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1. Introduction 

In many applications (consumer and commercial imaging, medical imaging, robotics, space 

research, and etc.) observed images are often degraded due to atmospheric turbulence, 

relative motion between a scene and a camera, nonuniform illumination, wrong focus, etc. 

Image restoration refers to the problem of estimating the ideal image from its observed 

degraded one. Numerous restoration techniques (linear, nonlinear, deterministic, stochastic, 

etc.) optimized with respect to different were introduced (Banham & Katsaggelos, 1997 ; 

Jain, 1989; Sezan & Tekalp, 1990; Bovik, 2005; Gonzalez & Woods 2008). The amount of a 

priori information about degradation such as the size and shape of blurs, noise level 

determines how mathematically ill-posed the problem is. A priori information can be used in 

a variety of ways in modeling and algorithm development. The information about the 

nature of blur (e.g., linear or nonlinear and space-variant or space-invariant) and noise 

(additive or multiplicative) is used in modeling the input-output relation of imaging 

systems. In blur modeling, when the type of blur is known (e.g., out of focus, motion, 

turbulence), the blurring operator can be parameterized using only a few parameters. In 

image modeling, the ideal image can be modeled, for instance, on the basis of a priori 

Markovian assumption. In algorithm development, a priori information is used in defining 

constraints on the solution and in defining a criterion or a quantitative description of the 

solution. The blind and non-blind deconvolutions were extensively studied, and many 

techniques were proposed for their solution (Kundur & Hatzinakos, 1996; Bertero & 

Boccacci, 1998; Biemond et al., 1990; Sroubek & Flusser, 2003). They usually involve some 

regularization which assures various statistical properties of the image or constrains on the 

estimated image and restoration filter according to some assumptions. This regularization is 

required to guarantee a unique solution and stability against noise and some model 

discrepancies. One of the most popular fundamental techniques is a linear minimum mean 

square error method. It finds the linear estimate of the ideal image for which the mean 

square error between the estimate and the ideal image is minimal. This linear operator 

acting on the observed image to determine the estimate on the base of a priori second-order 

statistical information about the image and noise processes. For images with sharp changes 

of intensity, the appropriate regularization is based on variational integrals (Rudin, et al., 
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1992; Perona & Malik, 1990; Chan & Wong, 1998). Minimization of the variational integrals 

preserves edges and fine details in the image. It is obvious that quality of the restored image 

depends on accuracy of mathematical model of image formation process. In particular, a 

good estimation of distortion parameters such as speed of camera movement, transparency 

of atmosphere or water, etc. is very important for restoration (Biemond et al., 1990).  

Recently, restoration methods based on image variations were proposed (Milukova et al., 

2010a, 2010b, 2011). In this chapter, image restoration with two-dimensional variations is 

presented. The restored image minimizes two-dimensional variations defined by Kronrod 

(Kronrod, 1950). We also consider the identification of distortion operator and estimation of 

its parameters. It is assumed that a monochrome stationary image distorted by 

homogeneous integrated transformation. Various physical problems can be modeled by 

such transformation. The spectral method of identification of distortion parameters uses 

only degraded image. Computer simulation results illustrate the performance of the 

proposed method for restoration of blurred images. 

2. Restoration of linear degraded images with variation methods 

2.1 Variation concept for image restoration 

Image restoration problem is usually formulated as follows. Undistorted (original) image z 

is recovered from the given equation: 

 v Az n  , (1) 

where : Z QA  ( Z,Q are metric spaces) is linear or nonlinear operator, Ζz , n is noise, 

v is observed distorted image. A general approach for image restoration can be 

formulated using statistical estimation methods and the theory of solving of ill-posed 

problems (Tikhonov & Arsenin, 1977). The restoration problem is a typical inverse 

problem of mathematical physics, and, therefore, it can be correctly solved on the base of 

mathematical methods. The restored image can be obtained by minimization of the 

following functional:  

 * inf ( , )Q
z Z

z Az v


 , (2) 

where Q  is a metric in Q . Note that various definitions of a distance Q  between two 

images may be used. It is easy to show that the solution of the optimization problem in Eq. 

(2) is not unique even when the operator A and the distorted image v are exactly known, 

and no additive noise. A priori information about the original image should be used to 

obtain a unique and stable solution from the set of solutions. The simplest way to guarantee 

uniqueness and stability of the solution is to describe the image model with a functional 

( )z  that possesses stabilizing properties. In this case the image restoration problem can be 

reduced to conditional or unconditional optimization problem, in particular to the 

Tikhonov’s minimization (Tikhonov & Arsenin, 1977), 

 * inf{ ( , ) ( )}Q
z Z

z Az v z 


   , (3) 
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where   is a parameter of regularization. Note that the statistical methods used in image 

restoration lead to optimization problems, which are similar to that of Eq. (3). For instance, 
using Bayes’ strategy (Kay, 1993) we can obtain the optimal estimation in the following form: 

 *
2 1inf{ ln ( ) ln ( )}

z Z
z p Az v p z


    , (4) 

where 1( )p   and 2( )p   are a priori probability densities of the original image z  and 

additive noise .n Az v   The main difference between the regularization method of image 

restoration in Eq. (3) and the statistical method in Eq. (4) is the regularization parameter  . 

This leads to a family of solutions as a function of the parameter . The best restored image 

can be chosen from the set of solutions using, for instance, a subjective criterion. If the space 

Q in Eq. (3) is the Euclidian space with the norm (v, Bv), where B is a positive defined 

operator, we obtain, 

 
2* inf{ ( )}
Bz Z

z Az v z


    . (5) 

It is commonly assumed that the original image is a smooth function with respect to the 

Sobolev space (Adams, 1975), and the stabilization functional in Eq. (5) is ( ) p
q

q

W
z z  . 

Quadratic forms can be used in order to avoid nonlinear restoration algorithms. Note that a 

Gaussian image model leads to minimization of a quadratic form. In discrete case it 

corresponds to the Sobolev norm for 2p   in Eq. (5). On the other hand, the use of 

quadratic forms in image restoration often yields undesirable results because of real images 

are not Gaussian. Now suppose that an image to be restored is a function of bounded 

variations. Therefore, it may be written as 

 * inf{ ( , ) ( )}Q
z Z

z Az v Var z 


  . (6) 

The variation of a 1D function ( ), [ , ]f x x a b  is defined as follows:  

 
1....

1
2

( ) sup ( ) ( )
n

nb

k k
a x x k

V f f x f x 


  . (7) 

It can be shown, that if the image ( , )z x y , ( , )x y D  consists of 1D functions of bounded 

variation along its rows and columns then the image is also a 2D function of bounded 

variation. Different multidimensional variations were proposed such as variations of Arzela, 

Vitali, Tonelly, etc. (Vitushkin, 1955). A different approach was suggested by Kronrod, who 

introduced two functionals in order to describe an image as a function of two variables 

(Kronrod, 1950). The functionals are given as follows: 

 1 0( ) ( )td z m e dt




  , and 2 1( ) ( )td z m e dt




  , (8) 

where te  is t - level set of the function ( , )z x y , i.e. a set of points ( , )x y  with function values 

equal to t, 0( )tm e  is the number of components of te , and 1( )tm e  is the length of the set te . 
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The class of functions of bounded variations given in Eq. (8) is very extensive. These functions 

possess the following attractive properties: they are differentiable almost everywhere and their 

Fourier series are convergent almost everywhere. Note that numerous attempts to create a 

mathematical image model with the help of one functional were unsatisfactory. It can be done 

on the base of two (independent in a certain way) functionals. It is interesting to point out, that 

the first variation d1 in Eq. (8) is a topological characteristic of the image. If the original image is 

a continuous differentiable function, then the second variation can be represented as  

 2 ( ) ( , )

gb

a c

d z grad z x y dx dy   . (9)  

If only the second variation is used, the image restoration can be carried out as follows 
(Perona & Malik,1990):  

  2* inf { ( , ) }

gb

Bz Z
a c

z Az v grad z x y dx dy


     , (10) 

where grad(.) is a gradient operator. 

It is of interest to note that this nonlinear method of image restoration minimizes the 
functional that is identical to the Kronrod’s second variation. We propose to minimize the 
functional in Eq. (10) subject to constraint on the first Kronrod’s variation of the image. This 
approach is referred to as conditional variation approach (Milukova et al., 2010). Next with 
the help of computer simulation we illustrate the difference in the performance of two 
variation methods: minimization of the functional in Eq. (10) and conditional minimization 
of the same functional. Additionally, the performance of minimum norm image restoration 
from Eq. (10) without considering variations is also provided. 

2.2 Restoration of uniformly blurred image with spatial variations 

The impulse response of the 1D uniform blur can be expressed as follows: 

  
1 , if 0 1

0, otherwiseL

L x L
h x

  
 


, (11) 

where L determines a blur extension. It is known that point spread functions for such blurs 
do have zeros in the frequency domain, and they can be uniquely identified by the location 
of these zero crossings (Cannon, 1976; Gennery, 1973). If the original image is blurred and 
noiseless then the blur matrix A in Eq. (1) is given as 

 

2

1

1 1 ... 1

1 1 ... 1

1 1 ... 1
1 /

1 1 ... 1

. . . . .

1 1 ... 1
MxN

D

A L

D

 , (12) 
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and the linear system of equations in Eq. (1) is rewritten as  

 1 2 +L RAz D z D z v  ,  (13) 

where  1 -1= ,...,  L Lz z z ,  = ,...,  R L Nz z z , M=N-L+1. A general solution of Eq. (13) can be 

written as  

 *

1

B
p

m m
m

z z 


   e ,  (14) 

where me  is a basis of kernel A,  m  are real variables,   1
2 1,p

L Lz z D v D z   is a 

particular solution of linear system of equations in Eq. (13). Suppose that 0Lz  , the 

particular solution can be expressed as  

  1
20,pz D v . (15) 

The basis me  can be found from Eq. (13) as 

  1
2 1,m m

m L Le D D e e , (16) 

where  1 2 1, ,...,m
L m m L me     , ij  is the Kronecker delta function. The basis of kernel A has 

the following form: 

1 11 1 1 1

1 1 1 1 1 1
....

. . . . . .

1 1 1 1 1 1

  
  

  

. 

It is of interest to note that the basis of kernel A contains vertical columns of unities; 

therefore, a general solution of Eq. (13) could contain a periodic structure with the period of 

blurring (Buades et al., 2006). In our computer simulation we compared three methods: 1) 

first, substituting Eq. (15) into Eq. (10) and minimizing the functional with respect to  m ; 

2) the second method minimizes the same functional subject to the first Kronrod’s variation 

given in Eq. (8), which is taken close to that of the original image; 3) minimum norm image 

restoration from Eq. (10) without considering variations. Actually, if the inverse of the blur 

operator exists, it can be applied to the observed image to obtain an estimate. This is called 

inverse filtering. The estimate differs from the actual image by the additional error of 

amplified noise, and depending on the nature of the blur operator and the noise, it may 

drastically obscure the desired image information. Hence, inverse filtering is extremely 

noise sensitive. If the inverse operator does not exist, a solution can be found on the basis of 

a least squares criterion. A least squares solution minimizes the norm of the residual signal 

Az-v. The least squares solution with minimum norm (energy) is called also the 

pseudoinverse filtering (Jain, 1989). The first tested method is referred to as Grad method, 

the second one is called Grad-conditional method, and the last method is named Min-norm 

method. Fig. 1(a) shows a test input image used in experiments. The size of the image is 
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256×256 pixels, N=256. The signal range is [0-255]. The test input scene is homogeneously 

blurred with L=7. The blurred image is shown in Fig. 1(b). 

(a) 

(b) 

Fig. 1. (a) Test image, (b) test image uniformly blurred in horizontal direction with L=7. 

The original image has the following values of the Kronrod variations: d1=2105, d2=12210. 
The results of image restoration with the variation methods are shown in Figs. 2(a) and 2(b), 
respectively. The restoration result with the Min-norm algorithm is shown in Fig. 2(c). 
Subjective visual criterion is defined as an enhanced difference between original and 
restored images. A pixel is displayed as gray if there is no error between the original image 
and the restored image. For maximum error, the pixel is displayed either black or white 
(with intensity values of 0 and 255, respectively).  
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(a) (b) 

(c) 

Fig. 2. Image restoration with (a) Grad method, (b) Grad-conditional method, and (c) Min-
norm method. 

Figs. 3(a), 3(b), and 3(c) show differences between the original image and that of restored 

with the Grad algorithm, the Grad-conditional algorithm, and the Min-norm algorithm, 

respectively. We see that the second algorithm, which takes into account two Kronrod’s 

variations yields the best recognition performance. A quantitative comparison is given by 

the peak signal-to-noise ratio (PSNR), 

 *
10 *

255
( , ) 20logPSNR z z

z z

 
 
  

. (17) 
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(a) (b) 

(c) 

Fig. 3. Differences between the original image and restored with (a) Grad method, (b) Grad-
conditional method, and (c) Min-norm method. 

The image restored with the Grad method has d1=2050, d2=12015, the image restored with 
Grad-conditional method has d1=2103, d2=12120, and finally, the image restored by the 
Min-norm method possesses d1=2218, d2=12343. Table 1 shows the restoration performance 
of the tested methods in terms of the PSNR versus the blur extension.  

L Min-norm Grad Grad-conditional
3 28.3 34.5 35.2
5 25.1 30.2 31.3
7 22.2 28.5 29.4
9 18.4 26.2 27.3

Table 1. PSNR (dB) results for the tested methods. 
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So, in order to achieve a good restoration, it is important take into account topological 
characteristics of the image to be restored. These characteristics can be described by the first 
Kronrod’s variation. 

3. Identification of degradation operators and estimation parameters in the 
Fourier domain 

In this section, identification of operator degradation type and estimation of distortion 
parameters is discussed. Monochrome stationary image distorted by homogeneous linear 
transformation is considered. Various physical problems can be modeled by such 
degradations (Bertero & Boccacci, 1998). Identification of the distortion operator is carried 
out using the Fourier spectrum of the distorted image. Automatic image restoration is 
performed in three steps, that is, i) identification of distortion operator, ii) estimation of 
distortion parameters, and iii) image restoration with estimated parameters. Certain types 
of distortion operators are completely characterized by attributes such as the location of 
frequency-domain zeros. The techniques (Cannon, 1976; Gennery, 1973) make the 
following two assumptions: (i) the blurring produces zero crossings in the frequency 
domain and it can be completely characterized by the location of these zero crossings, and 
(ii) the location of zero crossings can be determined from the Fourier transform or power 
cepstrum (the logarithm of the power spectrum) of the observed image. These methods 
are very simple to use and they can successfully applied in many real-life situations. It is 
indeed true that the models for motion and focus blurs do have zeros in the frequency 
domain, and they can be uniquely identified by the location of these zero crossings. On 
the other hand, blurring models that do not have zero crossings in the frequency domain 
(e.g., Gaussian modeling atmospheric turbulence) cannot be identified by these 
techniques. Furthermore, the identification of the zero crossings from the observed image 
may be quite difficult due to the presence of strong observation noise. Almost all practical 
implementations of the restoration algorithms assume that the observation noise is a zero-
mean, white Gaussian process that is uncorrelated to the image signal. In this case, the 
noise field is completely characterized by its variance, which is commonly estimated by 
the sample variance computed over a low-contrast local region of the observed image 
(Yaroslavsky & Eden, 1996). 

Let us consider an observed image degraded with a linear spatially invariant system and 
additive sensor noise, that is,  

 = ( , ) ( , ) ( , ) ,v Az n h x y z d d n x y     
 

 

       (18) 

where ( , )h x y  is the impulse response of the system. The Fourier spectrum of the observed 

image is given by  

        1 2 1 2 1 2 1 2, , , , ,V H Z N          (19) 

where  1 2,H   is the frequency response of the liner degradation filter,  1 2,V   , 

 1 2,Z   , and  1 2,N    are spectra of the observed image, original image, and noise 

realization, respectively. Several typical examples of linear degradations are provided (Jain, 
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1989). Motion blur occurs when there is relative motion between the object and camera 

during exposure. In this case the impulse response and the frequency response of the linear 

system of horizontal motion blur are given, respectively, as 

    1 1
, ,

2

x
h x y rect y

L L
   

 
 (20) 

   1
1 2 1, sinc( ) i w LH e w L  , (21) 

where L is the motion path,      1,   0,1 ,   0,  y  rect x if x else   is the Dirac delta function.  

Atmospheric turbulence is a common blur in remote sensing and aerial imaging. For long 

term exposure through the atmosphere Gaussian model is used. So, the impulse response 

and the frequency response of the linear system of turbulence blur are given, respectively, as 

    2 2 2

,
a x y

h x y e
 

 , (22) 

  
 2 2

1 2

2

1 2 2

1
,

 

 aH e
a

  

  , (23) 

where α is the parameter that determines the severity of blur.  

Defocusing is another common type of blurring owing to the finite size of the camera aperture. 

When the defocusing blur is large, the following uniform model is used. The impulse response 

and the frequency response of the linear system can be expressed, respectively, as 

  
2 2 2

2

1
,

,   

0, elsewhere

x y r
h x y r

   


, (24) 

    1 2 2
1 2 1 2, ,  

J rp
H p

rp
      , (25) 

where J1 is the first-order Bessel function.  

Image blurring also occurs in image acquisition by scanners in which the image pixels are 

integrated over the scanning aperture. Example of such degradations can be found in image 

capturing by radar, beam-forming arrays, and display systems using television raster. The 

impulse response and the frequency response of the linear system can be written, 

respectively, as 

  , ,   ,
yx

h x y rect
a b

   
 

 (26) 

      1 2 1 2, sinc sinc ,H ab a b     (27) 

www.intechopen.com



 
Image Restoration Using Two-Dimensional Variations 

 

195 

where axb is the rectangular aperture. 

It is of interest to compare the spectra of the original and degraded images. From numerous 

experiments it is known, that the spectral magnitude of a realistic image is not very 

informative. It contains information about distribution of the signal energy in the frequency 

domain. For instance, if we exchange the spectral magnitudes of two similar images 

belonging to the same class and perform the inverse Fourier transform, then the difference 

in visual appearance of the original and obtained images will be negligible (Yaroslavsky & 

Eden, 1996). However, the difference between the spectral magnitudes of the original and 

degraded images may be significant due to the spectral magnitude of the frequency 

response of the linear system. Figs. 4(a) and 4(b) show a test original image and its spectral 

magnitude.  

 

 

 
(a) (b) 

 

Fig. 4. (a)Test original image, (b) spectral magnitude of the original image.  

In order to identify the distortion operator a database containing various images of spectral 

magnitudes was created. Training elements of database were obtained on the base of 

mathematical modeling or computer simulation. In practice, the number of degradation 

operators is not very large. Next, the spectral magnitude of a degraded image is matched to 

those of the database. This simple recognition system works well to identify the type of 

degradation operator for common blurs. Figs. 5 illustrate spectral magnitudes for different 

common blurring operators. One can observe that spectral magnitudes of distorted images 

contain mainly the information about distortion operators such as zero crossings on the 

plane  1 2,  . 
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(a) (b) 

 
(c) (d) 

 
(e) (f) 
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(g) (h) 

Fig. 5. Spectral magnitudes of the test original image shown in Fig. 4(a) degraded by: (a) 
atmosphere turbulence defocusing (Eq. 23) with α = 2, (b) atmosphere turbulence defocusing 
(Eq. (23) with α = 4, (c) isotropic defocusing (Eq. 25) with r = 4, (d) isotropic defocusing (Eq. 
25) with r = 6, (e) 1D motion blur (Eq. 21) with L = 4, (f) 1D motion blur (Eq. 21) with L= 6, 
(g) convolution with rectangular aperture (Eq. 27) with a=4, b=2, and (h) convolution with 
rectangular aperture (Eq. 27) with a=8, b=4.  

Actually, composite degradations can be considered as a combination of the basic distortion 

operators. In this case, the Fourier spectrum of a new composite operator is the product of 

the spectra of used basic operators. Figs. 6(a) and 6(b) show the spectral magnitudes of the 

test original image degraded with isotropic blur and horizontal motion. 

 
(a) (b) 

Fig. 6. Spectral magnitudes of the test original image shown in Fig. 4(a) with composite 
degradations: (a) isotropic defocusing (Eq. 25) with r = 6 and 1D motion blur (Eq. 21) with L 
= 4, (b) isotropic defocusing (Eq.25) with r = 6 and 1D motion blur (Eq. 21) with L = 6. 
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One can observe that since one of the distortion operators dominates, the spectral 
magnitudes of composite degradations cannot be synthesized by a simple combination of 
those of the basic degradation operators. This means that the number of training elements of 
a matching system should be drastically increased.  

In the Fourier representation of images, spectral magnitude and phase tend to play different 
roles (Oppenheim & Lim, 1981). For instance, in some situations many of the important 
features of an image are preserved if only the phase is retained. Furthermore, under a 
variety of conditions, phase information alone is sufficient to completely reconstruct an 
image to within a scale factor.  

 
(a) (b) 

 
(c) (d) 

Fig. 7. (a) Cepstrum of the original image degraded by convolution with rectangular 
aperture (Eq. 27) with a=2, b=4, (b) the difference of phases of the original and distorted (Fig. 
7(a)) images, (c) cepstrum of the original image degraded by convolution with circular 
aperture with radius of 4, and (d) the difference of phases of the original and distorted (Fig. 
7(c)) images.  

www.intechopen.com



 
Image Restoration Using Two-Dimensional Variations 

 

199 

If noise fluctuation in Eq. (19) is small, the phase of the distortion operator is equal to the 

difference between the phases of the degraded and original images. If the distortion 

operator is Gaussian, its phase is zero, and the phases of the distorted and original images 

coincide If the distortion operator is a finite function, e.g. ( , )x y W , then the phase of the 

distorted image may differ from the phase of the original image by ±π, and points at which 

the phase jumps by ±π coincide with the location of zeros of the spectral magnitude of the 

degraded image. These zeros, for even functions are all located on the real axis. So, the 

phase of the original image either coincides with that of the distorted image or differs from 

that of the distorted image by ±π. Fig. 7 shows the differences between the phases of the 

distorted and original images for rectangular and circular aperture blurs. Therefore, under 

certain conditions, we can identify the type of the distortion operator and estimate its 

spectral phase from the observed degraded image. 

4. Conclusion 

In this chapter we treated the problem of restoring linearly degraded image using two-
dimensional image variations. The restored image minimizes the objective functional subject 
to the Kronrod’s variations. In order to achieve a good restoration, it is important take into 
account topological characteristics of the original image, which are well described by the 
first Kronrod’s variation. The first step in restoring a degraded image is the identification of 
the type of degradation operator. It can be done by matching of the spectral magnitude of 
the degraded image with those of created database. Under certain conditions, the phase of 
the distortion operator may be also estimated from the distorted image. Extensive testing it 
was shown that the original image can be automatically restored by proper choice of the 
parameters of the proposed method. 
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