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1. Introduction

Satellites continually feeding images to their base, pose a challenge as to the design of

compression techniques to store these huge data volumes. We aim at lossless compression

of hyperspectral images having around 200 bands, such as AVIRIS images. These images

consist of several images (or bands) obtained by filtering radiation from the earth at different

wavelengths. Compression is generally achieved through reduction of spatial as well as

spectral correlations.

Most of the hyperspectral compressors are prediction–based. Since spectral correlation is

usually high (much more higher than spatial correlation) pixels are predicted with other pixels

in an adjacent band (rather than other pixels surrounding the one to be predicted). SLSQ

(Rizzo et al., 2005), a low-complexity method designed for hyperspectral image compression,

performs a simple prediction for each pixel, by taking a constant times the same pixel in

the previous band. The constant is calculated by least squares over 4 previously encoded

neighboring pixels. SLSQ–OPT version of SLSQ performs one band look–ahead to determine

if the whole band is better compressed this way or with intraband prediction, while in the

SLSQ–HEU version this decision is taken by an offline heuristic. CCAP (Wang et al., 2005)

predicts a pixel with the conditional expected value of a pixel given the context. The expected

value is calculated over coded pixels having matching (highly correlated) contexts. Slyz

and Zhang (Slyz & Zhang, 2005) propose 2 compressors (BH and LM) for hyperspectral

images. BH predicts a block as a scalar times the same block in the previous band. Coding

contexts are defined by the quantized average error. LM predicts a pixel by choosing among

different intraband predictions the one that works best for several pixels at the same position

in previous bands.

Mielikainen and Toivanen proposed C-DPCM (Mielikainen & Toivanen, 2003), a method that

classifies the pixels at the same location and through all the bands, with vector quantization.

Interband prediction is performed using the pixels at the same position in 20 previous bands.

Weights, calculated for each class/ band, are sent into the code, as well as the 2D template

with the classes. Aiazzi et al. (Aiazzi et al., 1999) classify the prediction context of every
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pixel using fuzzy clustering, and then calculate the weights for each class. For compression

of hyperspectral images (Aiazzi et al., 2007) they divide each band into small blocks (16 × 16),

they calculate weights for interband prediction over each pixel in a block, and then make a

fuzzy clustering of the weights obtained for all the blocks. For each pixel a membership degree

is computed according to the efficiency of the weights (from different clusters) on a causal

context of the pixel. The final prediction for a pixel is obtained by a combination of linear

predictions involving weights from different clusters, pondered by the degrees of membership

of the pixel to each cluster. It is worth mentioning that wavelet-based compressors such as

JPEG2000 (Taubman & Marcellin, 2002) have been successfully used for lossy compression

of multiband images, either hyperspectral (Blanes & Serra-Sagrista, 2010; Fowler & Rucker,

2007) or general earth data (Kulkarni et al., 2006).

In this work we will improve the well-known algorithm which was developed for

hyperspectral images: LAIS-LUT. This algorithm makes predictions of each pixel using other

pixels in the same band. Which pixel is used for prediction is determined by inspecting in

the previously encoded band. This algorithm uses two possible candidates for prediction.

We will introduce the wavelet transform as a tool for classification in order to make better

decisions about which of these two possible candidates acts as a more appropriate prediction.

First, LAIS-LUT will be introduced, as well as the LUT algorithm on which it is based. Then

we show how the wavelet transform is used to improve it. Finally, we give some results and

conclusions of our method, called Enhanced LAIS-LUT.

2. Look-up table based algorithms

2.1 LUT algorithm

The Look Up Table algorithm (Mielikainen, 2006) is a fast compression technique based on

predicting a pixel with another pixel from the same band. The previous band is inspected

in order to determine which pixel in the same band is used for prediction. As an example,

suppose pixel I
(z)
x,y in band z wants to be predicted. Then we seek on band z − 1 the pixel

with the same intensity as I
(z−1)
x,y which is nearest to it in a causal neighborhood. Let I

(z−1)
x′,y′ be

that pixel. Then, the prediction for pixel I
(z)
x,y will be I

(z)
x′,y′ . If no match is found, pixel I

(z−1)
x,y

is the one selected for prediction. In order to speed things up, a look up table data structure

is used for searching the pixel on the previous band. With this data structure the algorithm

is efficiently implemented as shown in Fig 1 for consecutive bands z and z − 1. Then, the

difference I(z) − P(z) between the band and its prediction is entropy coded and this process is

repeated for z = 2, . . . , 224.

In Fig. 2 entropy values are ploted for each band of the Jasper Ridge image. In dashed line,

entropies of the pixels of the image are ploted. 6 steps of the 2D S+P wavelet transform were

computed and the entropy of the coefficients is plotted in dotted line for each band. Finally

it is shown in gray line the entropy of the prediction differences for the LUT algorithm. It is

remarkable how high is the compression achieved with this simple algorithm, which is only

based on indexing and updating a table. It is entirely based on the premise of high correlation

between bands and designed in order to take advantage of this fact.
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The Wavelet Transform as a Classification Criterion Applied to Improve Compression of Hyperspectral Images 3

Data: Bands I(z), I(z−1) and table initialized as LUTable(i) = i

Result: Prediction for band z: P(z)

for every pixel I
(z)
x,y do

P
(z)
x,y ← LUTable(I

(z−1)
x,y );

LUTable(I
(z−1)
x,y ) ← I

(z)
x,y ;

end

Fig. 1. Look-up Table algorithm.

Original Wavelet S+P LUT prediction

8.6656 6.6587 4.9504

Table 1. Average entropies for first scene of Jasper Ridge.
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Fig. 2. Entropy values for every band of the Jasper Ridge image computed over the original
image (dashed), over the prediction differences for the LUT method (gray), and over the 2D
S+P wavelet transform (dotted). See averaged values in Table 1.

2.2 LAIS-LUT

An improvement over the LUT algorithm has been presented in (Huang & Sriraja, 2006). It

was named LAIS-LUT after Locally Averaged Interband Scaling LUT and it behaves more

accurately in presence of outliers. This modification adds an extra LUT table and the predictor

529The Wavelet Transform as a Classification
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is selected from one of the two LUTs. Using a scaling factor α which is precomputed on a

causal neighbourhood, an estimate P̃
(z)
x,y is calculated for a current pixel I

(z)
x,y as P̃

(z)
x,y = αI

(z−1)
x,y ,

where

α =
1

3

⎛

⎝

I
(z)
i−1,j

I
(z−1)
i−1,j

+
I
(z)
i,j−1

I
(z−1)
i,j−1

+
I
(z)
i−1,j−1

I
(z−1)
i−1,j−1

⎞

⎠ (1)

Since two values are now possible candidates for prediction (one for each LUT), the one that

is closer to P̃
(z)
x,y is selected as the final prediction (Fig. 3 shows LAIS-LUT algorithm). When

prediction P(z) for band z is estimated, the prediction error I(z) − P(z) is entropy coded. This

is repeated for z = 2, . . . , 224. Notice that when the tables are not initialized, P
(z)
x,y is selected

for prediction, and, the value of the first LUT is used for prediction only when this table is

initialized.

Data: Bands I(z), I(z−1), tables LUTable1 and LUTable2 are not initialized
Result: Prediction for band z: P(z)

for every pixel I
(z)
x,y do

if both tables are not initialized on entry (x,y) then

P
(z)
x,y ← αI

(z−1)
x,y ;

else if only LUTable1 is initialized in (x,y) then

P
(z)
x,y ← LUTable1(I

(z−1)
x,y );

else

P
(z)
x,y ← closer value of {LUTable1(I

(z−1)
x,y ),LUTable2(I

(z−1)
x,y )} to αI

(z−1)
x,y ;

end

LUTable2(I
(z−1)
x,y ) ← LUTable1(I

(z−1)
x,y );

LUTable1(I
(z−1)
x,y ) ← I

(z)
x,y ;

end

Fig. 3. LAIS-LUT algorithm.

2.3 LAIS-QLUT

Mielikainen and Toivanen proposed a modification to the LAIS-LUT method in order to shrink

Lookup tables (Mielikainen & Toivanen, 2008). For that, the value used for indexing into the

LUTs is quantized and smaller LUTs can be used (i.e., the value x used as an index in the LUT

is replaced by ⌊x/q⌋ for some quantization step q, being ⌊·⌋ : R → Z a function that maps a

real number to a close integer). In the previous section, LAIS-LUT found exact matches in the

previous band in order to obtain the predictor in the current band. For LAIS-QLUT, this search

is no more exact and the predictor’s selection in the current band is based on ‘similarities’

in the previous band. The best quantization step is obtained by an exhaustive search on

each band (LAIS-QLUT-OPT version) or determined offline for each band by training on

a set of images (LAIS-QLUT-HEU version). We decided not to add classes to the context

over LAIS-QLUT, since a combination of the two would result in a prohibitive increase in

complexity.
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3. The wavelet transform as a tool for classification

In order to improve compression bitrates, the scaling factor in LAIS-LUT will be estimated

more accurately. For that, a classification stage will be added to the algorithm. The scaling
factor is computed as an average of quotients of collocated pixels in consecutive bands
according to Equation 1. These pixels belong to a close neighbor of the pixel to be predicted
(either on the current band, or on the previous band). Once classes are established for each
pixel, not all the pixels in the close causal neighbor will be used for estimating the scaling
factor α. Instead, we may use only those pixels that belong to the same class of the pixel
to be predicted so as to obtain a more accurate estimation. This will enhance the LAIS-LUT
algorithm, by allowing a better decision on which of the two look up tables yields a better
prediction.

In order to establish classes we will make use of the wavelet transform. Since hyperspectral
images have a considerable number of bands, the wavelet transform can be applied in the
spectral direction. AVIRIS images have 224 bands. Considering each pixel as a vector in
Z

224, each of them may be 1D-wavelet transformed. And with the information of the wavelet
transform of each ‘pixel’ classes can be determined. First, the wavelet transforms used in this
work are introduced.

3.1 The wavelet transform

The wavelet transform allows the representation of a signal in multiresolution spaces. In
the wavelet representation, the transformed signal can be viewed as an approximation of the

original signal plus a sum of details at different levels of resolution. Each of these details and
approximations are associated to function basis which have good time-frequency localization
(Mallat, 1999). In images –a simple extension of the 1-dimensional case–, decorrelation is
achieved obtaining a sparse representation. Two different types have been considered in this
work: orthogonal wavelets and lifting-based wavelets.

For the classical orthogonal wavelet, consider a 1D signal x = [xn]n=0,...,N−1 of length N
(even). For a step of the wavelet, x is transformed into approximation coefficients s =
[sn]n=0,..., N

2 −1 and detail coefficients d = [sn]n=0,..., N
2 −1, where s is the result of convolving

x with a lowpass filter followed by a decimation. The same process happens to d, but a high
pass filter is used instead. For more steps, the wavelet transform is applied recursively over
the approximation coefficients s. The original signal can be recovered if the inverse process

is carried out in order (upsampling followed by the convolution with the corresponding
reversed filter –see Fig. 4). Depending on the filter, wavelets with different properties can
be obtained. In this work we use the Daubechies 4 wavelet (Daubechies, 1992) whose lowpass
filter is [h3, h2, h1, h0] = 1

4
√

2
[3 + e, 1 − e, 3 − e, 1 + e] with e =

√
3, and high pass filter

g′ = [−h0, h1,−h2, h3]. The Symmlet wavelet, with 8 vanishing moments (and filter of length

16), was also used in this work.

Another way of constructing different wavelets is by the lifting scheme (Daubechies &
Sweldens, 1998). They are built in the spatial domain. The basic idea is to split the signal into

two components, for instance, odd samples (xodd = x2k+1) and even samples (xeven = x2k).
Then, detail coefficients are obtained by using one component to predict the other: d =
xodd − P(xeven). Better predictions will yield more zeros, and therefore more decorrelation is

531The Wavelet Transform as a Classification
Criterion Applied to Improve Compression of Hyperspectral Images

www.intechopen.com



6 Will-be-set-by-IN-TECH
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Fig. 4. Orthogonal wavelet analysis via convolutions and decimations followed by the
synthesis via upsampling and convolution. Highpass filter g is obtained from lowpass filter h
as gk = (−1)kh1−k, and g′ indicates the g filter reversed.

achieved. In order to obtain the approximation part of the transformed signal, the unpredicted
component is softened with an ‘update’ of the detail previously obtained: s = xeven + U(d).
See Fig. 5 for an illustration of this scheme. With the lifting scheme it is possible to construct

wavelets that map integers into integers (Calderbank et al., 1998) by the use of a rounding
operator at the prediction or update stage. For this work the (2, 2) and S+P wavelets have
been considered (see Table 2).

x

✲

✲

split P U

x[2k+ 1]

x[2k]

✒✑
✓✏

–

✒✑
✓✏

+ s

d

✲

✲

❄

❄

✻

✻

Fig. 5. Lifting scheme analysis for a 1-D signal x.

Wavelet Formula

(2, 2) dn = x2n+1 −
⌊

1
2 (x2n + x2n+2) +

1
2

⌋

sn = x2n +
⌊

1
4 (dn−1 + dn) +

1
2

⌋

S+P d
(1)
n = x2n+1 − x2n

sn = x2n +

⌊

d
(1)
n
2

⌋

dn = d
(1)
n +

⌊

2
8 (sn−1 − sn) +

3
8 (sn − sn+1) +

2
8 d

(1)
n+1 +

1
2

⌋

Table 2. Wavelet transforms that maps integers into integers.

4. Classification of hyperspectral images

Using images captured by the scanner system called AVIRIS (Airborne Visible/Infrared
Imaging Spectrometer) developed by JPL (Jet Propulsion Laboratory; see

532 Advances in Wavelet Theory and Their Applications in Engineering, Physics and Technology
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http://aviris.jpl.nasa.gov), we aim at determining classes for pixels. These images
have 224 bands, each corresponding to a response in a certain range of the electromagnetic
spectrum. Each pixel represents 20 meters and is allocated in a 2 byte signed integer. AVIRIS
images usually have 614 columns and every 512 rows, the image is partitioned into ‘scenes’,
and each scene is stored in a different file.

Considering each pixel Ix,y as a vector in Z
224 where each component belongs to a different

band, different behaviours depending on what type of soil is being considered can be
observed. Figure 6 shows the first scene of the Jasper Ridge image with four pixels belonging
to different classes, marked with symbols ‘⊕’, ‘◦’, ‘♥’ and ‘♦’. The spectral vectors associated
to the same 4 positions are plotted in Figure 7; where the characteristic signal -called the
spectral signature- of the type of soil can be observed.

♦

⊕

°

♥

Fig. 6. Band 50 of Jasper Rigde image.

In order to classify the image, for every pixel, a 1-D wavelet transform is applied along the
spectral direction. The entropy of each transformed spectral vector is computed, giving an
image C where Cx,y := H(W(Ix,y)), being W(·) a 1-D wavelet transform function and H(·)
the entropy function weighted by wavelet subband. Since AVIRIS images have 224 bands, 5
steps of the wavelet transform are applied to each pixel. So we have 5 detail subbands and
1 approximation subband. Since decimation is performed after each step, these subbands are
different in size. Therefore, the total entropy of the 1-D wavelet transform is computed as the

533The Wavelet Transform as a Classification
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Fig. 7. Spectral signatures of different classes: values of selected pixels in Fig. 6 throughout
the bands.

Fig. 8. Entropy of the wavelet transform of every pixel. Darker pixels indicate lower entropy
values.
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Enhanced LAIS-LUT LAIS- LUT
Image Daubechies 4 Symmlet 8 S+P (2,2) LUT

Low Altitude 3.17875 3.17546 3.17793 3.17797

Jasper Ridge 3.43895 3.43855 3.43914 3.43833 3.42 3.23

Cuprite 3.71393 3.71394 3.71390 3.71390 3.58 3.44
Lunar Lake 3.58201 3.58198 3.58198 3.58201 3.53 3.4

Table 3. Compression ratios for Enhanced LAIS-LUT (with classes for estimating the scaling
factor) and classical LAIS-LUT and LUT algorithms.

sum of the entropies of each subband, weighted by the size of the subband relative to the size
of the whole transform.

In Figure 8 a grayscale image of the entropies is displayed. This image may be further split
into classes with an unsupervised classifier. In this work, mean-shift (Comaniciu & Meer,
2002) was used.

5. Results

Results of compressing AVIRIS images with LAIS-LUT and the enhanced version (in which
the scaling factor is calculated with pixels belonging to the same class, considering a causal
neighbor of 4 × 4 pixels around the one to be predicted) is shown in Table 3.

The name of the wavelet in the table indicates the wavelet used to transform each pixel (and
all the bands) followed by the entropy estimation and mean shift classification. Compression
ratio results for LAIS-LUT and LUT algorithms were obtained from (Mielikainen & Toivanen,
2008). It can be observed that the enhanced version of LAIS-LUT using Daubechies 4 for
classification outperforms the other methods.

We may conclude that the scaling factor α plays an important role in the compression
performance of LAIS-LUT algorithm. When introduced, it was intended to decrease the
deterioration produced by outliers in the original LUT algorithm. We have also been able
to make use of the information in the wavelet domain and apply it to develop an efficient

classifier. Since hyperspectral images have many bands because of their high spectral
resolution, the information of the signal that each pixel represents (in all bands) was well
captured by the wavelet transform and was fed into a powerful classifier such as mean-shift,
giving good compression results.
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