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1. Introduction 

Post-operation contingencies analysis in electrical power systems is of fundamental 

importance for the system secure operation, and also to maintain the quality of the electrical 

energy supplied to consumers. The electrical utilities use equipments as Digital Disturbance 

Registers (DDR), and Intelligent Electronics Devices (IED) for faults monitoring, and 

diagnosis about the electrical power systems operation and protection. In general, the DDR 

and IED are intended to monitor the protection system performance and detect failures in 

equipments and transmission lines, and also generate analog and digital oscillographic 

registers that better characterize the disturbing events. 

The oscillographic signals often analyzed in the post-operation centers are those generated 

by events that typically cause the opening of transmission lines due to the action of 

protective relays. So, these records are analyzed in detail to determine the causes and 

consequences of these occurrences within the electrical system. Although the software used 

in the post-operation centers presents numerous features for the evaluation of the recorded 

signals, the selection of the signals to be analyzed is done in a manual way, which leads to 

an analysis in an individual basis, and many of the oscillographic records that could help 

analyzing the occurrences are not evaluated due to the long time that would be spent to 

select them manually. 

Another aspect to be noted is that the oscillographic records remain stored in the  

post-operation centers for time periods ranging from months to years. These records 

contain signals acquired in different parts of the electrical system, and the vast majority  

of them are no longer being considered in the analysis. These data, however, may  

contain important information about the behavior and performance of the electrical 

system that may precisely characterize the power quality problem due to a failure or 

disturbance. 
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One of the main difficulties in using measurements, obtained by DDR, in the evaluation of 
power quality as compared with those obtained by power quality monitors, is that many of 
the signal processing stages are not performed automatically by the first. For the 
oscillographic records to be useful as power quality indicators, it is first necessary to obtain 
certain parameters to classify the recorded signals according to the event type that has 
occurred. Considering the case of short duration voltage variations (SDVV), the parameters 
of interest are the event amplitude and time duration. Obtaining these parameters enables 
the application of statistical tools as presented in (Bollen, 2000), for results analysis and 
visualization, which allows having information about the electrical system behavior at 
certain time intervals, for example, months or years. 

Another difficulty, perhaps the most critical, is the large volume of data obtained from 

oscillographic monitoring. Many of these recorded signals are due to switching maneuvers, 

or due to spurious signals or noise, without characterizing voltage changes in the electrical 

system. For this large amount of data to be evaluated, it is necessary that an automatic 

classification method be used so that only signals with the desired characteristics are used to 

determine the parameters of interest. This aspect is highlighted in several publications 

which present new methods for classification and characterization using digital signal 

processing and computational intelligence tools (Angrisani et al, 1998; Santoso et al, 2000a; 

Santoso et al, 2000b and Huang et al, 2002; Machado et al, 2009; Rodriguez et al, 2010 ). 

The first use of wavelet transform in power systems is credited to (Ribeiro, 1994). In recent 

years, wavelet transform - WT, a powerful tool for digital signal processing, has been  

proposed as a new technique for monitoring and analysis of different disturbances types in 

power systems (Machado et al, 2009; Mokryani, 2010; A. Rodriguez et al, 2010; Gong Jing, 

2010, 2011). Wavelets, along with computational intelligence techniques like artificial neural 

networks and fuzzy logic, have been used successfully in automatic classification of power 

quality problems. (Machado et al, 2009; Mokryani, 2010; Rodriguez et al, 2010) 

The present work aims to develop an automated system for classifying power quality 

problems with respect to the fault type that has occurred and the electric phase involved, 

and quantify SDVV in electrical power systems from the available oscillography in the 

electrical utilities post-operation centers, to form a parameter database characterizing power 

quality problems. The proposed methodology uses the wavelet transform to obtain a 

characteristic pattern to represent the phenomenon and a probabilistic neural network for 

classification. 

2. Wavelet transform 

Wavelets are functions that satisfy certain mathematical requirements. The wavelet name 
comes from the fact that they must be oscillatory (a wave), and be well placed, therefore 
exhibiting short time duration. There are several wavelet types, usually grouped into 
families, from which the Daubechies is one of the best known. 

Wavelets are used to represent data or other functions in a similar way as the Fourier 
analysis uses sines and cosines. The signal analysis by wavelet transform has advantages 
over traditional methods using Fourier analysis when the signals have time discontinuities 
or present a non-stationary oscillatory behavior. 
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The mathematics main branch leading to wavelet analysis began with Joseph Fourier (1807) 
with his frequency analysis theory, known as Fourier analysis. The first wavelet mention 
appears in the appendix of A. Haar’s thesis (1909). Paul Levy a 1930’s physicist, 
investigating the Brownian motion, found that the Haar basis functions are superior to the 
Fourier basis functions for studying small and complicated details in the Brownian motion. 
In 1980, Grossman and Morlet, broadly defined wavelets in the context of quantum physics, 
providing a way of thinking about wavelets based on physical intuition. In 1985, Stephane 
Mallat gave wavelets an additional advance. Through his work in digital signal processing, 
he discovered some relationships among quadrature mirror filters - QMF, pyramidal 
algorithm, and orthogonal wavelet basis. Based partially on these results, Y. Meyer built the 
first non-trivial wavelets, which unlike the Haar wavelet, the Meyer wavelets are 
continuously differentiable, but do not have compact support. Years later, Ingrid 
Daubechies used Mallat's work to build a set of wavelets with orthogonal basis functions 
that have become the cornerstone of wavelet applications today. 

2.1 Wavelet analysis 

The wavelet transform is a technique similar to the windowed Fourier transform with the 
difference that the window width is variable. The wavelet analysis allows the use of large 
time intervals when it is desired to get low frequency information and shorter time intervals 
when the interest is to obtain high frequency information. Unlike Fourier analysis that uses 
sines and cosines, wavelet analysis uses wavelets. Figure 1 shows as an example, the 
Daubechies wavelet, db8. 

 

Fig. 1. The Daubechies wavelet, db8. 

Wavelets sets are employed to approximate signals, and each set consists of scaled versions 
(compressed or expanded) and translated (time shifted) from a single wavelet, called mother 
wavelet. 

 
2.2 Discrete wavelet transform 

In the discrete wavelet transform the term "discrete" applies only to the parameters in the 

transformed domain, that is, scales and translations, and not to the independent variable 

time, of the function being transformed. The discrete wavelet transform provides a set of 

coefficients corresponding to points on a grid or two-dimensional lattice of discrete points in 

the time-scale domain. This grid is indexed by two integers, the first, denoted by m , 
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corresponds to the discrete steps of the scale, while the second, denoted by n , corresponds 

to the discrete steps of translation (time displacement). The scale a  becomes 0
ma a and 

translation becomes 0 0
mb nb a , where 0a and 0b are the discrete steps of the scale and 

translation, respectively (Young, 1995). Then the wavelet can be represented by:   

 2
, 0 00( ) ( )

m
m

m n t a a t nb 


   (1) 

The discrete wavelet transform is given by: 

 2
0 00( , ) ( ) ( )

m
m

f

R

W m n a f t a t nb dt


   (2) 

where, ,m n Z  , and  Z is the set of integer numbers. 

The parameter m which is called level, determines the wavelet frequency, while the 

parameter n indicates its position.  

The inverse discrete wavelet transform is given by: 

 2
0 00

0 0

( ) ( , ) ( )

m
m

f
m n

f t k W m n a a t nb
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

 

    (3) 

where k is a constant that depends on the redundancy of the combination of the lattice with 

the used mother wavelet (Young, 1995). 

Along with the time-scale plane discretization, the independent variable (time) can also be 
discretized. The sequence of discrete points of the discretized signal can be represented by a 
discrete time wavelet series DTWS. The discrete time wavelet series is defined in relation to 

a discrete mother wavelet, ( )h k . The discrete wavelet time series maps a discrete finite 

energy sequence to a discrete grid of coefficients. The discrete time wavelet series is given 
by (Young, 1995). 

  (4) 

2.3 Multiresolution analysis 

Multiresolution Analysis - MRA, aims to develop a signal ( )f t  representation in terms of an 

orthogonal basis which is composed by the scale and wavelets functions. An efficient 

algorithm for this representation was developed in 1988 by Mallat (Mallat, 1989) considering 

a scale factor 0 2a   and a translation factor 0 1b  . This means that at each decomposition 

level m , scales are a power of 2 and translations are proportional to powers of 2. Scaling by 

powers of 2 can be easily implemented by decimation (sub-sampling) and over-sampling of 

a discrete signal by a factor of 2. Sub-sampling by a factor of 2, involves taking a signal 

sample from every two available ones, resulting in a signal with half the number of samples 
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than the original one. Over-sampling by a factor of 2, consists of inserting zeros between 

each two samples resulting in a signal with twice the elements of the original one. 

2.3.1 Analysis or decomposition 

The structure of the multiresolution analysis is shown in Figure 2. The original signal passes 

through two filters, a low pass filter ( )g k , the function scale, and a high pass filter ( )h k , the 

mother wavelet. The impulse response of ( )h k  is related to the impulse response of ( )g k  by 

(Mallat, 1989): 

 
1( ) ( 1) (1 )kh k g k  

 (5) 

Filter ( )h k  is the mirror of  filter ( )g k  and they are called quadrature mirror filters. 

In the structure presented in Figure 2, the input signal is convolved with the impulse 

response of ( )h k , and ( )g k , obtaining two output signals. The low pass filter output 

represents the low frequency content of the input signal or an approximation of it. The high 

pass filter output represents the high frequency content of the input signal or a detail of it. It 

should be noted in Figure 2 that the output provided by the filters has together twice the 

number of samples of the original signal.  

This drawback is overcome by the process of decimation performed on each signal, thereby 

obtaining the signal cD , the wavelet coefficients that are the new signal representation in the 

wavelet domain, and the signal cA , the approximation coefficients which are used to feed 

the next stage of the decomposition process in an iterative manner resulting in a multi-level 

decomposition. 

 

 

Fig. 2. Structure of the multiresolution analysis 

The decomposition process in Figure 2 can be iterated with successive approximations being 

decomposed, then the signal being divided into several resolution levels. This scheme is called 

"wavelet decomposition tree" or "pyramidal structure" (Young, 1995 and Misit et al, 2000). 

Figure 3 shows the schematic representation of a signal being decomposed at multiple levels. 
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Fig. 3. Schematic representation of a signal being decomposed at multiple levels. 

Since the multiresolution analysis process is iterative, it can theoretically be continued 
indefinitely. In fact, the decomposition can proceed only up to 1 (one) detail, consisting of a 
single sample. The maximum number of decomposition levels for a signal having N  

samples is given by 2log N . 

2.3.2 Synthesis or reconstruction 

The synthesis process or reconstruction is to obtain the original signal from the wavelet 
coefficients generated by the analysis or decomposition process. While the analysis process 
involves filtering and sub-sampling, the synthesis process performs a reverse sequence, 
over-sampling and filtering. The filters used in the synthesis process are called 

reconstruction filters, being ( )g k  the low pass filter, and ( )h k  the high pass filter. Figure 4 

shows the reconstruction scheme from a single decomposition stage. 

 

Fig. 4. Reconstruction scheme from a single decomposition stage. 

It is observed from Figure 4 that to retrieve the original signal, it is necessary to reconstruct 

details and approximations. Details could be obtained with over-sampling of the cD  

coefficients, and a subsequent filtering with ( )h k . Approximations are obtained with over-

sampling of the coefficients cA  , and a subsequent filtering with ( )g k  .The original signal is 

then obtained by: 

 S A D                  (6) 

The scheme presented in Figure 4 can be extended to a multi-level decomposition. 

www.intechopen.com



Application of Wavelet Transform and Artificial Neural Network to  
Extract Power Quality Information from Voltage Oscillographic Signals in Electric Power Systems 183 

3. Probabilistic neural network  

The structure of a Probabilistic Neural Network (PNN) is similar to a feed forward network. 

The main difference is that the activation function is no longer the sigmoid; it is replaced by 

a class of functions which includes, in particular, the exponential function. The main 

advantage of PNN is that it requires only one step for training and that the decision surfaces 

are close to the contours of the Bayes optimal decision when the number of training samples 

increases. Furthermore, the shape of the decision surface can be as complex as necessary, or 

as simple as desired (Specht, 1990). 

The main drawback of PNN is that all samples used for the training process must be stored 
and used in the classification of new patterns. However, considering the use of high-density 
memories, problems with storage of training samples should not occur. In addition, the PNN 
processing speed in the classification of new patterns is quite satisfactory, and even several 
times faster than using back propagation algorithms as reported by (Maloney et al, 1989). 

3.1 The Bayes strategy for pattern classification 

One of the traditionally accepted strategies or decision rules used to patterns classification is 

that they minimize the "expected risk." Such strategies are called Bayes strategies, and can 

be applied to problems containing any number of categories (Specht, 1988). 

To illustrate the Bayes decision rule formalism, it is considered the situation of two 

categories in which the state of known nature   , can be A  or B . It is desired to decide 

whether A   or B  based on a measurements set represented by a n  dimension vector

x . Then the Bayes decision rule is given by: 

 
( ) ( ) ( )

( ) ( ) ( )
A A A A B B B

B A A A B B B

d x if h l f x h l f x

d x if h l f x h l f x




 
 

                                 (7) 

where ( )Af x  and ( )Bf x  are the probability density functions for categories A  and B  

respectively, Al  is the uncertainty function associated with the decision ( ) Bd x   when 

A  ; Bl is the uncertainty function associated with the decision ( ) Ad x   when B   , 

Ah  is  the a priori probability of category A patterns occurrence, and 1B Ah h   is the a 

priori probability that B  . Then, the boundary between the regions in which the Bayes 

decision ( ) Ad x   and ( ) Bd x   is given by: 

 ( ) ( )A Bf x Kf x                               (8) 

where: 

 B B

A A

h l
K

h l
  (9) 

It should be noted that, in general, the decision surfaces of two categories defined by Eq. (8) 
can be arbitrarily complex, since there are no restrictions on the densities except for those 
conditions to which all probability density functions must satisfy, namely that they must be 
always non-negative, and integrable and their integrals over all space be equal to unity. 
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The ability to estimate the probability density functions, based on training patterns, is 
fundamental to the use of Eq. (8). Frequently, a priori probabilities can be known or 
estimated, and the loss functions require subjective evaluation. However, if the probability 
densities of the categories patterns to be separate are unknown, and all that is known is a set 
of training patterns, then, these patterns provide the only clue to the estimation of that 
unknown probability density. A particular estimator that can be used is (Specht, 1990): 

 
2

12

( ) ( )1 1
( ) exp

2
(2 )

Tm
ai ai

A n
in

x x x x
f x

m 
  

  
   

 
   (10) 

Where i  is the pattern number, m  is the total number of training patterns, aix is the i-th 

training pattern of category A , and   is the smoothing factor. It should be noted that 

( )Af x  is simply the sum of small Gaussian distributions centered at each training sample. 

3.2 Structure of the Probabilistic Neural Network 

The probabilistic neural network is basically a Bayesian classifier implemented in parallel. 
The PNN, as described by Specht (Specht, 1988), is based on estimation of probability 
density functions for the various classes established by the training patterns. A schematic 
diagram for a PNN is shown in Figure 5. The input layer X  is responsible for connecting 

the input pattern to the radial basis layer.  1 2, , , MX x x x 
 
is a matrix containing the 

vectors to be classified.  

 

Fig. 5. Schematic diagram of a Probabilistic Neural Network 
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In the radial basis layer, the training vectors are stored in a weights matrix 1w . When a 

new pattern is presented to the input, the block dist calculates the Euclidean distance 

between each input pattern vector for each of the stored weight vectors. The vector in the 
output block dist  is multiplied, point by point, by the polarization factor b . The result of 

this multiplication 1n is applied to a radial basis function providing as output 1a , obtained 

from: 

 
2
1

1
na e                              (11) 

This way, a vector in the input pattern close to a training vector is represented by a value 

close to 1 in the output vector 1a . The competitive layer of the weight matrix 2w  contains 

the target vectors representing each class corresponding to each vector in the training 

pattern. Each vector 2w has a 1 only in the row associated with a particular class and 0 in 

other positions. The Multiplication 2 1w a
 
adds the 1a  elements corresponding to each class, 

providing the output 2n . Finally block C provides 1 at output 2a
 
corresponding to the 

biggest element of 2n  and 0 for the other values. Thus, the neural network classifies each 

vector of the input pattern in a specific class, because that class has the highest probability of 
being correct. The main advantage of PNN is its easy and straightforward project, and not 
depending on training. 

4. Proposed procedure 

The proposed procedure is shown schematically in Figure 6. The real data file contains 
phases A-B-C voltages and currents waveforms, as well as digital signals that indicate the 
statuses of protective devices, as relays and circuit breakers, acquired by DDR and IED 
installed in the electrical system substations. These raw data are coded in the 
COMTRADE format for power systems (IEEE Standard Common Format for Transient 
Data Exchange), (IEEE Std C37.111, 1999). So, to obtain the voltages and currents signals it 
is firstly necessary to decode the COMTRADE data, and select the desired waveforms to 
be analyzed.  
 

 

Fig. 6. Schematic diagram representing the proposed processing procedure. 

Before inputting the voltages waveforms to the processing stage, a pre-processing routine is 
accomplished to standardize the raw data due to the different voltage levels that are 

www.intechopen.com



 
Advances in Wavelet Theory and Their Applications in Engineering, Physics and Technology 186 

encountered in the power system topology. In the case study presented here, the power 
transmission system presents 230 kV and 500 kV voltage levels. The standardization is 
performed by converting the phase voltages to per unit (p.u.) values considering the voltage 
peak value as base voltage. 

4.1 Processing stage 

In the processing stage, the wavelet transform is applied to the voltage waveforms to 

obtaining signals patterns that characterize short duration voltage variations (SDVV) and 

transient variations (TV) due to system faults. These obtained patterns are used as inputs to 

two Probabilistic Neural Networks for SDVV classification (PNN1), as well as to classify the 

fault type that has occurred (PNN2). The classification results will form a database which 

can be used to evaluate power quality indices for the electrical system. 

4.1.1 Input patterns  

Power systems electromagnetic phenomena are characterized by categories according to 

their spectral content, magnitude and duration (IEEE Std 1250, 1995). These phenomena 

classification into categories requires an analysis methodology that very frequently must 

be individualized, which prevents this procedure applicability when the number of 

signals to be evaluated is very large. Then, procedures to extract signals relevant 

characteristics have been proposed, so that they can be automatically classified into a 

specific category. Obtaining parameters for characterizing a given signal usually requires 

a transformation from the time domain to another domain where the specific 

characteristics are highlighted.  

The use of wavelet transform has proved adequate for obtaining electrical signals 

characteristics which can be used in classification processes. Studies such  those presented in 

(Lee et al, 1997; Chan et al, 2000; Santoso et al, 2000c; Ramaswamy et al, 2003; Zwe-Lee et al, 

2003; Zwe-Lee, 2004 & Machado et al, 2009), use characteristic vectors based on the 

multiresolution analysis decomposition levels coefficients as input to computational 

intelligence-based systems to classify different power quality events. The characteristic 

vectors magnitudes depend on the number of decomposition levels used for the analysis, or 

the number of coefficients of a given decomposition level. The method proposed here uses 

the Daubechies wavelet, db4, and the voltage signals are decomposed into three levels. The 

first signal detail level is used to determine the time instant the disturbance has started and 

also to characterize the transients in the fault type identification, while the third signal 

approximation is used to characterize SDVV. The computational algorithms were 

implemented on MATLAB, and also coded in Java. 

Figure 7(a) shows an original voltage waveform in p.u. obtained from a digital disturbance 

register (DDR) presenting a voltage sag. The original waveform is decomposed into three 

resolution levels. In Figures 7(b-d) the signal details from level 1 to level 3 are presented and 

in Figure 7(e) the signal approximation at level 3. Details retain the high-frequency 

information contained in the signal, divided into frequency bands which are function of the 

sampling rate used in the acquisition process. In case of Figure 7, the sampling rate is 96 

samples per cycle of 60 Hz, or 5,760 samples per second. 

www.intechopen.com



Application of Wavelet Transform and Artificial Neural Network to  
Extract Power Quality Information from Voltage Oscillographic Signals in Electric Power Systems 187 

 

Fig. 7. Signal decomposition in 3 levels. In (a) original signal. From (b) to (d) details from 
level 1 to level 3, and (e) level 3 approximation. 

The wavelet transform performance to detect disturbances in electrical signals is 
substantially improved if a procedure for reducing noise level is applied to the 
decomposition level coefficients to be used in the detection process. This feature is 
highlighted in (Yang et al, 1999; 2000 & 2001). So, to better characterize the disturbance 
location in the signal, it is applied the following algorithm presented in (Misiti et al, 2000), to 
the previously selected decomposition level: 

 

( ) ( ) ( ) 0

ˆ ( ) ( ) ( ) ( ) 0

0 ( )

s s s s s

s s s s s s

s s

d n if d n and d n

d n d n if d n and d n

if d n

 

 



   


   
 

                         (12) 

Where: 

 1,2, ,n N   is the number of the decomposition level s , ( )sd n , coefficient and N  is 

the number of samples; 

 ˆ ( )sd n  is the new value of ( )sd n ; 

 s  is a threshold based on the maximum absolute value of the decomposition level 

coefficients s . 

The s  value used was 10% of the maximum absolute value of the decomposition level 

coefficients considered, as proposed in (Santoso et al, 1997). 

A voltage waveform containing voltage sag is shown in Figure 8(a). In (b) it is presented the 
details level used to detect the disturbance beginning and (c) presents new details values after the 
noise reduction algorithm is applied. In (c) it can be observed smaller coefficients magnitudes 
over the entire signal which improves the algorithm performance used to detect the disturbance. 

www.intechopen.com



 
Advances in Wavelet Theory and Their Applications in Engineering, Physics and Technology 188 

 

Fig. 8. (a) Original voltage waveform with voltage sag, (b) second details level, and (c) 
second details level after noise reduction. 

The disturbance beginning point is found based on the following algorithm presented in 
(Gaouda et al, 2002) 

 
2

2

ˆ0 [ ( )]
( )

ˆ1 [ ( )]

s

s

d n
m n

d n





  


 (13) 

where: 

  is the standard deviation of 2ˆ[ ( )]sd n  

The algorithm (13) was originally proposed to find the disturbance start and end points. In 

this particular case, the interest is just the starting point, ip , which shall be considered as a 

reference for obtaining the phenomena pattern characterization in the classification stage. 
For this purpose the following algorithm is proposed: 

1. Calculate 2ˆ[ ( )]sd n ; 

2. Calculate  ; 

3. Make 0n  ; 

4. Make 1n n  ; 

5. Compare the value of 2ˆ ( )sd n  with  : 

If 2ˆ[ ( )]sd n  , return to step 4; 

If 2ˆ[ ( )]sd n  , ip n ; 

6. End 

Once the disturbance starting point is obtained, the next step is to determine the signal 
parameters to input the PNN in order to characterize SDVV and transients. 
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4.1.1.1 SDVV characterization parameters 

As the signal magnitude and duration change during the SDVV occurrence, the norm value 
(Euclidian distance) will also change if the disturbed signal is considered. So, by monitoring 
changes in the norm of the third-level signal approximation (the level containing the 
fundamental frequency) and considering the signal disturbed portion, it can be obtained a 
standard value characterizing these signal changes. Figure 9 shows the signal norm 
variation as function of the signal magnitude for the third-level signal approximation of the 
multiresolution analysis. In this analysis, a 10 cycles signal window was considered and the 
disturbance magnitude ranging from zero to 1.8 p.u. 

 

 

Fig. 9. Signal norm variation as a function of the SDVV magnitude. 

So, the SDVV classification pattern is obtained by calculating the signal norm for 10 cycles 

counting from point ip  , which represents the disturbance starting point. This procedure is 

applied to the voltage waveforms in phases A-B-C resulting a vector with three elements 
which is used as input to the PNN for classification purpose. 

4.1.1.2 Transients characterization parameters 

In the transient analysis case, a two cycles long window is selected from the disturbance 
starting point which, for real electrical systems, is a time interval within which most of the 
protective devices operate. This considered signal is then normalized based on the biggest 
magnitude coefficient, for creating a vector related to each fault type to be analyzed in the 
classification task. 

In three-phase transmission lines, phases are mutually coupled and therefore the high 
frequency variations generated during a disturbance may also appear in non-faulted phases. 
Using a modal transformation allows the coupled three-phase system to be treated as a 
system with three independent single-phase circuits. Each phase values are transformed into 
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three decoupled modes: mode 0 (zero), mode ┙ and mode ┚, so the three phases are 
decomposed into nine modes, three for each phase. As mode 0 is the same for all phases, 
this mode can be calculated only once, reducing to seven the number of signals. Therefore, 
the three phase voltage signals are decomposed by the multiresolution analysis and the first-
level detail 3-dimensioned array is used with the modal matrix to decoupling the original 
signals. 

Mathematically the modal transformation consists of a matrix operation as follows: 

 ݀௩଴ = ܹ݀௩ଵ (14) 

Where ݀௩଴ ݀௩ଵ		are the voltage wavelet coefficients corresponding to the coupled and 
decoupled phases respectively and W is the decoupling matrix. It is noteworthy that only 
the voltage signals can be decoupled by the method presented here and the operation 
described in Eq. (14) should be performed on each signal sample. The matrix W is described 
by (Silveira; et al, 1999): 

 ܹ = ଵଷ ቌͳ ʹ Ͳͳ −ͳ √͵ͳ −ͳ −√͵			 ͳ −√͵ −ͳʹ Ͳ −ͳ−ͳ √͵ ʹ 			 √͵−√͵Ͳ ቍ்
       (15) 

This way it is obtained a system that provides seven outputs, being mode ┙ and mode ┚ 
for each phase and a mode 0 which is common to the three phases. These modes contain 
the wavelet transform coefficients of the three-phase decoupled input signals. The 
linearity properties of the wavelet and modal transformations ensure that they can be 
carried out in a cascading way without causing problems to the classifier algorithm 
results. So, it is obtained a classification pattern that is represented by a matrix with seven 
columns and 192 rows. 

4.2 Artificial neural networks structures  

The ANN used for the SDVV classification, named PNN1, is composed of three classes, 
namely: 

 Class 1 – Voltage sags and interruptions, which are characterized by voltage 
magnitudes smaller than 0.9 p.u. 

 Class 2 - Adequate voltage, which is characterized by magnitudes between 0.9 p.u. and 
1.1 p.u.; 

 Class 3 – Voltage swell, which is characterized by magnitudes between 1.1 p.u. and 1.8 
p.u.  

The training values of each class were obtained from points on the curve given in Figure 9, 

resulting in 19 values stored in the PNN1. As each class covers a different magnitude range, 

it was established 9 values for class 1, 3 values for Class 2 and 7 values for Class 3. The 

weight matrix of the competitive layer is a 3x19 matrix, which corresponds to the 19 training 

values and the three classes considered. The input pattern to be classified consists of a three 

elements vector, each representing the characteristic of each phase voltage; and the PNN1 

output consists of a three elements vector, each one indicating the classification 

corresponding to each phase. 
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For transient analysis 11 classes were considered, which correspond to the short circuit 
types as listed in Table 1. 

The PNN2 training matrix has stored seven classification patterns for each class, related to 
bus voltages. As each pattern has seven vectors derived from the modal transformation, 
each class is composed of 49 vectors with 192 rows by 49 columns. The output matrix 
consists of 11 rows, corresponding to the disturbances types classes, and 539 columns 
corresponding to the training vectors. 

 
 

Single-Phase Short Circuits 

Phase A to Ground 

Phase B to Ground 

Phase C to Ground 

Two-Phase and Two-Phase to Ground 
Short Circuits 

Phases AB; Phases AB-to Ground 

Phases AC; Phases AC-to Ground 

Phases BC; Phases BC-to Ground 

Three-Phase and Three-Phase to Ground 
Short Circuits 

Phases ABC;Phases ABC-to Ground 

Table 1. Short Circuits Types 

5. Results 

In order to evaluate the performance of the proposed method in classifying SDVV, 311 
voltage oscillographic signals obtained from a real power system were used. The 
oscillographic signals were numbered from 1 to 311 for the purpose of identification. The 
electrical power system is a 500 kV/230 kV transmission system connecting Tucuruí 
Hydroelectric Power Plant located in the south of the State of Pará-Brazil, to load centers in 
the northern region, which is operated by Eletronorte, a generation and transmission utility 
in the north of Brazil. The oscillography files used are from the 230 kV substation Guamá, 
located in Belém city, the capital of the state of Pará, and corresponds to a time period 
within 2004/2005. 

Table 2 shows the results corresponding to the PNN1 output. The SDVV parameters 
represented in Table 2 are the time duration in cycles, and magnitude in p.u. As can be seen, 
24 voltage signals were classified as having SDVV. 
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According to data in Table 2 it may be seen that the PNN1 classification is consistent with 
the magnitude values calculated for the SDVV. It is observed that in most cases voltage sags 
were detected in all three phases (classification 1.1.1), and for signals 267 and 268 voltage 
sags were detected only in phase C, while phase A, and B exhibited adequate voltage 
magnitudes (classification 2.2.1). It is also worth noting that all these results were compared 
with the real original voltage waveforms, which proved the results correctness as obtained 
by the wavelet multiresolution analysis and by the PNN1 classification mechanism.  

 
 

Voltage 
Signal 

Number 

PNN 1 
Output 

Phase A Phase  B Phase C 

Time 
Duration
(Cycles) 

Magnitude
(pu) 

Time 
Duration
(Cycles) 

Magnitude
(pu) 

Time 
Duration 
(Cycles) 

Magnitude 
(pu) 

18 1 1 1 5.5729 0.8331 5.3542 0.8388 5.1979 0.8696 

19 1 1 1 5.5729 0.8275 5.3542 0.8556 5.1875 0.8473 

58 1 1 1 2.9583 0.4949 2.8646 0.8710 2.8333 0.8449 

59 1 1 1 2.9688 0.4929 2.8646 0.8701 2.5313 0.8393 

138 1 1 1 5.5729 0.8331 5.3542 0.8388 5.1979 0.8696 

139 1 1 1 5.5729 0.8275 5.3542 0.8556 5.1875 0.8473 

249 1 1 1 5.5729 0.8275 5.3542 0.8556 5.1875 0.8473 

250 1 1 1 5.5729 0.8331 5.3542 0.8388 5.1979 0.8696 

251 1 1 1 5.5729 0.8331 5.3542 0.8388 5.1979 0.8696 

252 1 1 1 5.5729 0.8275 5.3542 0.8556 5.1875 0.8473 

253 1 1 1 2.9583 0.4949 2.8646 0.8710 2.8333 0.8449 

254 1 1 1 2.9688 0.4929 2.8646 0.8701 2.5313 0.8393 

255 1 1 1 5.5729 0.8331 5.3542 0.8388 5.1979 0.8696 

256 1 1 1 5.5729 0.8275 5.3542 0.8556 5.1875 0.8473 

257 1 1 1 5.5729 0.8275 5.3542 0.8556 5.1875 0.8473 

258 1 1 1 5.5729 0.8331 5.3542 0.8388 5.1979 0.8696 

267 2 2 1 5.1667 0.9317 4.5729 0.9153 5.0313 0.6424 

268 2 2 1 5.4792 0.9486 4.5729 0.9140 5.0313 0.6393 

279 1 1 1 4.9896 0.4158 5.1771 0.8556 4.8854 0.8942 

280 1 1 1 4.8750 0.4171 4.5729 0.8523 4.8125 0.8910 

287 1 1 1 3.6875 0.8693 3.4479 0.5332 3.2917 0.8789 

288 1 1 1 3.6979 0.8699 3.4479 0.5343 3.3542 0.8906 

302 1 1 1 5.5729 0.8331 5.3542 0.8388 5.1979 0.8696 

303 1 1 1 5.5729 0.8275 5.3542 0.8556 5.1875 0.8473 

Table 2. SDVV classification and quantification results for three-phase voltage signals 
obtained from oscillographic records in a real electrical power system. 

For the fault type classification and the faulted phase identification the same 230 kV/500 kV 
electrical power system was used in which short-circuits were simulated along the 
transmission lines by varying the incidence angle, and the short-circuit resistance to 
obtaining a set of voltage waveforms corresponding to the different simulated fault types, 
using the simulation software ATP.  

www.intechopen.com



Application of Wavelet Transform and Artificial Neural Network to  
Extract Power Quality Information from Voltage Oscillographic Signals in Electric Power Systems 193 

The simulation studies included 1,029 single-phase to ground short-circuit; 2,058 two-phase 

and two-phase to ground short-circuits; and 686 three-phase and three-phase to ground 

short circuits. For the PNN2 training, seven case studies for each fault type as listed in Table 

1 were used as input patterns, and the remaining cases were used for testing. Table 3 shows 

the classification results, noting that misclassification occurred for single-phase and two-

phase to ground short circuits, with 6% and 5.4% respectively. Also 58% of the three-phase 

short circuit were classified as three-phase to ground short circuits, but considering that 

these two fault  types  can be considered as a single class there would be no classification 

error in this case, as presented by the 100% result in Table 3. 

 
 

Fault Type 
Simulated 

Cases 
Results (Correct 
Classification) 

Single-Phase to Ground 1,029 94% 

Two-Phase and Two-
Phase to Ground 

2,058 94,6 

Three-Phase and Three-
Phase to Ground 

686 100% 

Table 3. Results for fault type classification 

With the purpose of testing the performance of the proposed method in classifying real 
oscillographic signals, some Eletronorte operational reports in the period 2007/2008 
were analyzed which contained 31 labeled transient occurrences, being 17 due to short 
circuits, and 14 due to lightning discharge. For considering lightning discharges (LD) a 
new class was added to PNN2, and 7 of the 14 signals were selected for training the 
PNN2 and the remaining signals were used for testing. The testing signals were applied 
to the trained PNN2 achieving 100% accuracy for short circuits and 85,7% for lightning 
discharges. 

6. Conclusion 

This work presented a methodology for automatic SDVV classification as well as fault type 

identification using digital signal processing and computational intelligence techniques. 

Real power system data were used and satisfactory results for both SDVV and fault type 

classification were obtained. The implementation of the proposed methodology as part of a 

computational tool and its integration with the post-operational utility analysis routines will 

enable the automatic analysis of a larger number of signals waveforms, allowing the 

methodology proposed here to serve as a basis for future applications where automatic 

analysis procedures are needed.  

One should also note that the wavelet used in this work was chosen due to its good 
performance in determining the disturbance location in the signal waveform. Various 
wavelets orders from db2 to db16 were tested and the db4 wavelet presented the best 
performance, and considering also the fact that it has filters with few coefficients, the 
processing time for the signals decomposition is greatly reduced, which is an important 
characteristic when a large number of signals are to be analyzed. 
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