥⎥⎥⎥⎥⎦

, (8)
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to extract the lowpass and highpass output like

y
(j)
0 = Λ0y(j), (9)

y
(j)
1 = Λ1y(j), (10)

where

y(j) =
[
· · · y

(j)
0 (−1) y

(j)
1 (−1) y

(j)
0 (0) y

(j)
1 (0) y

(j)
0 (1) y

(j)
1 (1) · · ·

]T
, (11)

y
(j)
0 =

[
· · · y

(j)
0 (−1) y

(j)
0 (0) y

(j)
0 (1) · · ·

]T
, (12)

y
(j)
1 =

[
· · · y

(j)
1 (−1) y

(j)
1 (0) y

(j)
1 (1) · · ·

]T
. (13)

Based on the above matrix definitions we can describe the filter bank at the j-th stage showed

in Fig. 3 as

x̂(j) = T
(j)
ms T

(j)
ma x(j). (14)

After adding the (j+1)-th stage with a biorthogonal time-varying two-channel filter bank

shown in Fig. 4, we have

x̂(j) = T
(j)
ms y(j)

= T
(j)
ms

{
Λ

T
0 y

(j)
0 + Λ

T
1 y

(j)
1

}

= T
(j)
ms

{
Λ

T
0 Λ0T

(j)
max(j) + Λ

T
1 T

(j+1)
ms T

(j+1)
ma Λ1T

(j)
max(j)

}
. (15)

Because we suppose that the added two-channel filter bank is biorthogonal, we have

T
(j+1)
ms T

(j+1)
ma = I, (16)

Λ
T
0 Λ0 + Λ

T
1 Λ1 = I. (17)

Then, we can rewrite (15) as

x̂(j) = T
(j)
ms

{
Λ

T
0 Λ0 + Λ

T
1 Λ1

}
T
(j)
ma x(j)

= T
(j)
ms T

(j)
ma x(j)

= x(j) (18)

which means that the time-varying octave-band filter bank is still perfectly reconstructed

after adding next stage of time-varying biorthogonal two-channel filter bank. In other words,

theorem 1 is correct.
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Fig. 4. Adding the (j + 1)-th stage.

4. Implementation with time-varying nonuniform filter banks

Fig. 2 shows another implementation of a time-varying wavelet transform with (J(m) +

1)-channel time-varying nonuniform filter bank. To make the analysis easy we suppose that

J(m) does not change with time and is equal to constant J. For analysis of the (J + 1)-channel

time-varying nonuniform filter bank we first reconstruct the nonuniform filter bank to a

time-varying uniform filter bank through adding following filters between Hi(z, m) and

Hi+1(z, m) (0 ≤ j J − 1)

Hi,k(z, m) = z−k·2i+1
Hi(z, m), 1 ≤ k ≤ 2J−i−1

− 1. (19)

After adding additional filters in the nonuniform filter bank in Fig. 2 the filter bank becomes

M-channel time-varying uniform filter filter bank. The number of channel M is calculated by

M =
J−2

∑
i=0

(2J−i−1
− 1) + (J + 1)

= 2J−1
J−2

∑
i=0

2−i + 2

= 2J(1 − 2 · 2−J) + 2

= 2J . (20)

For the time-varying system in Fig. 5 we have following theorem.

Theorem 2: A time-varying discrete-time wavelet transform implemented with a

time-varying nonuniform filter bank is biorthogonal if each two-channel time-varying filter

bank in its tree-structured implementation is perfectly reconstructed.

To prove theorem 2, we need to describe the filter Hi(z, m) in Fig. 5 based on the tree structure

in Fig. 1. In the time-invariant discrete-time wavelet transform the description of such filters

can be simply got using the convolution role in the transform-domain. However, in the

time-varying case, we cannot describe Hi(z, m) as product of functions in the previous stages,

like H0(z, m)H1(z
2, m), because the system is time-varying and the convolution role does not

exist. Referencing to definitions of T
(j)
ma and T

(j)
ms in (2) and (3), we find that the analysis output

562 Advances in Wavelet Theory and Their Applications in Engineering, Physics and Technology
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Fig. 5. The equivalent M-channel time-varying uniform filter bank.

y0(m0) can be expressed as

y0 = Λ0 T
(1)
ma x, (21)

where

y0 = [ · · · y0(−1) y0(0) y0(1) · · · ]
T , (22)

y0(m) = [ y0,1(m) y0,2(m) · · · y0,K(m) ]T , (23)

and K = 22J−1 − 1. In general, we have

yj−1 = Λ0 T
(j)
ma Λ1 T

(j−1)
ma · · · Λ1 T

(1)
ma︸ ︷︷ ︸

Hj−1

x, (24)

where 1 ≤ j ≤ J − 1, and

yJ−1 = Λ0 T
(J)
ma Λ1 T

(J−1)
ma · · · Λ1 T

(1)
ma x = HJ−1 x, (25)

yJ = Λ1 T
(J)
ma Λ1 T

(J−1)
ma · · · Λ1 T

(1)
ma x = HJ x, (26)

where

yj−1 =
[
· · · yj−1(−1) yj−1(0) yj−1(1) · · ·

]T
, (27)

yj−1(m) =
[

yj−1,1(m) yj−1,2(m) · · · yj−1,K(m)
]T

, (28)

563Time-Varying Discrete-Time Wavelet Transforms
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for K = 22J−j − 1 and 1 ≤ j ≤ J − 2, and

yJ−1 =
[
· · · yJ−1(−1) yJ−1(0) yJ−1(1) · · ·

]T
, (29)

yJ =
[
· · · yJ(−1) yJ(0) yJ(1) · · ·

]T
. (30)

At synthesis side, we have similar definitions as

x̂j−1 = T
(1)
ms Λ

T
1 T

(2)
ms · · · Λ

T
1 T

(j)
ms Λ

T
0︸ ︷︷ ︸

Gj−1

yj−1, (31)

x̂J−1 = T
(1)
ms Λ

T
1 T

(2)
ms · · · Λ

T
1 T

(J)
ms Λ

T
0 yJ−1 = GJ−1 yJ−1, (32)

x̂J = T
(1)
ms Λ

T
1 T

(2)
ms · · · Λ

T
1 T

(J)
ms Λ

T
1 yJ = GJ yJ , (33)

Now, based on the definition in (23), we can build the analysis output vector for th

time-varying filter bank in Fig. 5 as

y =
[
· · · y0(−1) · · · yJ(−1) y0(0) · · · yJ(0) y0(1) · · ·

]T
. (34)

Suppose that Tma and Tms are the analysis and synthesis matrices for the time-varying filter

bank in Fig. 5. Referencing (34), Tma is constructed by interleaving the rows from T
(1)
ma to T

(J)
ma

with same time index m, Tms is built with similar way, but interleaving the columns. Then,

the production T
(1)
ma T

(J)
ma can be expressed by

Tms Tma =
J

∑
j=0

Gj Hj. (35)

Substituting Hi and Gi defined in (24)-(26) and (31)-(33) into (35), and using properties in (16)

and (17), we get

Tms Tma = I, (36)

which means that the time-varying nonuniform filter bank in Fig. 2 is perfectly reconstructed.

Finally, we give another property related with filter coefficients of the time-varying filter

bank in Fig. 2. Suppose that hi(n, m) and gi(n, m) represent the analysis and synthesis filter

coefficients in Fig. 2, then we have following equation

< gi(n − kM, m + r), hj(n − lM, m + s) >= δ(k − l) δ(i − j) δ(r − s), (37)

where M = 2J . The proof of equation (37) can be simply got by using the PR condition in (36).
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5. Conclusion

In the theory of discrete-time signal expansion, the wavelet transform is very important.

In this chapter, we defined the general discrete time-varying dyadic wavelet transform and

analyzed its properties in detail. Some theorems describing properties of time-varying

discrete-time wavelet transforms were presented. The conditions for a biorthogonal

time-varying discrete-time wavelet transform were given. The theory and algorithms

presented in this chapter can be used in design of time-varying discrete-time signal expansion

in practice.
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