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1. Introduction  

Molecular tools in environmental microbiology have been applied extensively in last 
decades because of the limitations in culture-dependent methods (Amann et al., 1995; 
Muyzer et al., 1996; Head et al., 1998). Despite isolation techniques are provided detailed 
knowledge about the single species in terms of morphology, biochemistry, and also genetic 
(Bitton, 2005), they have important drawbacks. The first one is to find the selective media 
favoring the desired microbial group. Additionally, isolated species cannot reflect their 
behaviors in the natural environment. Until today, 19.000 microbial species have been 
isolated (DSMZ, 2011; http://www.dsmz.de), however it is accepted that this number is 
only a small portion of real diversity (Amann et al., 1995). Besides, using the molecular tools 
in natural and engineering systems, we can find the answer to the questions such as ‘which 
species do exist?’, ‘which species are active?’, ‘how many microorganisms are there?’, which 
species do utilize the specific compounds?’. 

Microbial ecology studies need identification of species based on a comprehensive 
classification system that perfectly reflects the evolutionary relations between the 
microorganisms (Pace, 1996). Zuckerkandl and Pauling (1965) indicated that nucleic acids 
could document evolutionary history. Due to the pioneering studies, nucleic acids, 
especially 16S rRNA, are the ultimate biomarkers and hereditary molecules probably 
because of their essential role in protein synthesis, making them one of the earliest 
evolutionary functions in all cellular life-forms (Olsen et al., 1986; Pace et al., 1986; Woese, 
1987; Stahl et al., 1988). In particular, 16S rRNA and 16S rDNA have been used in 
phylogenetic analysis and accepted as ideal evolutionary chronometer. 

Genetic fingerprinting techniques are one of the most applied molecular tools based on 16S 
rRNA in microbial ecology studies. These techniques such as denaturing gradient gel 
electrophoresis (DGGE), temperature gradient gel electrophoresis (TGGE), amplified 
ribosomal DNA restriction (ARDRA) or restriction fragment length polymorphism (RFLP), 
terminal restriction fragment length polymorphism (T-RFLP), and single strand 
conformation polymorphism (SSCP), have been developed for estimation of diversity in 
ecosystems, screening clone libraries, following the diversity changes with respect to time 
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and location and also identification of species (Hofman-Bang, 2003). This approach comes 
into prominence because of fast, less labor-intensive features (Muyzer and Smalla, 1998). 

These methods have been used to characterize the microbial diversity in different 

environments such as activated sludge (Liu et al., 1997; Curtis and Craine, 1998), anaerobic 

reactors (Leclerc et al., 2004), sediments (Muyzer and De Wall, 1993, Cetecioglu et al., 2009), 

lake water (Ovreas et al., 1997), hot springs (Santegoeds et al., 1996), biofilm (Santegoeds et 

al., 1998). The method can be used for as both qualitative and semi-quantitative approaches 

on biodiversity estimations. 

In this chapter, these genetic fingerprinting techniques based on gel electrophoresis are 
discussed. Also exemplarily applications are presented. 

2. Microbial ecology and characterization of microbial community via 
molecular tools 

Biochemical conversions occurred in environment are determined by black box model 
because of limitations to identify microbial communities which are responsible of these 
(un)known processes (Amann et al., 1995). Acquisition of pure cultures is necessary to obtain 
an insight into the physiology, biochemistry and genetics of isolated microorganisms. In 
spite of developments on cultivation methods everyday, still a small portion of the microbial 
species within the nature can be isolated by culture-dependent techniques (Giovannoni et 
al., 1990). Another problem in microbial ecology is the complications on identification and 
classification of the species based on their morphological features. Since the morphological 
features of the microorganisms cannot give the detailed information about their evaluation 
relationships. In order to determine the role of microbial diversity in natural or engineered 
systems, the questions about microbial population including ‘Who is there? How many 
microorganisms are there them? Where are they located? What are they doing? How do 
populations respond to changes in environmental conditions? What is the relationship 
between diversity and community stability?’ have to be answered. Accordingly, culture 
independent methods, which give information about microbial ecosystem in terms of 
diversity, function, etc., are more reliable (Muyzer et al., 1998; Head et al., 1998). 

To increase our knowledge about microbial communities and our understanding of their 
composition, dynamics and interactions within microbial ecosystems, nucleic acid analysis 
give a wide range opportunity nowadays. Molecular phylogeny not only employs nucleic 
acid documentation and evolutionary history but also provides a motivation for 
identification and quantification of microbial species (Olsen and Woese, 1993). The 
phylogenetic tree of all living organisms is represented in Figure 1. Ribosomal RNA and its 
gene are the main biomarkers and hereditary molecules for prokaryotes because of their 
essential role in protein synthesis making them one of the earliest evolutionary functions in 
all cellular life-forms (Woese, 1987). Therefore prokaryotes can be detected, identified and 
enumareted by the analysis of 16S rRNA and 16S rDNA. 

16S rRNAs and 16S rDNAs, which encode them, are ideal biomarker because they exist in 
all prokaryotes, they have conserved and their variable regions give the opportunity to 
identify species even strains as seen in Figure 2. While the conserved regions of 16S rRNA 
make this molecule as an evolutionary clock instead of their selectively neutral mutational 
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changes (Woese, 1987, Amann et al., 1995), their variable regions allow phylogenetic 
determination on different taxonomic level (Amann et al., 1995; Head et al., 1998).  

 

Fig. 1. The rRNA phylogenetic tree of life (Madigan et al., 2009). 

As a result, to design general or specific primers and probes for 16S rDNAs and 16S rRNAs 
provides study options about identification and evolution of microorganisms because this 
molecule is fairly large (≈1500 nucleotides) including sufficient sequence information. Also 
the abundance is high within most cells (103 to 105 copies) and they can be detected easily 
(Amann et al., 1995). While even secondary structure of 16S rRNA molecule is highly 
conserved, many variable regions randomly change during evolution. This differential 
variation explains the relationship between microorganisms evolutionarily. Data obtained 
from this analysis are adequate to compare statistically significant phylogenetic relations 
(Olsen et al., 1986). Therefore 16S rRNA and its encoding gene have been widely used to 
investigate community diversity. The rapidly growing 16S rDNA sequence data bank, 
accessible (http://www.ebi.ac.uk/) provides the opportunity to get information about 16S 
rDNA sequences of the determined cultured and uncultured species (Dahllöf, 2002). 

In spite of the advantages of using 16S rRNA molecule for phylogenetic analysis, the main 
limitations are that the heterogeneity between multiple copies of this molecule in one 
species interferes pattern analysis, confuses the explanation of diversity obtained from clone 
libraries and sequences retrieved from banding patterns (Dahllöf, 2002).  

3. Fingerprinting techniques and their application areas 

Fingerprinting techniques provide a separation in microbial community according to  
their genetic pattern or profile (Muyzer, 1998). A variety of fingerprinting techniques  
such as denaturing/temperature gradient gel electrophoresis, amplified ribosomal DNA restriction 
analysis, terminal restriction fragment length polymorphism, and single strand confirmation 
polymorphism has been developed to assess diversity and dynamics in the ecosystem 
(Hofman-Bang, 2003). The first fingerprinting technique was used in 1980’s, which based on 
the electrophoretic separation in high-resolution polyacrylamide gels of 5S rRNA and tRNA  
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Fig. 2. Secondary structure of the 16S rRNA of E. coli, showing conserved and variable 
regions (Van de Peer et al., 1996).  

obtained from natural samples (Hofle, 1988 and 1990). In 1993, Muyzer et al. introduced a 
new fingerprinting technique to apply on microbial ecology, denaturing gradient gel 
electrophoresis (DGGE). In this method, PCR amplified DNA fragments can be separated 
according to their nucleic acid pattern. This method has become widespread in a short time. 
Then another similar technique has been developed, temperature gradient gel electrophoresis 
(TGGE). These methods provide not only analysis of the structure and species composition 
of microbial communities but also identification of several uncultured microorganisms 
(Heuer et al., 1997 and Cetecioglu et al., 2009). 

3.1 Denaturing/Temperature Gradient Gel Electrophoresis (DGGE/TGGE) 

DGGE is a gel electrophoresis technique to separate same length-DNA fragments based on 
their base sequence differences. In theory, it is sensitive to observe even one base difference 
on sequence because of melting patterns of the fragments (Muyzer et al., 1993). This method 
provides a fast, and labor-intensive approach to determine the diversity and the microbial 
community within an ecosystem, to monitor the changes on dynamics and also to screen the 

In
cr

ea
si

n
g

 

v
ar

ia
b

il
it

y
 

www.intechopen.com



 
Gel Electrophoresis Based Genetic Fingerprinting Techniques on Environmental Ecology 

 

55 

clone libraries (Muyzer and Smalla, 1998). Furthermore, DGGE can be used as qualitative 
and semi-quantitative approach for biodiversity estimations. 

3.1.1 Principles of the experiment 

The optimal gradient is the main concern for DGGE/TGGE experiments since the main 
purpose is separation of DNA fragments according to their melting behaviours. Perpendicular 
polyacrylamide gels are used according to incremental gradients of denaturants or 
temperature. The sample including same-length DNA fragment mixtures is loaded to gel for 
running by electrophoresis. After completing electrophoresis, the gel is stained by a dye such 
as ethidium bromide, SYBR gold, SYBR green, etc. for obtaining sample pattern. While linear 
gradient is created by chemical denaturants as urea and formamide for DGGE, temporal 
temperature gradient is used to separate the DNA fragments in TGGE. Melting pattern of 
double strand DNA fragments is based on their hydrogen bond content: GC rich DNA 
fragments melts at higher denaturant/temperature region of the gradient. Complete 
separation of the double strand DNA is prevented by using GC-clamp primer during the 
amplification of target DNA region (Dorigo et al., 2005). The schematic explanation of DGGE is 
given in Figure 3. 

 

Fig. 3. Principle of DGGE (A: organism a, B: organism b, C: organism c, D: organism d, E: 
organism E, M: mix sample) (Plant Research International, 2011).  

The main difficulties and limitations of the DGGE/TGGE can be listed as: 

1. Proper primer selection to represent whole community 
2. Optimization of electrophoresis conditions (Muyzer et al., 1993) 
3. Limitations on sensitivity for detection of rare community members (Vallaeys et al., 1997) 
4. Separation of only small DNA fragments up to 500 bp (Muyzer and Smalla, 1998) 
5. Biases coming from PCR amplification such as chimeric products or fidelity errors 
6. Heteroduplex formations, multiple bands or due to resolution of the gel, or different 

fragments resulting from existence of several rRNA coding regions, (Curtis and Craine, 
1998). 

A     B      C     D    E  M
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3.1.2 Application area 

DGGE/TGGE is used for several purposes in microbial ecology. The first and the most 
common application is to reveal and to compare community complex of the microbial 
diversity within different environments. Curtis and Craine (1998) used this technique to 
show the bacterial complexity of different activated sludge samples. Connaughton et al. 
(2006) used PCR-DGGE method to find out bacterial and archaeal community structure in 

a high-rate anaerobic reactor operated at 18 C. This technique was used to reveal the 
microbial community in a lab-scale thermophilic trickling biofilter producing hydrogen 
(Ahn et al., 2005). Another biofilm study showed the bacterial diversity in a river by 16S 
rDNA PCR-DGGE method (Lyautey et al., 2005). In another study, the authors showed 
that the different bacterial and archaeal profiles within the highly polluted anoxic marine 
sediments in the different locations from the Marmara Sea (Cetecioglu et al., 2009). Ye et al. 
(2011) showed the temporal variability of cyanobacteria in the water and sediment of a 
lake. 

Furthermore the scientists use these techniques, mostly DGGE, to analyse the community 
changes over time. Santagoeds et al. (1998) used PCR-DGGE method to monitor the changes 
in sulphate reducing bacteria in biofilm. Ferris and Ward (1997) also performed  
similar approach to reveal seasonal changes in bacterial community from hot spring 
microbial mat. Kolukirik et al. (2011) used 16S rDNA PCR-DGGE technique to represent the 
local and seasonal bacterial and archaeal shifts in hydrocarbon polluted anoxic marine 
sediments.  

These fingerprinting techniques are widely used to monitor simple communities instead of 
complex environments. It is one of the detection methods to analyse the cultivation/ 
isolation approaches and to determine the enrichment cultures (Santagoeds et al., 1996; 
Ward et al., 1996; Teske et al., 1996; Muyzer, 1997; Bucholz-Cleven et al., 1997). 

Also DGGE/TGGE are commonly chosen for comparison of the efficiency of the  
DNA extraction protocols (Heuer and Smalla, 1997; Lieasack et al., 1997) and the screening 
of the clone libraries (Heuer and Smalla, 1997; Lieasack et al., 1997, Kolukirik et al.,  
2011) because rapid and reliable results are caused to perform less time (Kowalchuk et  
al., 1997). 

3.2 Amplified Ribosomal DNA Restriction Analysis (ARDRA) 

Recognition site of restriction enzymes are changed for different microbial species. The 

principle of amplified ribosomal DNA restriction analysis (ARDRA), also called as 

restriction fragment length polymorphism (RFLP), is based on this knowledge. The 

combination of PCR and restriction can, for example, be used for enhanced amplification of 

minor DNA templates (Green and Minz, 2005).  

In the first step of this technique, ribosomal DNA is amplified by PCR to avoid undesired 

and/or dominant DNA templates. Then, the 16S rDNA PCR products are digested into 

specific DNA fragments by restriction enzymes. At the final step, the fragments are loaded 

to high-resolution gel for electrophoresis. The schematic representation of the principle of 

ARDRA is given in Figure 4. The main advantage of this technique is to provide rapid 

comparison of rRNA genes (Moyer et al., 1994). 
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Fig. 4. Steps of ARDRA (a: Genomic DNA extraction, b: PCR reaction for specific region,  
c: restriction digestion, d: gel electrophoresis) (Dijkshoorn et al., 2007). 

The application areas of this technique are also similar to DGGE. It is varied from detection 

isolates or clones to determination of whole community in an environment. For these 

different purposes, different gel types can be used. While agarose gel is sufficient to detect 

isolates or clones, polyacrylamide gels are necessary for better resolution in the community 

analysis (Martinez-Murcia et al., 1995). 

In the literature, there are different studies performed by ARDRA. Lagace et al. (2004) 

identified the bacterial community of maple trees. A wide variety of the organisms were 

detected from different groups. Barbeiro and Fani used this technique to investigate more 

a

b

c

d
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specific bacterial group, Acinetobacteria, within 3 sewage treatment plants (1998). In 1995, 

Vaneechoutte and his colleagues performed similar study for Acinetobacter strains. They 

showed that this technique is less prone to contamination problems for detection. In another 

study, ARDRA was used to screen bacterial and archaeal clone libraries to detect the 

microbial community within an anaerobic reactor to treat fodder beta silage (Klocke et al., 

2007). Also there are some studies to investigate the microbial community in soil (Smith et 

al., 1997; Viti and Giovannetti, 2005). 

3.3 Terminal Restriction Length Polymorphism (T-RFLP) 

Terminal Restriction Fragment Length Polymorphism (T-RFLP) is another fingerprinting 

technique to obtain profiles of microbial communities. The principle of this method is to 

separate the genes according to position of their restriction site closest to a labelled end of an 

amplified gene (Figure 5). The main difference from ARDRA is that the restriction enzymes 

using in T-RFLP only detect terminal restriction fragments (T-RF). Also this method is used 

qualitative and quantitative analysis like DGGE (Liu et al., 1997).  

The method is carried out in a series of steps including PCR, restriction enzyme digestion, 
gel electrophoresis and recognition of labelled fragments. Like most other fingerprinting 
techniques, PCR amplification of a target gene is the first step of T-RFLP.  

After DNA extraction, target gene amplification is carried out using one or both the primers 
having their 5’ end labelled with a fluorescent molecule. Then amplicons are digested by 
restriction enzymes. Following the restriction reaction, the digested DNA fragments are 
separated using either capillary or polyacrylamide gel electrophoresis in a DNA sequencer 
with a fluorescence detector so that only the fluorescently labelled terminal restriction 
fragments (TRFs) are visualized. At the final step, electropherom is obtained as a result of T-
RFLP profiling. Using this graph, electropherom, only target restricted DNA fragments are 
detected and also satisfactorily quantified by automated electrophoresis systems. 
Quantification analysis gives an opportunity to make various statistical methods, such as 
similarity indices, hierarchical clustering algorithms, ordination methods, and self-
organizing maps (Liu et al., 1997). 

In the literature, T-RFLP was carried out for different purposes like other fingerprinting 
techniques. In 1997, while Liu et al. used this technique to characterize microbial diversity in 
different environments such as activated sludge, enriched sludge from lab-scale bioreactor, 
aquifer sand, termite, Moeseneder and his colleagues (1999) optimized T-RFLP to determine 
marine bacterioplankton communities and to compare this technique to DGGE. In 2000, 
Horz and his colleagues reported major sub-groups of ammonia oxidizing bacteria by using 
amoA functional gene. Methane-oxidizing bacteria from landfill site cover soil were 
detected by T-RFLP combined with RNA dot-blot hybridization (Stralis-Pavese et al., 2006). 
Also in the same study, RFLP method is used to screen clone libraries. Lueders and 
Friedrich tried to determine PCR amplification bias by T-RFLP in 2003. Blackwood and his 
colleagues used T-RFLP for quantitative comparison of microbial communities from 
different environments such as soil and bioreactors (2003). Additionally this technique was 
used to screen clone libraries (Moeseneder et al., 2001). Liu et al. (2011) performed T-RFLP to 
determine the microbial shift during bioremediation of petroleum hydrocarbon 
contaminated soil. 
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Fig. 5. Steps of T-RFLP (Kaksonen, 2011). 

3.4 Single Strand Conformation Polymorphism (SSCP)  

Single Strand Conformation Polymorphism (SSCP) is also a fingerprinting technique to 
separate same-length DNA fragments according to their differences in mobility caused by 
the secondary structure. The principle of this technique is represented in Figure 6. None of 
denaturant is used in this method to detect the mobility of the secondary structure of DNA 
fragments. Each band on SSCP gel corresponds to a distinct microbial sequence, indicating 
the presence of a microbial strain or species retrieved from the sample (Leclerc et al., 2001; 
Lee et al., 1996). The main limitation of SSCP, which is similar to DGGE/TGGE, is that one 
single strand DNA sequence can form more than one stable conformation and this fragment 
can be represented by multiple bands (Tiedje et al., 1999). The advantage of this technique 
compared to other fingerprinting methods is that it does not require GC-clamp and gradient 
gel. SSCP is easier and more straightforward. 

SSCP is mostly performed to determine the microbial community profile in different 
environments such as bioreactor and natural ecosystems. Firstly Lee et al. (1996) applied 
this method to obtain genetic profile of microbial communities. Then Schwieger and 
Tebbe (1998) used SSCP to determine the community profile including up to 10 bacterial 
strains. In another study, this method was combined with colony PCR to determine 
population levels of single and multiple species within plant and environmental samples 
(Kong et al., 2005). Schmalenberger et al. (2008) investigated bacterial communities in an 
acidic fen by SSCP following by sequencing analysis. In this study, each representative 
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band was cut, then cloned and sequenced to identify species. Also SSCP was carried out 
to determine the bacterial profile in an aerobic continuous stirred tank reactor (CSTR) 
treating textile wastewater (Khelifi et al., 2009). Also this technique was applied for 
determination of Clostiridum sp. based on difference their [Fe-Fe]-hydrogenase gene 
(Quemeneur et al., 2010).  

 

Fig. 6. Steps of SSCP (a: denaturation of ds DNA, b: electrophoresis) (Gasser et al., 2007). 

4. Conclusion 

The principles of all fingerprinting techniques are similar. DGGE/TGGE, ARDRA, T-RFLP 

and (SSCP) have been developed to screen clone libraries, to estimate the level of diversity 

in environmental samples, to follow changes in community structure, to compare diversity 

and community characteristics in various samples and simply to identify differences 

between communities. While some of the scientists have showed that sensibilities and 

resolution of all these techniques are similar, DGGE is still more common application 

compared to other mentioned techniques. The main reasons of it are that the application of 
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DGGE is easier and more effective and also less equipment is necessary  

for it. 
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