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1. Introduction 

It has become more important to measure accurate depth profiles in developing more 

advanced devices. To this aim, Depth profiling in secondary ion mass spectrometry (SIMS) 

has been extensively used as an informative technique in the semiconductor and electronic 

devices fields due to its high sensitivity, quantification accuracy and depth resolution 

(Fujiyama et al, 2011; Seki et al, 2011). However, the depth resolution in SIMS analysis is still 

limited to provide reliable and precise information in very thin structures such as delta 

layers, abrupt interfaces, etc. By optimization of the experimental conditions, the depth 

resolution can be enhanced. In particular, lowering the primary energy seems to be a good 

solution, but this increases the measurement time and leads to other limitations, owing to 

the wrong focalization of primary ion beam, such as roughness in the crater bottom, not flat 

crater, etc. Therefore, the depth resolution remains so far to its perfect limit. It is only by 

numerical processing like deconvolution that the depth resolution can be improved beyond 

its experimental limits.  

For the past several years, different approaches of deconvolution have been proposed taking 

into account the different physical phenomena that limit depth resolution, such as 

collisional mixing, roughness, and segregation ( Makarov, 1999;  Gautier et al, 1998;  Fares et 

al, 2006;  Dowsett et al, 1994; Mancina et al, 2000; Shao et al, 2004; Collins et al, 1992; Allen et 

al, 1993; Fearn et al, 2005). However, most problems encountered in these deconvolution 

methods are due to the noise content in the measured profiles. This instrumental 

phenomenon, which cannot be eliminated by the improvement of operating conditions, 

strongly influences the depth resolution and therefore the quality of the deconvoluted 

profiles.  

The deconvolution of depth profiling data in SIMS analysis amounts to the solution of an 
appropriate ill-posed problem in that any random noise in data leads to no unique and no 
stable solution (oscillatory signal with negative components, which are physically not 
acceptable in SIMS analysis). Thus, the results must be regularized (Tikhonov, 1963;  Barakat 
et al, 1997; Prost et al, 1984; Burdeau et al, 2000;  Herzel et al, 1995; Iqbal, 2003; Varah, 1983;  
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Essah, 1988; Brianzi, 1994;  Stone, 1974;  Connolly et al, 1998;  Berger et al, 1999; Thompson 
et al, 1991; Fischer et al, 1998). To this end, the solution is superimposed with certain 
limitations by introducing some additional limitative operators, whose shape is chosen 
depending on the formalism used for the solution of the ill-posed problem, into a goal 
function; usually the goal function is the mismatch between the convoluted solution and the 
initial data (Makarov, 1999). Indeed, different forms of limitative operator have been used. 
For example, Collins and Dowssett (Collins et al, 1992) and Allen and Dowssett (Allen et al, 
1993) have used the entropy function as a limitative operator. Based on the Tikhonov-
Miller regularization, Gautier et al (Gautier et al, 1998) have used a limitative operator 
that was defined as smoothness of the solution. Mancina et al (Mancina et al, 2000) have 
introduced a priori a pre-deconvoluted signal as a model of solution in an iterative 
regularized method. Nevertheless, the results of most of these approaches contain 
artifacts with negative concentrations, which are not physically acceptable. The origin of 
these artifacts is related to the presence of strong local components of high frequencies in 
the signal which form part of the noise. To remove the negative components from the 
deconvoluted profile, some algorithms with non-negativity constraints have been 
proposed (Makarov, 1999; Gautier et al, 1998; Gautier et al; 1998; Prost et al, 1984). These 
methods, which constrain the data to be positive everywhere, are sensitive to noise, i.e., a 
little perturbation in the data can lead to a great difference in the deconvoluted solution. 
A truncation of the negative data is an arbitrary operation and it is not acceptable, since it 
results in an artificially steep slope and can lead to the adoption of subjective criteria for 
profile assessment (Herzel et al, 1995). Moreover, noise in the data increases the distance 
between the real signal and its estimate, therefore a priori constraint is not enough, and a 
free-oscillation deconvolution is necessary.  

To overcome these limits, it is important to adopt a powerful deconvolution that leads to a 
smoothed and stable solution without application of any kind of constraints. In this context, 
multiscale deconvolution (MD), which is never used to recover SIMS profiles, may be the 
most appropriate technique.   

The MD provides a local smoothness property with a high smoothness level in 
unstructured regions of the spectrum where only background occurs and a low 
smoothness level where structures arise (Fischer et al, 1998). Based on wavelet transform, 
the MD seems to be a good solution that can yield information about the location of 
certain frequencies in the profile on different frequency scales. Therefore, high 
frequencies, which are related to noise, can be localized and controlled at different levels 
of wavelet decomposition. The multiscale description of signals has facilitated the 
development of wavelet theory and its application to numerous fields (Averbuch & 
Zheludev, 2009; Charles et al, 2004; Fan & Koo, 2002;  Neelamani et al, 2004; Zheludev, 
1999; Rashed et al, 2007; Garcia-Talavera et al, 2003;  Starck et al, 2003;  Jammal et al, 2004; 
Rucka et al, 2006). This chapter is intended to explore capabilities of wavelets for the 
deconvolution framework. The proposed idea is to introduce a wavelet-based 
methodology in the Tikhonov-Miller regularization scheme and shrinking the wavelet 
coefficients of the blurred and the estimated solution at each resolution level allow a local 
adaptation of limitative operator in the quadratic Tikhonov-Miller regularization. This 
leads to compensation for high frequencies which are related to noise. As a result, the 
oscillations which appear in classical regularization methods can be removed. This leads 
to a smoothed and stable solution. 

www.intechopen.com



 
Multi-Scale Deconvolution of Mass Spectrometry Signals 127 

This work is based on SIMS data, for which reason the results presented here are largely 
restricted to the conditions of SIMS analysis. The main objective of this work is to show that 
the MD gives much better deconvolution results than those obtained using monoresolution 
regularization methods. In particular, the results obtained are compared to those achieved 
using a regularized monoresolution deconvolution, which is Tikhonov-Miller regularization 
with a pre-deconvoluted signal as a model of the solution, denoted as TMMS (Mancina et al, 
2000).  

2. Deconvolution procedure 

2.1 Background  

Depth profiling in SIMS analysis is mathematically described by the convolution integral 
which is governed by the depth resolution function (DRF), h(z). If the integral over h(z) is 
normalized to unity, then the measured (convolved) signal is given by the well-known 
convolution integral 

 ( ) ( ') ( ') 'y z h z z x z dz




  + b(z), (1) 

where x(z) is the compositional depth distribution function and b(z) is the additive noise.  

This work deals with the deconvolution of depth profiling SIMS data. Therefore, it is 
important for further consideration to know the shape of the DRF that is typical of SIMS 
profiles. We have chosen to describe the DRF analytically in a form initially proposed by 
Dowsett et al (Dowsett et al, 1994), which is constituted by the convolution of double 
exponential functions with a Gaussian function. This DRF can be described by three 
parameters: λu (the rising exponential decay), σg (the standard deviation of the Gaussian 
function), and λd (the falling exponential decay). The latter characterizes the residual 
mixing effect, which is considered to be the main mechanism responsible for the 
degradation of the depth resolution (Boulakroune et al, 2007; Yang et al, 2006). For any 
possible values of these parameters, the DRF is normalized to unity. The consequences of 
the fact that the resolution function can be represented in the form of a convolution have 
been described elsewhere (Gautier et al, 1998; Dowsett et al, 1994; Collins et al, 1992; Allen 
et al, 1993). 

For a discrete system, eq. (1) can be written as   

 
1

0

N

k i k i k
i

y x h b





  ,      k =0,…, 2N-2, (2) 

where N is the number of samples of vectors h, x. Equation (2) can be rewritten as 

 y = Hx + b, (3) 

where H is a matrix built from h(z). In the case of a linear and shift-invariant system, H is a 
convolution operator (circular Toeplitz matrix). This means that the multiplication of H with 
the vector x leads numerically to the same operation as the analytical convolution of h(z) 
with x(z). 
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The problem of the recovery of the actual function x from eq. (3) is an ill-posed problem in 
the sense of Hadamard. (Varah, 1983) Therefore, it is affected by numerical instability, since 
y contains experimental noise. The term incorrectly posed or ill-posed problem means that 
the solution x of eq. (3) may not be unique, may not exist, or may not depend continuously 
on the data. In other words, H is an ill-conditioned matrix, or/and small variations in the 
data due to noise result in an unbounded perturbation in the solution.   

It is well-known that the function H(υ) (the spectrum of the DRF) is a low-pass filter. (Allen, 
1993; Barakat, 1997; Berger, 1999; Gautier, 1998) Its components are thus equal or very close 
to zero for frequencies above a certain cut-off frequency υc. Components close to υc are very 
attenuated by the convolution. Furthermore, in the presence of an ill-posed problem, some 
components below υc can be very small, almost null (see Fig. 1). In this case, the inversion of 
the convolution equation fails for these components, or leads to a very unstable solution. 

 

 

Fig. 1. DFT of the depth resolution function; DRF measured at 8.5 keV/O2+. 

To solve an ill-posed problem, it is mandatory to find a solution so that the small 

components of H(υ) do not hinder the deconvolution process, i.e., to stabilize the solution. 

Moreover, the resolution of an ill-posed problem in the presence of noise leads to an infinite 

number of solutions, among which it is necessary to choose the unique solution that fits the 

problem we are trying to solve.  

Therefore, in order to solve this problem, a regularization method must be included. This 

means that the original problem is replaced by an approximate one whose solutions are 

significantly less sensitive to errors in the data, y. Several regularization methods have been 

discussed in refs. (Iqbal, 2003; Varah, 1983; Essah, 1988; Brianzi, 1994;  Stone, 1974;  Connolly 

et al, 1998; Berger et al, 1999; Thompson et al, 1991). All of these methods are based on the 

incorporation of a priori knowledge into the restoration process to achieve stability of the 

solution.  
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The basic underlying idea in the regularization approaches is formulated as an optimization 
problem whose general expression is 

 L ( , )x y   = L1(x, 0x ) + α L2(x, x )  x X, (4) 

where L1 is a quadratic distance, which provides a maximum fidelity to the data; 0x  is the 

least squares solution, consistent with the data; L2 is a stabilizing function, which measures 

the distance between x and an extreme solution x  corresponding to an a priori ultra-

smooth solution. The restoration methods, cited in references (Iqbal, 2003; Varah, 1983; 

Essah, 1988; Brianzi, 1994;  Stone, 1974;  Connolly et al, 1998;  Berger et al, 1999; Thompson 

et al, 1991), differ from each other in the choice of the distance L2. The choice leads either to 

a deterministic or a stochastic regularization. α is the regularization parameter which 

controls the trade-off between stability (fidelity to the a priori) and accuracy of the solution 

(fidelity to the data). X represents the set of possible solutions. 

2.2 Tikhonov-Miller regularization  

As shown in the previous section, the regularization is achieved through a compromise 

between choosing one solution in the set of solutions that lead to a reconstructed signal close 

to the measured data (fidelity to the data), and in the set of stable solutions that conform to 

some prior knowledge of the original signal (fidelity to the a priori). This means that the 

solution is considered to be close to the data if the reconstruction signal Hx is close to the 

measured one y, i.e., if 
2

y Hx is reasonably small. Thus, the first task of the deconvolution 

procedure is to minimize the quadratic distance between y and Hx. Unfortunately, solutions 

that lead to very small values of 
2

y Hx  oscillate and are therefore unacceptable. In order 

to get a stable solution, one must choose another criterion that checks whether the solution 

is consistent with the solution of the deconvolution problem: it must be physically 

acceptable, i.e., a smoothed solution. The smoothness of the solution can be described by its 

regularity r2, defined as  

 
2

Dx   r2, (5) 

where D is a stabilizing operator. The choice of D is based on the processing context and 
some a priori knowledge about the original signal. D is usually designed to smooth the 
estimated signal, and then a gradient or a discrete Laplacian is conventionally chosen. In 
this work, the filter used is a discrete Laplacian: [1 -2 1], its spectrum is a high-pass filter 
(Gautier et al, 1998; Mancina et al, 2000; Burdeau et al, 2000). This results in the 
minimization of the quadratic functional proposed by Tikhonov 

 x  argmin
2 2

[ (y Hx Dx    r²)], (6) 

where “argmin” denotes the argument that minimizes the expression between the brackets. 
Perfect fidelity to the data is achieved for α = 0, whereas perfect matching with a priori 
knowledge is achieved for α = ∞. Therefore, it is necessary to find the optimum α and, 
hence, a smoothing factor at which the solution of eq. (6) is well-stabilized and still close to a 
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real distribution. This regularization parameter α can be estimated by a variety of 
techniques (Iqbal, 2003; Varah, 1983; Essah, 1988; Brianzi, 1994;  Stone, 1974;  Connolly et al, 
1998;  Berger et al, 1999; Thompson et al, 1991). In a simulation where the regularity of the 
solution is known, α = b2/r2, where b2 is an upper bound for the total power of the noise. 
Unfortunately, in the real case, there is no knowledge of the regularity of the real profile, but 
it can be estimated by means of the generalized cross-validation (Thompson et al, 1991) 
which applies well to Gaussian white noise. The regularized solution takes the following 
form: 

 1 1( ) ( )T T T Tx H H D D H y H H y      ,  (7) 

where T TH H H D D   . 

The matrix H characterizing the deconvolution process before regularization is replaced by 
the generalized matrix H+ = (HTH + αDTD), which is more conditioned. That step is carried 
out by the modification of the eigenvalues of H; thus the system becomes more stable. 
Figure 2 shows the spectra of the DRF (H), the filter D and the generalized matrix H+. 

The choice of the regularization operator D should not constitute a difficulty since the rule 
on the modification of the eigenvalues is respected. The most appropriate choice to be 
determined for the reconstruction quality is that of the regularization parameter α. Indeed, a 
poor estimation of this parameter leads to worse conditioning of the matrix H, and as a 
consequence, the solution is degenerated.  

 

 

Fig. 2. Spectra of DRF (H), filter D, and the generalized matrix H+. Here the regularization 
parameter α is overestimated, which leads to a well-conditioned H+.  

Actually, the regularization can guarantee unicity and stability of the solution but cannot 
lead to a very satisfactory result. The quantity of information brought is not sufficient to 
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obtain a solution close to the ideal solution because this regularization provides global 
properties of the signal. Barakat et al (Barakat et al, 1997) have proposed a method based on 
Tikhonov regularization combined with an a priori model of the solution. The idea of such a 
model is to introduce local characteristics of the signal. This model may contain 
discontinuities whose locations and amplitudes are imposed. The new functional to be 
minimized with respect to x is defined as follows: 

 L = 
2 2

mod( ) ,y Hx D x x     (8) 

where xmod is an a priori model of the solution. The solution of eq. (8) is given by: 

 1
mod( ) ( ).T T T Tx H H D D H y D Dx     (9) 

The strategy developed in Barakat’s algorithm is useful if the a priori information is quite 
precise and the quality of solution depends on the accuracy of a priori information.  

Mancina et al (Mancina et al, 2000) proposed to reiterate the algorithm of Barakat (Barakat et 
al, 1997) and to use a pre-deconvoluted signal as model of the solution (an intermediate 
solution between the ideal solution, i.e., the input signal, and the measured one) with 
sufficient regularization. The mathematical formulation of the Mancina approach in Fourier 
space is as follows: 

 

0

2*
mod

1 2 2

mod

1
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ˆ

ˆ[ ]

ˆˆ [ ]

0
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
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 
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 






 

, (10) 

where H* is the conjugate of H, and C represents the constraint operator which must be 
applied in the time domain after an inverse Fourier transformation.  

Actually, in most of the classical monoresolution deconvolution methods, the results 

obtained are oscillatory Makarov, 1999;  Gautier et al, 1998;  Fares et al, 2006; Dowsett et 

al, 1994; Mancina et al, 2000; Yang et al, 2006;  Shao et al, 2004. The generated artifacts are 

mainly due to the strong presence of high-frequency components which are not 

compensated by the regularization parameter α associated with the regularization 

operator D, since, in these methods, this parameter is applied in a global manner to all the 

frequency bands of the signal. This leads to the treatment of the low frequencies, which 

contain the useful signal, as opposed to the high frequencies, which are mainly noise. 

Thus, at α = 0, eq. (7) corresponds to the minimum of argmin [eq. (6)] without smoothing 

of x. The corresponding solution is applicable only in the perfect case, i.e., if there are no 

errors or noise in the experimental distribution y. Real y always contains errors, and 

minimization of eq. (6) using α = 0 produces strong fluctuations of the solution (a 

parameter α that is too weak leads to a solution dominated by the noise within the 

observed data). With an increase of α, the role of the second term in eq. (6) increases, and 

the solution stabilizes and becomes increasingly smooth. However, if α is too large, 
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surplus smoothing may noticeably broaden the solution and conceal its important 

features (a parameter α that is too high leads to a solution that is not very sensitive to 

noise, but it is very far from the measured data). It is therefore necessary to find the 

optimum α and, hence, a smoothing factor at which the solution to problem (6) is well-

stabilized but still close to the real distribution. Moreover, in the iterative algorithms, if 

the regularization parameter is not well calculated, the oscillations created at iteration n 

are amplified at iteration n + 1, which degenerates the final solution. The value of α, the 

regularization parameter associated with D, is very important in the regularization 

process, and its value determines the quality of the final solution. This can easily be 

understood if one analyzes the generalized matrix H+. As α increases, the matrix (H+)-1 

tends toward a diagonal matrix, while the vector HTy, which is broadened in comparison 

to the initial data vector y due to the multiplication by the transposed distortion matrix, 

remains unchanged. As a result, with an increase of α, the shape of the solution tends to 

HTy, i.e., to the considerably broadened initial data. Figure 3 shows an example of the 

evolution of the spectrum of the matrix H+ for various values of the regularization 

parameter α. 

According to Fig. 3, the determination of the classical regularization parameter αc for the 
SIMS profile led to a value of 5.9290×10-4. For this value, the spectrum of the generalized 
matrix H+ is oscillatory (the matrix is not well-conditioned), leading to an unstable 
solution. In order to stabilize the system more, Mancina et al (Mancina et al, 2000) 
proposed multiplying the regularization parameter by a positive factor. The 
multiplication of this parameter by a factor K (K = 10, 102, 103) leads to increasingly 
regularized matrix H+ (Fig. 2). Nevertheless, this multiplication is arbitrary and it is not 
based on any physical support 

 

 

 

Fig. 3. Evolution of the spectrum of the matrix H+ according to kαc (K =1, 10,  102, 103).   
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Since the real distribution that is to be deconvoluted is unknown other than in some 

special cases, the choice of the optimum α requires the use of indirect and sometimes non 

strict and ambiguous criteria. This causes a clear indeterminacy in the choice of α. One 

should note that this indeterminacy in ill-posed problems is inherent to any data 

deconvolution method.  

Conventionally, the Tikhonov-Miller approach of searching for the optimum α uses 

additional information on the level of noise in the initial data. This is often inconvenient, for 

example, if the data vary over a wide range, and the statistical noise level changes 

considerably from point to point depending on signal level. 

Generally, the choice of optimum smoothing for deconvolution of an arbitrary set of data 

requires a special study, and this work only outlines the principle for solving this problem. 

The example in Fig. 3 shows that the regularization parameter must be accurately 

determined and locally adapted in the differently treated frequency bands in order to ensure 

a non aberrant result. This allows the deconvolution of signals previously decomposed by 

projection onto a wavelet basis.  

3. Discrete wavelet transform  

3.1 Background  

Wavelet theory is widely used in many engineering disciplines (Rashed et al, 2007;  Garcia-

Talavera et al, 2003;  Starck et al, 2003; Jammal et al, 2004; Rucka et al, 2006), and it provides 

a rich source of useful tools for applications in time-scale types of problems. The attention to 

study of wavelets becomes more attractive when Mallat (Mallat, 1989) established a 

connection between wavelets and signal processing. Discrete wavelet transform (DWT) is an 

extremely fast algorithm that transforms data into wavelet coefficients at discrete intervals 

of time and scale, instead of at all scales. It is based on dyadic scaling and translating, and it 

is possible if the scale parameter varies only along the dyadic sequence (dyadic scales and 

positions). It is basically a filtering procedure that separates high and low frequency 

components of signals with high-pass and low-pass filters by a multiresolution 

decomposition algorithm (Mallat, 1989). Hence, the DWT is represented by the following 

equation: 

 2( , ) ( )2 (2 ),
j j

j k

W j k y k n k     (11) 

where y is discretized heights of the original profile measurements, ψ is the discrete wavelet 

coefficients, and n is the sample number. The translation parameter k determines the 

location of the wavelet in the time domain, while the dilatation parameter j determines the 

location in the frequency domain as well as the scale or the extent of the space-frequency 

localization. 

The DWT analysis can be performed using a fast, pyramidal algorithm by iteratively 

applying low-pass and high-pass filters, and subsequent down-sampling by 2 (Mallat, 1989). 

Each level of the decomposition algorithm then yields to low-frequency components of the 
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signal (approximations) and high-frequency components (details). This is computed with 

the following equations: 

 ylow [k] = [ ] [2 ],
n

y n f k n   (12) 

 yhigh [k] = [ ] [2 ],
n

y n g k n   (13) 

where ylow[k] and yhigh[k] are the outputs of the low-pass (f) and high-pass (g) filters, 
respectively, after down sampling by 2. Due to down-sampling during decomposition, the 
number of resulting wavelet coefficients at each level is exactly the same as the number of 
input points for this level. It is sufficient to keep all detail coefficients and the final 
approximation coefficients (at the roughest level) in order to reconstruct the original data. 

The approximation and details at the resolution 2-(j+1) are obtained from the approximation 
signal at resolution 2-j. In the matrix formalism, eqs. (12) and (13) can be written as  

 
( 1)( 1) ( ) ( ), jj j j

a a ady F y y G y   ,  (14) 

where F and G are Toeplitz matrices constructed from the filters f and g, respectively.  

The reconstruction algorithm involves up-sampling, i.e., inserting zeros between data 
points, and filtering with dual filters. By carefully choosing filters for the decomposition and 
reconstruction that are closely related, we can achieve perfect reconstruction of the original 
signal in the inverse orthogonal wavelet transform (Daubechies, 1990). The reconstructed 
signal is obtained from eq. (14) by 

 
( )( ) jJ

a dy Fy Gy   , j = 1,…, J,  (15) 

where F  and G  are Toeplitz matrices constructed from the reconstruction filters f and g , 

respectively. For a general introduction to discrete wavelet transform and filter banks, the 
reader is referred to refs. (Mallat, 1989; Daubechies, 1990).  

The Mallat algorithm (Mallat, 1989) is a fast linear operation that operates on a data vector 
whose length is an integer power of two, transforming it into numerically different 
vectors of the same length. Many wavelet families are available. However, only 
orthogonal wavelets (such as Haar, Daubichies, Coiflet, and Symmlet wavelets) allow for 
perfect reconstruction of a signal by inverse discrete wavelet transform, i.e., the inverse 
transform is simply the transpose of the transform. Indeed, the selection of the most 
appropriate wavelet is based on the similarity between the derivatives of the signal and 
the number of wavelet vanishing moments. In practice, wavelets with a higher number of 
vanishing moments give higher coefficients and more stable performance. In this study, 
we restrict ourselves to Symlet and Coiflet families; after some experimentation, we chose 
“Sym4” wavelet with four vanishing moments and “Coif3” wavelet with three vanishing 
moments. Figure 4 shows the wavelet function, scaling function and the four filters of the 
wavelets “Sym4” and “Coif3”. The decomposition on a wavelet basis (to the level 5) of a 
SIMS profile containing four delta-layers of boron in silicon  to approximation and detail 
signals is illustrated in Fig. 5.  
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Fig. 4. (a) Sym4: scaling function, wavelet function, and the associated filters. (b) Coif3: 
scaling function, wavelet function, and the associated filters. 

Due to the compression and dilatation properties of the wavelets in representing a signal, 

wavelet-based filters can easily follow the sharp edges of the input signal. In other words, 

they restore any discontinuity in the input signal, or, in terms of the frequency domain 

interpretation, they pass high frequency components of the input signal. This is a very 

appealing feature of the wavelet-based methods in many applications, such as finding the 

location of discontinuities and abrupt changes in a signal. However, this feature may have 

adverse effects, especially when one wants to get rid of impulsive noise (outliers and gross 

errors).  

We notice that the lower level (high-frequency) wavelet components are similar to a random 

process, while the higher level (low-frequency) ones are not [Fig. 5(a)]. The noise in SIMS 

analysis is Gaussian, and one considers that, if there was no signal but the noise alone, the 

variance of the details would decrease by a factor of 2 at each resolution. Analysis at each 

level of detail (from small to large) separately on the same signal is shown in Fig. 5(b). 
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Fig. 5. Wavelet decomposition of SIMS profile measured at 8.5 keV/O2+, 38.1 rad.  
The wavelet used is Sym4; the decomposition level is 5.  
(a) The original measured profile with the different approximation signals from level 1 to 5. 
(b) Detail signals from level 1 to 5 with absolute wavelet coefficients  
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Wavelets have multiscale and local properties that make them very effective in analyzing 
the class of locally varying signals. Together the locality and multiscale properties enable 
the wavelet transform to efficiently match signals organized into levels or scales of 
localized variations. Thus DWT transforms the noisy signal in the wavelet domain, and by 
denoising we obtain a sparse representation with a few large dominating coefficients 
(Donoho et al, 1994, 1995). A large part of the wavelet coefficients does not carry 
significant information [see absolute wavelet coefficients for n = 1 to 5 in Fig. 5(b)]. We 
select the significant ones by a thresholding procedure, which is addressed in the 
following section. 

3.2 Denoising by wavelet coefficients thresholding  

Noise is a phenomenon that affects all frequencies. Since the useful signal tends to dominate 

the low-frequency components, it is expected that the majority of high-frequency 

components above a certain level are due to noise. In the wavelet decomposition of signals, 

as has been described, the filter h is an averaging or smoothing filter, while its mirror g 

produces details. With the exclusion of the last remaining smoothed components, all 

wavelet coefficients in the final decomposition correspond to details. If the absolute value of 

a detail component is small (or set to zero), the general signal does not change much. 

Therefore, thresholding the wavelet coefficients is a good way of removing unimportant or 

undesired (insignificant) details from a signal. Thresholding techniques are successfully 

used in numerous data-processing domains, since in most cases a small number of wavelet 

coefficients with large amplitudes preserve most of the information about the original data 

set.  

A basic wavelet-based denoising procedure is described in the following: 

 Decomposition: Select the level N and type of wavelets and then determine the 
coefficients of SIMS signal by DWT. For wavelet denoising, we must decide from many 
possible selections, such as the type of mother wavelet, the decomposition levels, and 
the values of thresholds in the next step. In this study, decomposition at level 5 has been 
used.  

 Thresholding: Estimating threshold values is based upon the analytical and empirical 
methods. For each level from 1 to 5, we use the estimated threshold values and set the 
detail coefficients below the threshold values to zero. Based on knowledge of the 
wavelet analysis in the data set, we use objective criteria to determine threshold values. 
Basically, the choice of mother wavelet appears not to matter much, while the values of 
thresholds do. Therefore, setting the values of the threshold is a crucial topic. According 
to the analysis described, we set threshold values based on the properties of SIMS data 
sets.  

 Reconstruction: We reconstruct the denoised signal using the original approximation 
coefficients of level N and the modified detail coefficients of levels from 1 to N by the 
inverse DWT. 

Wavelet denoising methods generally use two different approaches: hard thresholding and 
soft thresholding. The hard thresholding philosophy is simply to cut all the wavelet 
coefficients below a certain threshold to zero. However, soft thresholding reduces the value 
(referred to as “shrinkage”) of wavelet coefficients towards zero if they are below a certain 
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value. For a certain wavelet coefficient k on scale j, the thresholded details coefficients are 
given by 

 ˆ ( )dy k  sign ( )y k  ,  (16) 

where the function “sign” returns the sign of the wavelet coefficient, and λ is the threshold 
value. In the case of Gaussian white noise (which is the kind of noise in SIMS analysis), 
Donoho and Johnstone (Donoho et al, 1994, 1995) modeled this threshold by  

 2 log( )N  ,  (17) 

where N is the number of the observed data points, and σ is the standard deviation of noise. 
This standard deviation, in the case of white and Gaussian noise, is estimated by 

 ̂  median
(1)( ( ) 0.6754cd k ,  (18) 

where median(cd(1)(k)) is the median value of detail coefficients at the first level of 
decomposition which can be attributed to noise. After thresholding, the reconstructed signal 
of eq. (15) becomes: 

 
( )( ) ˆ jJ

a dy Fy Gy   , j = 1, …, J. (19) 

By using this process, high-frequency components above a certain threshold can be 

removed. A raw SIMS profile and corresponding denoised profile are shown in Fig. 6(a). In 

particular, the figure shows that low-frequency components, which usually represent the 

main structure of the signal, are separated from high-frequency components. These 

preliminary results demonstrate the superior capabilities of the wavelet approach to SIMS 

profiles analysis over traditional techniques. 

In the analysis of SIMS data, we find that most wavelet coefficients at high-frequency levels 

from 1 to 4 [see Fig. 5(b)], can be mostly ignored. However, we must be very cautious when 

manipulating the low-frequency components to keep as many true coefficients as possible 

after thresholding. According to the exploratory data analysis in the beginning of this 

section, we select a threshold value large enough to ignore most of the wavelet coefficients 

at levels 1-4, which represent the noise signals, especially in the beginning and the end of 

the profile. The denoising results show the good performance of wavelet application and 

exploratory data analysis.  

The remaining wavelet coefficients after shrinkage are less than one tenth of those of the 

original SIMS. These thresholded wavelet coefficients [those “stuttered” 2n times on level n 

are concentrated in the zone where the signal is too noisy, see Fig. 6(b)] give us an idea of 

the remaining details in the approximation (denoised signal) of the original signal, which 

are higher than the determined threshold (significant details). For example, the estimated 

threshold of the previous SIMS signal, obtained using soft universal shrinkage [eq. (17)], is  

λ = 55.7831 cps. The estimated level of noise, using eq. (18), gives a signal-to-noise ratio 

(SNR) = 40.9212 dB. 
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Fig. 6. (a) Original SIMS profile superimposed on the denoised profile. (b) Thresholded 
wavelet coefficients.    

Because the few largest wavelet coefficients preserve almost the entire energy of the signal, 
shrinkage reduces noise without distorting the signal features. The main results after 
denoising by wavelet coefficient thresholding are as follows. 

- The noise is almost entirely suppressed. 
- Sharp features of the original signal remain sharp in the reconstruction. 
- It is inferred that progressive wavelet transformations would bring the prediction 

asymptotically closer towards the true signal. 

Finally, we note that the result obtained [Fig. 6(a)] is of both good smoothness and 
regularity. Thus, we may exploit this advantage in deconvolution procedure without fearing 
that it will lead to aberrant results. 

4. Multiscale deconvolution (MD): The proposed algorithms 

4.1 First algorithm: Tikhonov-Miller regularization with a denoisy and deconvoluted 
signal as model of solution  

We have seen in § 2.2 eq. 10 that Mancina (Mancina, 2000) proposed to reiterate the 
algorithm of Barakat (Barakat et al, 1997) and to use a pre-deconvoluted signal as model of 
the solution  with sufficient regularization.  The accuracy of the solution is referred to the 
accuracy of the model, which suggests a reasonable formulation. It is obvious that a 
significant lack of precision in the a priori model leads to an error restoration more 
important than the usual one without the model. Moreover, if the pre-deconvoluted signal is 
a noisy signal (which is the case for SIMS signals) or contains aberrations, the iterative 
process worsens these aberrations and the result is an oscillatory signal. For this reason, it is 
important to remove noise components from the signal (the model of solution). The idea is 
to introduce a denoisy and deconvoluted signal as  model of solution in Barakat’s approach, 
which constitutes our first contribution in this field (Boulakroune, 2008). The first proposed 
deconvolution scheme is constructed by the following steps: 
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1. Dyadic wavelet decomposition of the noisy signal at the resolution 2-j. 
2. Denoising of this signal by thresholding. One conserves only high-frequency 

components of details which are above the estimated threshold. 
3. Reconstruction of the denoisy signal from the approximations and thersholded details 

using eq.19. 
4. The obtained denoisy signal constitutes the model of solution in iterative Tikhonov-

Miller regularization at the first iteration. 

The mathematical formulation, in Fourier space, of this algorithm is as follows: 

 

0

( )( )
mod

2*
mod

1 2 2

mod 1

ˆ

ˆ

ˆ

n

n

jj
a d

n

n

X Fy Gy

H Y D X
X

H D

X X








  

  








 (20) 

It can be noted that denoising reduces the noise power in data; the regularization parameter 
should be evaluated by cross-validation in regards of the denoisy signal.  

Since the noise is controlled by multiscale transforms, the regularization parameter does not 
have the same importance as in standard deconvolution methods. Clearly it will be lower 
than obtained without denoising.  

In order to validate the robustness of the proposed algorithm, the results must be compared 
with those of the previous Tikhonov-Miller regularization algorithms. In particular, we have 
chosen to compare our results with those obtained by Mancina algorithm (Mancina, 2000).  

The results of deconvolution by Mancina’s approach (Mancina, 2000) are given in Figs. 7(a) 

and 7(b). It is obvious by using this algorithm, that the deconvolution has improved the 

slope and the regularity of the delta layers which are completely separated. Indeed, their 

shape is symmetrical for all peaks, indicating that the exponential features caused by the 

SIMS analysis are removed. The full width at half maximum (FWHM) of the deconvoluted 

delta-layers is equal to 19.5 nm. This can be considered a very good result if one takes into 

account that the FWHM of the measured profile is approximately 59.7 nm. This corresponds 

to an improvement in depth resolution by a factor of 3.06. The dynamic range is enhanced 

by a factor of 2.03 for all peaks.  

At both sides of the deconvoluted peaks, oscillations with negative components [Fig. 7(a)] 
appear under the level of noise where the reliability of the deconvolution process cannot be 
guaranteed. These artifacts, which have been produced by the deconvolution algorithm, 
must not be taken for a real concentration distribution. The negative values of these artifacts 
are not physically accepted for concentration measurements in SIMS analysis. Although a 
compromise was made between the iteration number and the quality of the deconvoluted 
peaks, if one increases the iteration number with a relatively weak regularization parameter 
(obtained by cross validation, it equals 5.6552×10-6), the number and the level of these 
oscillations increase more which reinforces the limits of this algorithm. Indeed, these 
oscillations are directly related to the quantity of noise. Part of this information, in particular 
in high frequencies, is masked by the noise, and this lack of information is compensated by 
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the generation of artifacts. With an over estimated value of the regularization parameter, 
which leads to a more conditioned matrix (H+) (see Fig. 2), one can reduces the number and 
the amplitude of these oscillations. The solution can be stable and smooth, but this operation 
is arbitrary and not based on any physical or mathematical support.   

By applying the positivity constraint, one reinforces the positivity of the final deconvolution 

profile. The solution stays in accordance with physical reality, as is illustrated in Fig. 7(b). 

However, positiviting the signal is an arbitrary operation; it is only to direct the solution so 

that it becomes positive, without making sure that it is exact. Furthermore, the measured 

dose (the number of ions counted) must be identical for all signals (original, measured, 

deconvoluted) except for the noise. This dose must be preserved in the resolution of 

convolution equation and must take into account the generated negative components. With 

the application of the positivity constraint, the dose of the deconvoluted and constrained 

signal is higher than the initial dose. A variation of a few percent cannot be tolerated in the 

quantification of SIMS profiles. It is important to note that in the case of SIMS analysis, 

physical coherence is of paramount importance. The deconvoluted profile must be 

physically acceptable. Thus, it is important to adopt a method whose result is acceptable; 

otherwise the result obtained may be mathematically correct but have no connection with 

physical reality.  

 

Fig. 7. Results of TMMS algorithm for sample MD4 containing four delta layers of boron in 
silicon (8.5 keV/O2+, 31.8°); αc = 5.6552×10-6, n= 150 iterations. 
(a) Without application of positivity constraint.   
(b) With application of positivity constraint.  

To completely remove artifacts from the deconvoluted profiles, Gautier et al (Gautier at al, 
1997) proposed the application of local confidence level deduced empirically from the 
reconstruction error in the deconvoluted profiles. The goal of this confidence level is to 
separate the parts of the signal belonging to the original profile from those generated 
artificially by the process of deconvolution. According to these authors (Gautier at al, 1997), 
when the signal falls to the noise level, at which point one cannot be confident in the 
deconvolution result, one must fix a limiting value of the deconvoluted signal below which 
one should not take into account the deconvolution result that likely belongs to the original 
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signal. However, a confidence level that authorizes to take into account certain parts of the 
signal and eliminates the lower parts in which the signal should not be taken into account 
any more, does not bring any information about the quality of information. One of the 
advantages of SIMS analysis is the great dynamic range of the signal, and allowing the 
deconvoluted signal to be restricted to a dynamic range which does not exceed two decades 
and thus does not reflect the original signal. The parts filtered by the confidence level can 
provide precious information about the sample. In ref. (Mancina, 2000), Mancina showed 
that the artifacts are not always aberrations of the deconvolution; they can be structures 
with low concentrations. The interpretation of the artifacts must be measured, especially if 
their amount is not negligible, in which case, one cannot eliminate them from the 
deconvoluted profiles. Therefore, it is important to find another tool which leads to a 
solution lacking of any non physical features and without any arbitrary operations.  

 

Fig. 8. Result of deconvolution by the first proposed algorithm of SIMS profile containing 
four delta-layers of boron in silicon (8,5 keV/O2+, 38,1°), α = 5,6552.10-6, n = 250 iterations. 
The level of estimated noise, by using (17) et (18), is of SNR = 40,92 dB. The threshold  
λ = 55.7831 counts/s. The used wavelet is Sym4.  

By using the first proposed algorithm, the results are quite satisfactory suggesting that this 

approach is indeed self-consistent, see Fig. 8. A significant improvement in the contrast is 

observed; the delta layers are more separated. The shape of the results is symmetrical for all 

layers, indicating that the exponential features (in particular the distorted tail shape 

observed in the boron profile is due to a significantly larger ion mixing effect) caused by 

SIMS analysis are removed. The same gains that those obtained by Mancina approach of the 

depth resolution and maximum of picks (dynamic range) are obtained. It can be noted that 

the width of measured peaks indicates that the δ-layers are not truths deltas - doping, they 

are close to gaussian more than delta-layers. At the right side of the main deconvoluted 

peaks some other small peaks appear without any negative component and without 
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application of positivity constraint any more, which validates this approach. The question 

for the SIMS user is to know whether these peaks are to be considered as physical features 

or as deconvolution artifacts. The origin of these positive oscillations lies in the strong local 

concentrations of the high frequencies of noise, and which cannot be correctly restored. It 

should be noted that these small peaks can be eliminated by the support constraint, but we 

consider that the application of any kind of constraints is a purely arbitrary operation.  

In the classical approaches of the regularization (including our first algorithm) the 
regularization operator applies in a total way to all bands of the signal. This results in 
treating low frequencies which contain the useful signal like high frequencies mainly 
constituted by noise. The result is then an oscillating signal, because the regularization 
parameter is insufficient to compensate all high frequencies. To overcome these limits, it is 
important to adopt a powerful deconvolution that leads to a smoothed and stable solution. 
In this context, multiresolution deconvolution, which is never used to recover SIMS profiles, 
may be the most appropriate technique.   

4.2 Second algorithm: Multiresolution deconvolution 

Because of the very abrupt concentration gradients in circuits produced by the 

microelectronics industry the original SIMS depth profiles are likely to contain some very 

high frequencies (Gautier et al, 1998). SIMS signals can extend over several decades in a very 

short range of depth. The intention of any SIMS analyst, as well as of any deconvolution 

user, is to recover completely all the frequencies lost by the measurement process. 

Unfortunately, considering again the fact that the resolution function is a low-pass filter, the 

recovery of high frequencies is always limited, and the recovery of the highest frequencies is 

definitely impossible, particularly when the profile to be recovered is noisy, which is always 

the case. It is possible to produce some very high frequencies during the deconvolution 

process, but there are many chances that these high frequencies are only produced by the 

high-frequency noise or are created during the inversion of eq. (3) from the very small 

components of H(υ). High frequencies in the results of a deconvolution must be regarded 

suspiciously, except if we are just trying to recover very sharp spikes with no interesting 

low frequencies. This is definitely not the case for SIMS signals, which contain an 

appreciable amount of low frequencies, too. Therefore, the purpose of this work is to solve 

this problem by separating high frequencies and low frequencies in the signal, and then 

further recovering correctly the high frequencies which are not attributable to noise and 

which contain useful information. Using multiresolution deconvolution, the final result of 

the deconvolution should be reasonably smooth. This arises from the observation that, even 

though the SIMS profiles are likely to contain very high frequencies, which can be 

thresholded by wavelet shrinkage.  

In classical regularization approaches, in order to limit the noise content, one must give a 
higher bound to the quantity of high frequencies that are likely to be present in the result of 
the deconvolution [eq. (5)], which might be invalid. However, by this process one limits the 
quantity of high frequencies, not the quantity of noise. The best solution is to recover 
correctly the frequencies in different bands of the signal and to find an objective criterion to 
separate the high frequencies which contain noise from those containing the useful 
information. Moreover, in these traditional regularized methods (monoresolution 
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regularized deconvolution), the regularization parameter is applied comprehensively to all 
signal bands, which results in treating low frequencies which contain the useful signal as 
high frequencies mainly consisting of noise. The result is then an oscillatory signal, because 
the regularization parameter is insufficient to compensate high frequencies. Therefore, our 
idea is to locally adapt the regularization parameter in different frequency bands. This 
allows us to deconvolute signals previously decomposed by projection onto a wavelet basis.   

We have seen in § 3 that the multiscale representation of the signal, or wavelet 

decomposition allows its associating with an approximation signal at low frequencies (scale 

coefficients) and a detail signal at high frequencies (wavelet coefficients). Indeed, the 

approximation signal is very regular (smooth) whereas the detail signal is irregular (rough). 

This information may be exploited a priori in the deconvolution algorithm. A regular 

wavelet base will be privileged if one wants to control this regularity, in particular if 

successive decompositions are used.  

It should be noted that the use of a wavelet base with limited support allows preserving a 

priori knowledge of the signal support in its multiresolution representation. The 

effectiveness of the constraint of limited support is preserved if the wavelet support is small 

with respect to that of the signal. In the case of a positive signal, the approximation signal 

will be positive only if all low-pass filter coefficients are positive. The detail signal always 

averages to zero; this information can be used like a new soft constraint. 

Considering all these advantages, the regularized multiresolution deconvolution can then be 

performed so that limits of classical monoresolution deconvolution methods are overcome, 

such as, generating oscillations with negatives components, which limit the depth 

resolution.    

In sharp contrast with the usual multiresolution scheme, it has been established in refs. 

(Burdeau et al, 2000; Weyrich et al, 1998) that the decimation process is without interest in 

deconvolution and, in addition, that it incorporates errors in data, if this is the case, then the 

output of the filters are not decimated.  

After wavelet decomposition, the observed noisy data of approximation and details are 

written under the following mathematical formalism: 

 

( ) ( ) ( ) ( )

( ) ( ) ( )( )

J J J J
a a a

j j jj
d d d

y H x b

y H x b

 

 
  j= 1,…, J.  (21) 

where ba(J) and bd(j) represent the approximation and details of the noise at the resolutions 2-J 
and 2-j, respectively. 

We use the Tikhonov regularization method to solve the two parts of eq. (21) separately. The 

following soft constraints about the solutions ( )J
ax  and 

( )j
dx are used: 

 

2 2( ) ( ) ( ) ( )

2 2( ) ( ) ( )( )

J J J J
a a a

j j jj
d d d
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


  j= 1,…, J,  (22) 
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( ) ( ) ( ) 2
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






  j= 1,…, J.  (23) 

where  da(J) and Dd(j) are high-pass filters, and (ra(J))2, (rd(j))2 are regularities of approximation 
and detail solutions at resolutions 2-J and 2-j, respectively. 

Following the Miller approach, the constraints are quadratically combined. We then have  
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  j= 1,…, J.  (24) 

The two deconvolutions are the solutions of the normal equations: 
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with 
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In practice, regularity coefficients (ra(J))2, (rd(j))2 and noise energies 
2( )J

ab , 
2( )j

db are 

unknown. Fortunately, these parameters can be estimated using generalized cross-
validation (Thompson et al, 1991; Weyrich et al, 1998). The mathematical formalisms of these 
estimations are: 
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To solve eq. (24), we must calculate the reverse of the matrices: 

 
( ) ( ) ( ) ( ) ( ) ( )
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  j= 1,…, J.  (28) 

The quality of the solutions ( )J
ax and 

( )j
dx depends on the conditioning of the matrices Ha+ 

and Hd+.  

The operators Da(J) and Dd(j) are selected with important eigenvalues when singular values of 
H(J) and H(j) are rather weak. Indeed, the choice of the regularization operators is conducted 
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based on the singular values of H(J) and H(j) but not by the considered frequency-band, 
because it is not useful to choose an operator for each frequency band. We construct Da(J) 
and Dd(j) from the same pulse response d(n); this operator is denoted as D(j) at resolution 2-j. 

It is important to note that in a multiresolution scheme up to the resolution 2-J, the different 
filters responses of decomposition and reconstruction should be interpolated by 2j-1-1 zeros 
at the resolution 2-j in order to contract the filter bandwidth by a factor 2j-1-1. Each matrix 
should have a size in accordance with the size of the filtered vector that depends on the 
resolution level.  

The different steps in the multiresolution deconvolution algorithm are as follows 
(Boulakroune, 2009). 

1. Dyadic wavelet decomposition of the noisy signal up to the resolution 2-j (j = 1, 2, …). 
2. Denoising of this signal by thresholding. One conserves only high-frequency 

components of details which are above the estimated threshold. One uses generalized 
cross-validation for threshold parameter evaluation without prior knowledge of the 
noise variance.(Weyrich, 1998) It can be noted that the wavelet should be orthogonal, 
therefore the noise in the approximation and detail remains white and Gaussian if it is, 
in the blurred signal, white and Gaussian.  

3. Solving the two Tikhonov-Miller normal [eq. (22)] at each resolution level. 
4. Denoising of the wavelet-decomposed solution of the deconvolution problem by 

thresholding.  
5. Dyadic wavelet undecimated reconstruction of the restored signal up to the full 

resolution.  

By using multiresolution deconvolution, the results are quite satisfactory, suggesting that 
this approach is indeed self-consistent [Figs. 9(a) and 9(b)]. A significant improvement in 
contrast is observed; the delta layers are more separated. The shape of the results is 
symmetrical for all layers, indicating that the exponential features caused by SIMS analysis 
are removed.  

The different regularization parameters obtained using the generalized cross validation  
[eq. (27)] at different levels necessary for a well regularized system are αa(1) = 3.34789×10-4, 
αa(2) = 6.7835×10-4, αa(3) = 0.0013, αa(4) = 0.0026, αa(5) = 0.0048, αd(1) = 1.1012, αd(2) = 2.3287,  
αd(3) = 4.0211, αd(4) = 9.1654, αd(5) = 16.0773. The classical regularization parameter is equal to 
6.6552×10-5.  

The approximation regularization parameter increases proportionally with the 
decomposition level. This behavior is explained by the decrease of the local regularity of the 
signal with the scale and inter-scale behavior of wavelet coefficients. The latter determines 
the visual appearance of the added details information (high frequency contents) in the 
reconstruction. Therefore, as the degree of accuracy is high, the signal regularity is better; 
hence, the regularization parameter decreases more.   

The detail regularization parameter also decreases according to the decomposition level. 
This evolution is materialized by the degradation of the precision with the scale, which 
decreases the regularity from one level to another. As the noise is white and Gaussian and 
the decomposition is dyadic and regular, this parameter doubles in value from one scale to 
another. 
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Fig. 9. Results of multiresolution deconvolution of sample MD4 of boron in silicon matrix 
performed at 8.5 keV/O2+, 38.7°. (a) Linear scale plot. (b) Logarithmic scale plot.  
(c) Reconstruction of the measured profile from the  deconvoluted profile and the DRF.  
The estimated threshold, obtained using soft universal shrinkage [eq. (17)], is λ = 55.7831 
cps. The estimated level of noise, using eq. (18), is SNR = 40.9212 dB. The wavelet used  
was Sym4 with four vanishing moments.  

The regularization parameter of approximation or detail takes different values according to 

the decomposition level. This enables it to be adapted in a local manner with the treated 

frequency bands, either low or high frequencies. This adaptation leads to compensate high 

frequencies contrary to a classical regularization parameter, which treats low frequencies 

which contain useful signal as high frequencies mainly consisting of noise. 
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The FWHM of the deconvoluted peaks is equal to 18.9 nm, which corresponds to an 
improvement in the depth resolution by a factor of 3.1587 [Figs. 9(a) and 9(b)]. The dynamic 
range is improved by a factor of 2.13 for all peaks. The width of the measured peaks 
indicates that the δ-layers are not real deltas – doping (are not very thin layers); they are 
closer to Gaussian than delta-layers.  

The main advantage of MD is the absence of oscillations which appear in TMMS algorithm 
results due to the noise effect. Actually, these oscillations appear in most of the classical 
regularization approaches. The question for the SIMS user is to know whether these small 
peaks (oscillations) are to be considered as physical features or as deconvolution artifacts. In 
our opinion, the origin of these oscillations is the presence of strong local concentrations of 
high frequencies of noise in the signal which cannot be correctly restored by a simple 
classical regularization.  

Figure 9(c) represents the reconstructed depth profile, obtained by convolving the 
deconvoluted profile with the DRF along with the measured profile. It is in perfect 
agreement with the measured profile over the entire range of the profile depth. This is a 
figure of merit of the quality of the deconvolution, and it ensures that the deconvoluted 
profile is undoubtedly a signal which has produced the measured SIMS profile. A good 
reconstruction is one of the criteria that confirms the quality of the deconvolution and gives 
credibility to the deconvoluted profile.  

Finally, by using the proposed MD, the SIMS profiles are recovered very satisfactorily. The 
artifacts, which appear in almost all monoresolution deconvolution schemes, have been 
corrected. Therefore, this new algorithm can push the limits of SIMS measurements towards 
the ultimate resolution 

5. Conclusion 

This chapter proposes two robust algorithms for inverse problem to perform deconvolution 
and particularly restore signals from strongly noised blurred discrete data. These algorithms 
can be characterized as a regularized wavelet transform. There combine ideas from Tikhonov 
Miller regularization, wavelet analysis and deconvolution algorithms in order to benefit from 
the advantages of each. The first algorithm is Tikhonov-Miller deconvolution method, where a 
priori model of solution, is included. The latter is a denoisy and pre-deconvolved signal 
obtained firstly by the application of wavelet shrinkage algorithm and after, by the 
introduction of the obtained denoisy signal in an iterative deconvolution algorithm. The 
second algorithm is multiresolution deconvolution, based also on Tikhonov-Miller 
regularization and wavelet transformation. Both local applications of the regularization 
parameter and shrinking the wavelet coefficients of blurred and estimated solutions at each 
resolution level in multiresolution deconvolution provide to smoothed results without the risk 
of generating artifacts related to noise content in the profile. These algorithms were developed 
and applied to improve the depth resolution of secondary ion mass spectrometry profiles.  

The multiscale deconvolution, in particular multiresolution deconvolution (2nd algorithm), 
shows how the denoising of wavelet coefficients plays an important role in the deconvolution 
procedure. The purpose of this new approach is to adapt the regularization parameter locally 
according to the treated frequency band. In particular, the proposed method appears to be 
very well adapted to the case where the signal-to-noise ratio is poor, because in this case the 
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minimum in the variance of the wavelet coefficients comes out more clearly. Thus, this aspect 
may be very attractive because it is particularly important to optimize the choice of the 
regularization parameter, especially at high frequencies. Moreover, the possibility of 
introducing various a priori probabilities at several resolution levels by means of the wavelet 
analysis has been examined. Indeed, we showed that multiresolution deconvolution  can be 
successfully used for the recovery of data, and hence, for the improvement of depth resolution 
in SIMS analysis. In particular, deconvolution of delta layers is the most important depth 
profiling data deconvolution, since it gives not only the shape of the resolution function, but 
also the optimum data deconvolution conditions for a specific experimental setup.    

The comparison between the performance of the proposed algorithms and that of classical 
monoresolution deconvolution, which is Tikhonov-Miller regularization with model of 
solution (TMMS), shows that MD results are better than the results of the first proposed 
algorithm and TMMS algorithm. Because in the classical approaches of the regularization 
(including our first proposed algorithm), the regularization operator applies in a total way to 
all bands of the signal. This results in treating low frequencies which contain the useful signal 
like high frequencies mainly constituted by noise. The result is then an oscillating signal, 
because the regularization parameter is insufficient to compensate all high frequencies.  
However, the multiresolution deconvolution (2nd algorithm) helps to suppress the influence of 
instabilities in the measuring system and noise. Particularly this method works very well and 
does not deform the deconvolution result. It gives smoothed results without the risk of 
generating a comprehensive mathematical profile with no connection to the real profile, i.e., 
free- oscillation deconvoluted profiles are obtained. We can say unambiguously that the MD 
algorithm is more reliable with regards to the quality of the deconvoluted profiles and the 
compared gains which show the influence of noise on the TMMS results.  

The MD can be used in two-dimension applications and generally in many problems in 
science and engineering involving the recovery of an object of interest from collected data. 
SIMS depth profiling is just one example thereof. Nevertheless, the major disadvantage of 
MD is the longer computing time compared to monoresolution deconvolution methods. 
However, due to the increase of computer power during recent years, this disadvantage has 
become progressively less important.   
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