
Selection of our books indexed in the Book Citation Index 

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us? 
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected. 

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International  authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

186,000 200M

TOP 1%154

6,900



0

Entropic Image Restoration as a Dynamic System
with Entropy Operator

Yuri S. Popkov
Institute for Systems Analysis

Russia

1. Introduction

Entropy and the classical variational principle of the statistical physics are the effective tools
for modeling and solving a lot of applied problems. There are many definitions of "entropy"
functions. The book by Kapur (1989) contains some of them. The classical definition of the
physical entropy was introduced by L.Boltzmann Boltzmann (1871) and was developed for
Fermi- and Einstein-statistics Landau & Livshitz (1964). Notion of entropy was introduced for
para-statistics that have position between Fermi- and Einstein-statistics (Ohnuki & Kamefuchi
(1982), Dorofeev et al. (2008)).

Variation principle of entropy maximization turned out very useful for information theory,
the base of which connected with Shannon (Shannon (1948), Kullback & Leibler (1951)).
This direction is developed in the book Popkov (1995), where introduced generalized
information entropies by Fermi-Dirac and Bose-Einstein (entropy with parameters). Entropy
maximization are applied to image reconstruction from projections Byrne (1993). A large
number of applications of the entropy maximization principle is contained in Fang et al.
(1997), Maslov (2003).

In these papers the entropy conditional maximization problems with linear constraints
equalities were considered only. However there are many problems of entropy maximization
with feasible set that is described by a system of inequalities and not only a linear one.

In this paper we design the models of the entropy image reconstruction from projections
(EIRP) as the entropy linear (ELP) and quadratic maximization problems (EQP), where the
feasible sets are described by the system of the equalities and inequalities of appropriate types
(linear and quadratic one).

The regular procedure for design of multiplicative algorithms with p-active variables with
respect to dual variables and to mixed (dual and primal) variables proposed for the problem
solving. The choice of the active variables is implemented by feedback control with respect to
the current state of the iterative process.

The problem of reconstruction of images of the objects distorted by noises and hidden
from direct observation arises in the different fields. One of the trends in the solution of
the problem is based on the tomographic investigation of an object, i.e., the construction
of its layer-by-layer projections. The projections can be formed as external irradiation
sources(X-ray, ultrasonic sources) and internal ones (positron emission) as also with the aid of
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2 Will-be-set-by-IN-TECH

their combination (nuclear magnetic resonance) (Herman (1980), Dhawan (2003)). In Popkov
(1997) is shown that a distribution of the absobed photons in slab maximizes the generalized
entropy by Fermi-Dirac under the set of projections. A generalization consists in the inclusion
of an additional parameters in entropy function, through which it is possible to take into
account prior information on the object.

Our contribution to the theory and applications of the EIRP consists in three parts.

The first contribution is the general entropy models in the terms of entropy linear programming
(ELP) or entropy quadratic programming (EQP) that underlie in the static procedures of
computer tomography. At the beginning of the static procedure, it is occured an accumulation
of a complete set of the projections by means of the external irradiation of the object. Then
it is solved the ELP or EQP. As a result, for the prescribed prior image, we obtain an
entropy-optimal restored image, which we will be called a posterior image.

It calls for a rather high irradiation intensity so as to afford a sufficient noise immunity
of a reconstructed image. However, for some classes of tomographic investigations a high
irradiation intensity is extremely undesirable.

Multiplicative procedures represent to the ELP and EQP solving. Apparently, the first
general approach for synthesis of such procedures was proposed in (Dubov et al. (1983)).
Simple multiplicative algorithm was applied to minimization of strictly convex functions on
nonnegative orthant. Later, the multiplicative algorithms with respect to dual variables are
used for solving conditional minimization and mathematical programming problems (Aliev
et al. (1985), Popkov (1988), Popkov (1995a)). Also, the multiplicative algorithms are used
for solving nonlinear equations (Popkov (1996)). The multiplicative procedures for finding
nonnegative solutions of the minimization problems over nonnegative optant were proposed
again in the paper (Iusem et al. (1996)).

Some types of the multiplicative algorithms are derived from approach based on the Bregman
function and generalized projections with Shannon’s entropy. In this case we obtain so-called
row-action algorithms, iterations of which have a multiplicative form. The algorithms of this
type was developed and modified (Herman (1982), Censor (1981), Censor (1987), Byrne (1996),
Censor & Zenios (1997)).

It is necessary to note that in the most cited works the multiplicative algorithms are applied
to the problems of entropy maximization with linear constraints equalities. We consider
the ELP problem, where a feasible set is described by the system of the linear equalities
and inequalities. The regular procedure for design of multiplicative algorithms with p-active
variables is proposed for solving of this problem. On the basis of the procedure above we
sinthesize the algorithms with respect to dual variables and to mixed (dual and primal)
variables simultaneously. The choice of the active variables is implemented by feedback
control with respect to the current state of the iterative process. Convergence study of
the multiplicative algorithms is based on the continuous analogues of the algorithms and
equivalence of the iterative sequences generated by the dual and mixed type algorithms.
(Popkov (2006)).

Our second contribution is connected with a basically another approach to the EIRP. It is a dynamic
procedure consisting in the sequential refinement in time of the image synthesized. The
suggested procedures do not require a high irradiation intensity and display a high noise
stability.
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Entropic Image Restoration as a Dynamic System with Entropy Operator 3

On the each step t of the dynamic procedure t-posterior image is build up as a solution of the
ELP or EQP, using the current t-prior image and the current projection. The (t − s), (t − s +
1), . . . , t-posterior images take part in formation of (t+1)-prior image. So the dynamic procedures
are procedures with feedback.

The dynamic procedures are closed in the sense that at each stage for the current t-prior image
and the t-projection, the entropy-optimal t-posterior image is built up, by which the (t+1)-prior
image is corrected.

We consider a diverse structures of the dynamic procedures with feedback and investigate
their properties. The example of application of these procedures is presented.

It is shown that the proposed dynamic procedures of the EIRP represent the dynamic systems
with entropy operator (DSEO). And our third contribution is an elements of the qualitative
analysis of the DSEO. We consider the properties of the entropy operator (boundedness,
Lipschitz constant).

2. Mathematical model of the static EIRP procedure

Consider a common diagram of monochrome tomographic investigation (fig. 1), where
external beams of photons S irradiate the flat object in the direction AB. The object is
monochromatic, and is described by the two-dimensional function of optical density ψ(x, y)
in the system of Cartesian coordinates. Positive values of the density function are limited:

0 < a ≤ ψ(x, y) ≤ b < 1. (2.1)

The intensity of irradiation (projection) w at the point B of the detector D (fig. 1) is related by
the Radon transformation:

w(B) = exp

(

−
∫

l∈AB
ψ(x, y)dl

)

, (2.2)

where the integration is realized along straight AB.

It is common to manipulate the digital representation of the density function ψ(l, s), (l =
1, L, s = 1, S). Introduce i = S(l − 1) + s, i = 1, m, m = LS, and martix Ψ = [ψ(l, s)| l =
1, L, s = 1, S] as a vector ψ̄ = {ψ1, . . . , ψm}.

The tomographic procedure form some feasible sets for the vector ψ̄:

L = {ψ̄ : L(ψ̄) ≤ g}, (2.3)

where L(ψ̄) is the h-vector function, and g is the h-vector. We consider the quadratic
approximation of the function L:

L(ψ̄) = L ψ̄ + Q(ψ̄), (2.4)

where L is the (h × m)-matrix with nonnegative elements lki ≥ 0; Q(ψ̄) is the h-vector of the
quadratic forms:

Q(ψ̄) = ψ̄′ Qk ψ̄, (2.5)

where Qk is the symmetric (m × m)-matrix with elements qk
ij ≥ 0.

47Entropic Image Restoration as a Dynamic System with Entropy Operator
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4 Will-be-set-by-IN-TECH

Fig. 1. Tomography scheme

Now it is returned to the projection function (2.2), and we use its quadratic approximation:

w(B) ≃ T ψ̄ + F(ψ̄) = u, (2.6)

where: w(B) = {w(B1), . . . , w(Bn)}, T is the (n × m)-matrix with elements tki ≥ 0; F(ψ̄) is the
n-vector function with components Frψ̄) = ψ̄′ Fr ψ̄, where Fr is the symmetric (m×m)-matrix
with elements f r

ij ≥ 0.

Any tomographic investigation occurs in the presence of noises. So the n-projections vector
u is a random vector with independent components un, n = 1, m, Mu = u0 ≥ 0,M (u −
u0)2 = diag [σ2], where u0 is the ideal projections vector (without noise), and σ2 is the
dispersion of the noise. It is assumed that the dispersions of the noise components are equal.

Thus, the feasible set D(ψ̄) is described the following expressions:

- the projections are
Tψ̄ + F(ψ̄) = u, (2.7)

- the possible set of the density vectors is

L ψ̄ + Q(ψ̄) ≤ g. (2.8)
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Entropic Image Restoration as a Dynamic System with Entropy Operator 5

The class P of the density vectors is characterized by the following inequalities:

0 < a ≤ ψ̄ ≤ b < 1. (2.9)

It is assumed that among dimensions of the density vectors (m), the projection vectors (n), and
the possible set (h) the following inequality exists:

m > n + h. (2.10)

It is assumed that the feasible set is nonempty for the class (2.9), and there exists a set of the
density vectors ψ̄ (2.9), that belong to the feasible set D (2.7, 2.8).

We will use the variation principle of the EIRP Popkov (1997), according to which the
realizable density vector (function) ψ̄ maximizes the entropy (the generalized information
entropy by Fermi-Dirac):

H(ψ̄ | a, b, E) = −[ψ̄ − a]′ ln
ψ̄ − a

E
− [b − ψ̄]′ ln[b − ψ̄], (2.11)

where:

- E = {E1, . . . , Em} is the m-vector characterizing the prior image (prior probabilities of photon
absorption in the object);

- ln[(ψ̄ − a) / E] is the vector with components ln[(ψi − ai) / Ei];

- ln[b − ψ̄] is the vector with components ln(bi − ψi).

If there is information about more or less "grey" object then we can use the next entropy
function (the generalized information entropy by Boltzmann):

H(ψ̄ |E) = −ψ̄′ ln
ψ̄

eE
, (2.12)

where e = 2, 73.

Thus, the problem of the EIRP can be formulated in the next form:

H(ψ̄ | a, b, E) ⇒ max
ψ̄

, ψ̄ ∈ D(ψ̄)
⋂

P , (2.13)

where the feasible set D(ψ̄) is described by the expressions (2.7 - 2.8) and the class P is
described by the inequalities (2.9). This problem is related to the EQP or the ELP depend
on the feasible set construction.

3. Statements and algorithms for the ELP and the EQP

Transform the problem (2.13) to the general form, for that introduce the following
designations:

x = ψ̄ − a, b̃ = b − a,

g̃ = g − {a′ Qk a, k = 1, h} − La, (3.1)

ũ = u − {a′ Fr a, r = 1, n} − Ta.

49Entropic Image Restoration as a Dynamic System with Entropy Operator
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Then the problem (2.13) takes a form:

H(x, b̃, E) = −x′ ln
x

E
− [b̃ − x]′ ln[b̃ − x] ⇒ max, (3.2)

under the following constraints:

- the projections
T̃x + {x′ Fr x, r = 1, n} = ũ, (3.3)

- the possible set

L̃x + {x′ Qk x, k = 1, h} ≤ g̃, (3.4)

where

T̃ = T + AF, , AF = 2[ a′ Fr, r = 1, n],

L̃ = L + AQ, AQ = 2[ a′ Qk, k = 1, h] (3.5)

Remark that the constraints (2.9) are absent in the problem (3.2, 3.4), as they are included to
the goal function.

3.1 The ELP problem

1. Optimality conditions. The feasible set in the ELP problem is described by the next
expressions:

Tx = û, Lx ≤ ĝ, (3.6)

where
û = u − Ta, ĝ = g − La. (3.7)

Consider the Lagrange function for the ELP (3.2, 3.6):

L(x, λ̄, μ̄) = H(x, b̃, E) + [û − Tx]′ λ̄ + [ĝ − Lx]′ μ̄, (3.8)

where λ̄, μ̄ are the Lagrange multipliers for constraints-equalities and -inequalities (3.6)
correspondingly. Assume that the Slater conditions are valid, i.e., there exists a vector x0

such that Lx0
< ĝ, Tx0 = û.

According to Polyak (1987) the following expressions give the necessary and sufficient
conditions optimality of the triple (x, λ̄, μ̄) for the problem (3.2 - 3.5):

∇xL = 0, ∇λ̄L = 0, ∇μ̄L ≥ 0, (3.9)

μ̄ ⊗ ∇μL = 0, μ̄ ≥ 0, (3.10)

where ⊗ designates a coordinate-wise multiplication.

The following designations are used in these expressions:

∇xL =
∂H

∂x
− T′ λ̄ − L′ μ̄, (3.11)

∇λ̄L = û − Tx, (3.12)

∇μ̄L = ĝ − Lx, (3.13)

(3.14)
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Entropic Image Restoration as a Dynamic System with Entropy Operator 7

From the optimality conditions (3.9) we have:

xi(z, μ̄) = yi(z) di(μ̄),

yi(z) = b̃i

⎡

⎣1 +
1

Ei

n

∏
j=1

z
tji

j

⎤

⎦

−1

, (3.15)

di(μ̄) = b̃i

[

1 +
1

Ei
exp

(

h

∑
k=1

μklki

)]−1

,

b̃i =
√

bi, i = 1, m.

The Lagrange multipliers μ̄ and the exponential Lagrange multipliers z = exp(λ̄) are defined
by the next equations and inequalities:

Θj(z, μ̄) =
1

uj

m

∑
i=1

tjiyi(z)di(μ̄) = 1, j = 1, n,

Γk(z, μ̄) = gk −
m

∑
i=1

lkiyi(z)di(μ̄) ≥ 0, (3.16)

μkΓk(z, μ̄) = 0, μk ≥ 0, k = 1, h.

2. Multiplicative algorithms with (p+q)-active variables An active variables are vary at
the sth iteration, and the remaining variables are not vary. We will consider multiplicative
algorithms with respect to dual variables (z, μ̄) for solution of the system (3.16). At the each
step of iteration it will be used p components of the vector z, and q components of the vector
μ̄. The number of the active variables is valid to the next relation:

p + q ≤ n + h. (3.17)

The multiplicative algorithms with p+q-active variables can be represented in the following
form:

(a)initial step
z0 ≥ 0, μ̄0 ≥ 0;

(b)iterative step

zs+1
j1(s)

= zs
j1(s)

Θ
γ
j1(s)

(zs, μ̄s),

· · · · · · · · · · · · , (3.18)

zs+1
jp(s)

= zs
jp(s)

Θ
γ
jp(s)

(zs, μ̄s),

zs+1
j = zs

j , j = 1, n, j 
= j1(s), . . . , jp(s);

μs+1
t1(s)

= μs
t1(s)

[1 − αΓt1(s)(z
s, μ̄s),

· · · · · · · · · · · · , (3.19)

μs+1
tq(s)

= μs
tq(s)

[1 − αΓtq(s)(z
s, μ̄s),

μs+1
t = μs

t , t = 1, h, t 
= t1(s), . . . , tq(s);

51Entropic Image Restoration as a Dynamic System with Entropy Operator
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The parameters γ, α are the step coefficients. In Popkov (2006) the multiplicative algorithms
in respect to the mixed type (prime and dual variables) are introduced, and the method of the
convergence of these algorithms are proposed.

3.2 The EQL problem 

1. Optimality condition. Consider the EQL problem (3.2 - 3.5), and introduce the Lagrange
function:

L(x, λ̄, μ̄) = H(x, b̃, E) + λ̄′[ ũ − T̃x − {x′ Fr x, r = 1, n}] + (3.20)

+ μ̄′[ g̃ − L̃x − {x′ Qk x, k = 1, h} ].

According to the optimality conditions (3.9, 3.10) we have:

∇xL =
∂H

∂x
− [ T + Φ(x) ]′λ̄ − [ L + Π(x) ]′μ̄ = 0,

∇λ̄L = ũ − Tx − {x′ Fr x, r = 1, n}, (3.21)

∇μ̄L = g̃ − Lx − {x′ Qk x, k = 1, n} ≥ 0,

μ̄ ⊗ ∇μ̄L = 0, x ≥ 0, μ̄ ≥ 0,

where

Φ(x) = [ϕri(x) | r = 1, n, i = 1, m], ϕri(x) = 2
m

∑
j=1

xj f r
ij,

Π(x) = [πki(x) | k = 1, h, i = 1, m], πkj(x) = 2
m

∑
j=1

xjq
k
ij.

Transform these equations and inequalities to the conventional form in which all variables are
nonnegative one:

Aj(x, z, μ̄) Ej

xj[1 + Aj(x, z, μ̄) Ej]
= Aj(x, z, μ̄) = 1, j = 1, m,

1

ũr

(

m

∑
i=1

t̃rixi +
m

∑
i,l=1

xi xl f r
il

)

= Br(x) = 1, r = 1, n, (3.22)

μk

g̃k

(

m

∑
i=1

l̃kixi +
m

∑
i,l=1

xi xl qk
il

)

= Ck(x) = 0, k = 1, h,

x ≥ 0, z = exp(−λ̄) ≥ 0, μ̄ ≥ 0,

where

Aj(x, z, μ̄) =
n

∏
r=1

z
t̃rj
r

n

∏
p=1

z
ϕrj(x)
r ×

× exp

(

−
h

∑
k=1

μk l̃kj

)

exp

(

−
h

∑
k=1

μk

m

∑
l=1

xlq
k
jl

)

. (3.23)
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2. Multiplicative algorithms of the mixed type with (p+q+w)-active variables. We use p
active prime x variables, q active dual variables z for the constraints-equalities, and w active
dual μ̄ variables for the the constraints-inequalities. The algorithm takes a form:

(a)initial step
x0 ≥ 0, z0 ≥ 0, μ̄0 ≥ 0;

(b)iterative step

xs+1
j1(s)

= xs
j1(s)

Aβ

j1(s)
(xs, zs, μ̄s),

· · · · · · · · · · · · , (3.24)

xs+1
jp(s)

= xs
jp(s)

Aβ

jp(s)
(xs, zs, μ̄s),

xs+1
j = xs

j , j = 1, m, j 
= j1(s), . . . , jp(s);

zs+1
t1(s)

= zs
t1(s)

Bγ
t1
(xs),

· · · · · · · · · · · · , (3.25)

zs+1
tq(s)

= zs
tq(s)

Bγ
tq
(x)s,

zs+1
t = zs

t , t = 1, n, t 
= t1(s), . . . , tq(s);

μs+1
k1(s)

= μs
k1(s)

[1 − αCk1
(xs)],

· · · · · · · · · · · · , (3.26)

μs+1
kw(s)

= μs
kw(s)

[1 − αCkw
(xs)],

μs+1
k = μs

k, k = 1, h, k 
= k1(s), . . . , kw(s);

The parameters β, γ, α are the step coefficients.

3. Active variables. To choice active variables we use feedback control with respect to the
residuals on the each step of iteration. Consider the choosing rule of the active variables for
the ELP problem (3.2, 3.3, 3.4). Introduce the residuals

ϑi(z
s, μ̄s) = |1 − Θi(z

s, μ̄s)|, i = 1, n;

εk(z
s, μ̄s) = μkΓk(z

s, μ̄s), k = 1, h. (3.27)

One of the possible rules is a choice with respect the maximum residual. In this case it is
necessary to select p maximum residual ϑi1

, . . . , ϑip
and q maximum residual εk1

, . . . , εkq
for

the each iterative step s. The numbers i1, . . . , ip and k1, . . . , kq belong to the intervals [1, n] and
[1, h] respectively.

Consider the step s and find the maximal residual ϑi1
(zs, μ̄s) among ϑ1(z

s, μ̄s), . . . , ϑn(zs, μ̄s).
Exclude the residual ϑi1

(zs, μ̄s) from the set ϑ1(z
s, μ̄s),

. . . , ϑn(zs, μ̄s), and find the maximal residual ϑi2
(zs, μ̄s) among ϑ1(z

s, μ̄s), . . . ,
ϑi1−1(z

s, μ̄s), ϑi1+1(z
s, μ̄s)ϑn(zs, μ̄s), and etc., until all p maximal residuals will be found.

Selection of the maximal residuals εk1
(zs, μ̄s), . . . , εkq

(zs, μ̄s) is implemented similary.

53Entropic Image Restoration as a Dynamic System with Entropy Operator
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Now we represent the formalized procedure of selection. Introduce the following
designations:

n

p
= I + δ, I =

[

n

p

]

, 0 ≤ δ ≤ p − 1;

h

q
= J + ω, J =

[

h

q

]

, 0 ≤ ω ≤ q − 1. (3.28)

̺ = s (mod (I + 1)), κ = s (mod (J + 1)). (3.29)

Consider the index sets:

N = {1, . . . , n} Nr(s) = {i1(s), . . . , ir(s)};

K = {1, . . . , h} Kv(s) = {k1(s), . . . , kv(s)}, (3.30)

where

r =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

[1, p], if ̺ < I;

[1, δ], if ̺ = I;

0, if δ = 0

, v =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

[1, q], if κ < J;

[1, ω] if κ = J;

0, if ω = 0.

(3.31)

Introduce the following sets:

Pr−1(s) =

[

̺
⋃

l=1

Np(s − l)

]

⋃

Nr−1(s), Gr−1 = N \ Pr−1(s).

Qv−1(s) =

[

κ
⋃

l=1

Kv(s − l)

]

⋃

Kv−1(s), Rv−1 = K \ Qv−1(s).

(3.32)

The numbers r and v are determined by the equalities (3.31), and

N0(s) = K0(s) = P0(s) = G0(s) = Q0(s) = R0(s) = ∅, for all s.

Now we define the rule of the (p+q)-maximal residual in the following form:

ij(s) = arg max
[i∈Gj−1(s)]

ϑi(z
s, μ̄s),

kl(s) = arg max
[k∈Rl−1(s)]

εk(z
s, μ̄s). (3.33)

According to this rule we have the chain of inequalities:

ϑip
(zs, μ̄s) < ϑip−1

(zs, μ̄s) < · · · < ϑi1
(zs, μ̄s),

εkq
(zs, μ̄s) < εkq−1

(zs, μ̄s) < · · · < εk1
(zs, μ̄s). (3.34)

We can see that all dual variables are sequentially transformed to active ones during I + J + 2
iterations It is repeated with a period of I + J + 2.
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4. Dynamic EIRP procedure with feedback

The basic idea of the dynamic procedure lies in the sequential (stage by stage) obtaining of
the projections and the solution of the sequence of the appropriate ELP or EQP. The feasible
sets in these problems consist on two subsets. One of them describes the class of the possible
density functions (2.7), and it is not depends from irradiation of the object. The other subset
depends on the measured projections (2.8).

On the stage t we have the t-prior image Et, the projection’s vector ut, measured with noise ξ̄.
The problem (2.7 - 2.9, 2.13) is solved and we have t-posteriori image

ψ̄t
∗(E

t|ut) = arg max
ψ̄

{

H(ψ̄, Et)|ψ̄t ∈ D(ut)
}

. (4.1)

On the next (t + 1)-stage the prior image E(t+1) is formed on the basis of t, (t − 1), . . . , (t −
s)-posterior images ψ̄(t,∗), ψ̄((t−1),∗), . . . , ψ̄((t−s),∗). Each of posterior images are reconstructed
by the rule (4.1).

In the general case the procedure holds

E(t+1) = L̃(Et, ψ̄(t,∗), . . . , ψ̄((t−s),∗)), (4.2)

where L is the feedback operator, which characterizes the transformation of the t-prior image,
and t, (t − 1), . . . , (t − s)-posterior images to the (t + 1)-prior image.

Represent the operator L̃ in the following form:

L̃(Et, ψ̄(t,∗), . . . , ψ̄((t−s),∗)) = Et + ǫL(Et, ψ̄(t,∗), . . . , ψ̄((t−s),∗)), (4.3)

where ǫ is a small positive real number.

Then the dynamic EIRP procedure (the discrete procedure) takes a form:

E(t+1) = Et + ǫL(Et, ψ̄(t,∗), . . . , ψ̄((t−s),∗)). (4.4)

Now let the variable t is continuous one. Then under ǫ → 0 we will have the continuous
dynamic EIRP that is described be the differential equation:

dE(t)

dt
= L(Et, ψ̄(t,∗), . . . , ψ̄((t−s),∗)). (4.5)

The t, (t − 1), . . . , (t − s)-posterior images are defined by the ELP or EQP problems, which
represent the appropriate entropy operators (4.1). So the dynamic EIRP procedure (4.1, 4.2, (4.4))
represents the discrete dynamic system with entropy operator (the discrete DSEO) and its the
continuous analog (4.5) represents the continuous dynamic system with entropy operator (the
continuous DSEO). Some general properties of the DSEO will be described in the next section.

4.1 Structures of the dynamic EIRP procedures

Let us consider some partial cases. One of them relates to the examination of a Markov version
of the procedure when the information only on the t-posterior image is used to shape up

E(t+1):
E(t+1) = L(Et, ψ̄t,∗). (4.6)
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In the second case, information collections at t, t− 1, . . . , t− s stages are used for the estimation
of the current mean ¯̄ψt of the posterior image:

E(t+1) = L(Et, ¯̄ψt). (4.7)

Finally, in the third case, information collections at t, t − 1, . . . , t − s stages are used for the
estimation of the current mean ¯̄ψt and dispersion dt of the posterior image:

E(t+1) = L(Et, ¯̄ψt, dt). (4.8)

We will introduce the following types of the dynamic procedures of the EIRP:

• the identical feedback (I − f eedback)

E(t+1) = arg max
ψt

H(ψ̄t)|Et) | ψ̄t ∈ D(ut); (4.9)

• the feedback with respect to the current mean of image (CM − f eedback)

E(t+1) = Et + α(Et − ¯̄ψt), (4.10)

¯̄ψ(t+1) = ¯̄ψt +
1

t + 1

(

ψ(t,∗) − ¯̄ψt
)

;

ψ̄(t,∗) = arg max
ψ

{H(ψ̄t, Et)|ψ̄t ∈ D(ut)};

(4.11)

• the feedback with respect to the current mean and dispersion of image (CMD − f eedback)

E(t+1) = Et + α(dt)(Et − ¯̄ψt), (4.12)

¯̄ψ(t+1) = ¯̄ψt +
1

t + 1

(

ψ̄(t,∗) − ¯̄ψt
)

, (4.13)

d(t+1) = dt +
1

t + 1

(

dt + [ψ̄(t,∗) − ¯̄ψt]2
)

,

ψ̄(t,∗) = arg max
ψ

{H(ψ̄, Et) | ψ̄t ∈ D(ut)}.

(4.14)

4.2 Investigation of the dynamic EIRP procedure with I-feedback

Consider the problem (2.13) in which the feasible set is the polyhedron, a = 0, b = 1, and the
constraints to the possible density functions (2.7) are absent. In this case t-posterior density
function hold:

ψt,∗
i =

Et
i

Et
i + ∏

n
j=1[z

t
j ]

tji
, i = 1, m. (4.15)

The exponential Lagrange multipliers z1, . . . , zn are defined from the following equations:

Φj(z
t) =

m

∑
i=1

tjiE
t
i

Et
i + ∏

n
j=1[z

t
j ]

tji
= uj, j = 1, n. (4.16)
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According to the definition of the I-feedback procedure we have:

Et+1
i = Ψi(E

t) =
Et

i

Et
i + ϕi[zt(Et)]

, i = 1, m, (4.17)

where

ϕi[z
t(Et)] =

n

∏
j=1

[zt
j ]

tji ≥ 0. (4.18)

The iterative process (4.17) can be considered as the method of the simple iteration applying
to the eguations:

Ei =
Ei

Ei + ϕi[z(E)]
, i = 1, m. (4.19)

Theorem 1.Let ϕi[z(E)] ≤ 1 for all i = 1, m, z ≥ 0, 0 ≤ E ≤ 1.

Then the system of equations (4.19) has the unique solution E∗.

Proof. Consider the auxiliary equation:

x = Ψ(x) =
x

x + a
, x ≥ 0.

We can see that the function Ψ(x) is strictly monotone increasing (Ψ′(x) > 0 for all x > 0 and Ψ(∞) = 0),
and is strictly convex (Ψ′ ′(x) < 0, x > 0 and Ψ′ ′(∞) = 0).

If Ψ′(0) = 1/a ≥ 1, (a ≤ 1), then the auxiliary equation has the unique solution, and the method of the

simple iteration is converged to this solution.

Now it is necessary to find a conditions when ϕi[z(E)] ≤ 1. The sufficient conditions for it is
formed by the following theorem.

Theorem 2. Let the matrix T in (2.7) has the complete rank n, and the following conditions be valid:

max
j∈[1,n]

(

m

∑
i=1

tji

)

− umax > 0, umax = max
j∈[1,n]

uj; (4.20)

min
j∈[1,n]

(

m

∑
i=1

tji

(

Et
i

Et
i + 1

))

− umin < 0, umin = min
j∈[1,n]

uj. (4.21)

Then ϕi[z(E)] ≤ 1 for all i = 1, m.

Proof. Consider the Jacobian of the vector-function Φ̄(zt). Its elements take a form:

∂Φj(z
t)

∂zk
= − 1

zk

m

∑
i=1

tji tki Et
i ϕi(z

t)

[Et
i + ϕi(zt)]2

≤ 0, (j, k) = 1, n.

The equality to zero is reached when z → ∞. So, the functions Φ1, . . . , Φn are strictly monotone
decreasing.

Therefore, under the theorem’s conditions, the solution of the equations (4.16) z∗j ∈ [0, 1], j = 1, n, and

the functions 0 < φj(z(E)) ≤ 1.
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Fig. 2. Test image 1

4.3 Computer experiment

Consider the dynamic EIRP when the tomographic device gives the orthogonal linear
projections with the matrix

T =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

1 · · · 1 · · · 0 · · · 0
· · · · · · · · · · · · · · · · · · · · ·
0 · · · 0 · · · 1 · · · 1
1 · · · 0 · · · 1 · · · · · ·
· · · · · · · · · · · · · · · · · · · · ·
0 · · · 1 · · · 0 · · · 1

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

(4.22)

As a test image, use is made of the LENA test (IEEE Image Processing), on which the spot is
placed (fig. 2, the left upper window).

To the right and below window, the projections with noise are shown. In the example, the
noise/signal ratio amounted to 0.3.

It is necessary to restored the LENA with the spot having the noisy projections. We use "the pure
LENA", which is shown in the second upper window, as the 0-prior image E0 = {E0

1 , . . . , E0
m}.

This problem of the EIRP is described by the ELP with the constrains-equalities. The
multiplicative algorithms with 1-active dual variable (3.18) is used for solution of the problem.
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Fig. 3. Test image 2

The modification of the dynamic procedure with I- feedback involved the following. At each
stage t we shaped up the auxiliary vector

ψ̃
(t,∗)
i =

{

ψ
(t,∗)
i , if |Et

i − ψ
(t,∗)
i | ≥ δ,

Et
i , if |Et

i − ψ
(t,∗)
i | < δ

, (4.23)

i = 1, m. (4.24)

In parallel, the current mean of the components of the vector ψ̃t,∗ are calculated:

¯̃ψ
(t+1)
i = ¯̃ψt

i +
1

t + 1
(ψ̃t,∗

i − ¯̃ψt). (4.25)

The modified dynamic procedure takes the form:

Et+1
i = ¯̃ψ

(t+1)
i , i = 1, m. (4.26)

In fig. 2, in the right upper window, the result of the EIRP with the static procedure is shown.
In the middle lower window, fig. 2 shows results of the EIRP by the dynamic procedure with I
-feedback, and in the right lower window results of the modified dynamic procedure is shown.
The quality of the right image is obvious.

The test image 2 is shown in the fig. 3.

5. Dynamic systems with entropy operator (DSEO)

We can see that dynamic procedures of the image restoration from projections represent a
dynamic discrete system with the particular type of the entropy operator with the generalized
entropy Fermi-Dirac (3.2), and the feasible set that is described by the inequality and the
equality (3.4).
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In general case the class of the continuous DSEO is described by the following differential
equations:

du(t)

dt
= U (u(t), v(t), y[t, u(t), v(t)]) , u(0) = u0. (5.1)

dv(t)

dt
= V (u(t), v(t), y[t, u(t), v(t)]) , v(0) = v0. (5.2)

with the entropy operator:

y[t, u(t), v(t)] = arg max
y

{H(t, y, u(t)) | y ∈ D[t, v(t)]} , (5.3)

where: H(t, y |u) is an entropy function with the H-parameters u; the vectors (y, u) ∈
Rn, v ∈ Rm , and D(t, v) is a feasible set depended from the D-parameters v.

In these equations U is the n-vector-function, and V is the m-vector-function.

5.1 Classification of the DSEO

Some physical analogues we will use for construction of the classificatory graph. In particular,
from the equations (5.1, 5.2) it is seen the rates of parameters is proportional to the flows. The
entropy function is a probability characteristics of a stochastic process. So the H-parameters
are the parameters of this process.

We will use the following classificatory indicators:

• (A), types of the state coordinates (〈H〉-coordinates u, 〈D〉-coordinates v,
〈HD〉-coordinates u, v);

• (B), flows (〈Add〉 - an additive flow, 〈Mlt〉 - a multiplicative flow);

• (C), entropy functions (〈F〉-Fermi-, 〈E〉-Einstein-, 〈B〉-Boltzmann-entropy functions);

• (D), models of the feasible sets (〈Eq〉-equalities, 〈Ieq〉-inequalities, 〈Mx〉-mixed);

• (F), types of the feasible sets (〈Plh〉- polyhedron, 〈Cnv〉-convex, 〈nCnv〉-non-convex).

The classificatory graph is shown in the fig. 4.

At the beginning we consider some properties of the entropy operator, notably, the
〈HD, B, Eq, Plh〉-entropy operator that is included to the 〈HD〉-DSEO:

y[u, v] = arg max
{

HB[y, u] | y ∈ D̃[v]
}

, (5.4)

where Boltzmann-entropy function is

H(y |u) = −
(

y′ ln
y

eu

)

, y ∈ Rm
+, (5.5)

and the feasible set is
D̃[v] = {y : T̃ y = v, y ≥ 0}. (5.6)

In these expressions the vector ln
y
eu = {ln

y1

eu1
, . . . , ln

ym

eum
}, and the vectors

u ∈ Um
+(u

−, u+) ⊂ Rm
+, v ∈ Vn

+(v
−, v+) ⊂ Rn

+, n < m, (5.7)

and

Um
+(u

−, u+) = {u : 0 < u− ≤ u ≤ u+ ≤ 1},

Vn
+(v

−, v+) = {v : 0 < v− ≤ v ≤ v+}. (5.8)

The (n × m)-matrix T̃ = [t̃ki ≥ 0] has a full rank equal n.
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Fig. 4. Classificatory graph

5.2 Estimation of the local Lipschitz-constants for the 〈HD, B, Eq, Plh〉-entropy operator.

The 〈HD, B, Eq, Plh〉-entropy operator describes the mapping of the sets Um
+(u

−, u+) and
Vn
+(v

−, v+) into the set Y ⊂ Rm
+ of the operator’s values. We will characterize this mapping

by two local Lipschitz-constants - LU and LV , i.e.

‖y[u(1), v(1)]− y[u(2), v(2)]‖ ≤ LU ‖u(1) − u(2)‖+ LV ‖v(1) − v(2)‖. (5.9)

We will use the upper estimations of local Lipschitz-constant:

LU ≤ max
Um

+

‖YU‖, LV = max
Vn
+

‖YV‖, (5.10)

where YU and YV are the U-Jacobian and the V-Jacobian of the operator y[u, v] respectively.

Evaluate the normalized entropy operator in the following form:

x(u, v) = arg max (H[x, u] | Tx = v, x ≥ 0) , (5.11)

where
H(x |u) = −

(

x′ ln
x

eu

)

. (5.12)

ti =
n

∑
k=1

t̃ki, tki =
t̃ki

ti
, i = 1, m. (5.13)

The matrix T in (5.11) has a full rank n and the normalized elements, i.e. ∑
n
k=1 tki = 1 for

all i = 1, m. Also it is assumed that the condition of the dominating diagonal is valid for the
quadratic matrix T T′, i.e. the following inequalities take a form:

m

∑
i=1

⎛

⎝t2
ki −

n

∑
j 
=k

tkitji

⎞

⎠ ≥ ̺ > 0, k = 1, n. (5.14)

61Entropic Image Restoration as a Dynamic System with Entropy Operator

www.intechopen.com



18 Will-be-set-by-IN-TECH

The feasible set D = {x : T x = v, x ≥ 0} is not empty, notable, there exists some subset of
the nonnegative vectors x ∈ D.

Designate the Lipschitz-constant for the normalized operator (5.11) as L̃U and L̃V respectively,
i.e.

‖x[u(1), v(1)]− x[u(2), v(2)]‖ ≤ L̃U ‖u(1) − u(2)‖+ L̃V ‖v(1) − v(2)‖. (5.15)

We will use the upper estimations of local Lipschitz-constant:

L̃U ≤ max
Um

+

‖XU‖, L̃V = max
Vn
+

‖XV‖, (5.16)

where XU and XV are the U-Jacobian and the V-Jacobian of the operator x[u, v] respectively.

According to (5.13), the following relation between the operators y(u, v) (5.4) and x(u, v) (5.11)
exists:

y(u, v) = t−1 ⊗ x(u, v), (5.17)

where the vector t−1 = {t−1
1 , . . . , t−1

m }, where the components ti are defined by the equalities
(5.13), and ⊗ implies the coordinate-wise multiplication of the vectors.

Thus we have the following equalities:

LU = ‖t−1‖L̃U , LV = ‖t−1‖L̃V , (5.18)

Thus, we will calculate the local Lipschitz-constants estimations for the normalized entropy
operator (5.11, 5.12) and then apply the formulas (5.17, 5.18).

The normalized entropy operator x(u, v) can be represented by the form:

xi(u, v) = ui exp

⎛

⎝−
n

∑
j=1

λj(u, v) tji

⎞

⎠ , i = 1, m, (5.19)

where the Lagrange multipliers λj(u, v), (j = 1, n) as the implicit functions from u, v define
by the equations:

Φk[u, λ(u, v)] =
m

∑
i=1

uitki exp

⎛

⎝−
n

∑
j=1

λj(u, v) tji

⎞

⎠ = vk, k = 1, n. (5.20)

1. Estimations of the norm’s matrix XU . The (m × m)-matrix XU takes a form:

XU =

[

∂xi

∂uj
, (i, j) = 1, m

]

,

We will use Euclidean vector norm (‖y‖2), with which two matrix norm are consisted (see Voevodin
(1984)):

- the spectral norm
‖A‖2 =

√
σmax ,

where σmax is the maximal eigenvalue of the matrix A;

62 Image Restoration – Recent Advances and Applications

www.intechopen.com



Entropic Image Restoration as a Dynamic System with Entropy Operator 19

- and the Euclidean norm

‖A‖E =
√

∑
i,j

|aij|2.

It is known that
‖A‖2 ≤ ‖A‖E

It is assumed that ‖XU‖ = ‖XU‖2. We have from (5.19) the following equality:

XU = Xu + Xλ ΛU , (5.21)

where the (m × m)-matrix

Xu = diag [
xi

ui
| i = 1, m]; (5.22)

the (m × n)-matrix
Xλ = −x ⊗ T′; (5.23)

and the n × m-matrix

ΛU =

[

∂λj

∂ui
, j = 1, n, i = 1, m

]

(5.24)

In these expressions ⊗ is coordinate-wise multiplication of the vector’s components to the
rows of the matrix.

According to (5.21) and the relation between the spectral norm and the Euclidean norm, we
have:

‖XU‖2 ≤ ‖Xu‖E + ‖Xλ‖E ‖ΛU‖E, (5.25)

where

‖Xu‖E ≤
√

m
xmax

u−
min

, (5.26)

xmax = max
(i,u,v)

xi(u, v), u−
min = min

i
u−

i . (5.27)

‖Xλ‖E ≤ xmax‖T‖E = xmax

√

√

√

√

m,n

∑
i=1,j=1

t2
ij. (5.28)

Now consider the equations (5.20), and differentiate the left and right sides of these equations
by u. We obtain the following matrix equation:

Φλ ΛU = −Φu, (5.29)

From this implies that

ΛU =

[

∂λk

∂ui
| k = 1, n, i = 1, m

]

= −Φ−1
λ Φu. (5.30)

Here the (n × n)-matrix Φλ has elements

φλ
ks = −

m

∑
i=1

uitkitjs exp

⎛

⎝−
n

∑
j=1

λj(u, v)tji

⎞

⎠ , (k, s) = 1, n; (5.31)
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and the (n × m)-matrix Φu has elements

φu
ki = tki exp

⎛

⎝−
n

∑
j=1

λj(u, v)tji

⎞

⎠ , k = 1, n, i = 1, m. (5.32)

According to (5.30) we have

‖ΛU‖2 ≤ ‖Φ−1
λ ‖2

xmax

u−
min

√

√

√

√

n,m

∑
j=1,i=1

t2
ji. (5.33)

Thus the norm’s estimation of the matrix XU takes a form:

‖XU‖2 ≤ xmax

u−
min

⎛

⎝

√
m + xmax ‖Φ−1

λ ‖2

m,n

∑
i=1,j=1

t2
ij

⎞

⎠ . (5.34)

2. Estimations of the norm’s matrix XV .The (m × n)-matrix XV takes a form

XV =

[

∂xi

∂vk
, i = 1, m, k = 1, n

]

.

It is assumed that ‖XV‖ = ‖XV‖2. We have from (5.19) the following equality:

XU = Xλ ΛV , (5.35)

where the (m × n)-matrix
Xλ = −x ⊗ T′; (5.36)

and the n × n-matrix

ΛV =

[

∂λk

∂vj
, (k, j) = 1, n

]

. (5.37)

According to (5.36) and the relation between the spectral norm and the Euclidean norm, we
have:

‖XV‖2 ≤ ‖Xλ‖E ‖ΛV‖E, (5.38)

where

‖Xλ‖E ≤ xmax ‖T‖E = xmax

√

√

√

√

m,n

∑
i=1,j=1

t2
ij. (5.39)

Now consider the equations (5.20), and differentiate the left and right sides of these equations
by v. We obtain the following matrix equation:

Φλ ΛV = I. (5.40)

From this implies that

ΛU = Φ−1
λ . (5.41)

Here the (n × n)-matrix Φλ is defined by (5.31). According to (5.41) we have

‖ΛV‖2 ≤ ‖Φ−1
λ ‖2. (5.42)
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Thus the norm’s estimation of the matrix XV takes a form:

‖XV‖2 ≤ ‖Φ−1
λ ‖2 xmax

√

√

√

√

m,n

∑
i=1,j=1

t2
ij. (5.43)

So, we can see that it is necessary to construct the norm’s estimation for the matrix Φ−1
λ , as

well as for the norm’s estimation of the matrix XU .

3. Estimation of the spectral norm of the matrix Φ−1
λ . The matrix Φλ (5.31) is symmetric and

strictly negative defined for all λ. Therefore, it has n real, various, and negative eigenvalues
(see Wilkinson (1970)). We will order them in the following way:

μ1 = μmin < μ2 < · · · < μn = μmax < 0, |μmax| > M. (5.44)

The spectral norm of an inverse matrix is equal to the inverse value of the modulus of the
maximum eigenvalue μmax of the initial matrix, i.e.

‖Φ−1
λ ‖ ≤ M−1. (5.45)

To definite the value M we resort to the Gershgorin theorem (see Wilkinson (1970)). According
to the theorem any eigenvalue of a symmetric strictly negative definite matrix lies at least in
one of the intervals with center −ck(λ) and the width 2 ρk(λ):

− g+k (λ) = −ck(λ)− ρk(λ) ≤ μ ≤ −ck(λ) + ρk(λ) = −g−k (λ), k = 1, n, (5.46)

where according to (5.19)

g+k (λ) =
m

∑
i=1

xi

⎛

⎝t2
ki +

n

∑
j 
=k

tkitji

⎞

⎠ ,

g−k (λ) =
m

∑
i=1

xi

⎛

⎝t2
ki −

n

∑
j 
=k

tkitji

⎞

⎠ ,

(5.47)

From the conditions (5.46) it follows that

|μmax| ∈ [min
k,λ

g−k (λ) , max
k,λ

g+k (λ)]. (5.48)

We can apply the lower estimation for the left side of this interval using (5.14):

min
k,λ

g−k (λ) ≥ M = ̺ xmin, (5.49)

where
xmin = min

(i,u,v)
xi(u, v). (5.50)

Thus, in a view of (5.28), we have

‖Φ−1
λ ‖2 ≤ (̺ xmin)

−1. (5.51)
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4. Estimation of the local Lipschitz-constants. According to (5.34) and (5.51), the estimation
of the local U-Lipshitz-constant for the normalized entropy operator (5.19) takes a form:

L̃U ≤ xmax

u−
min

⎛

⎝

√
m +

xmax

̺xmin

m,n

∑
i=1,j=1

t2
ij

⎞

⎠ . (5.52)

The estimation (5.43) of the local V-Lipschitz-constant for the normalized entropy operator
(5.19) takes a form:

L̃V ≤ xmax

xmin ̺

√

√

√

√

m,n

∑
i=1,j=1

t2
ij. (5.53)

Using the links (5.18) between the normalized entropy operator (5.19) and the entropy
operator (5.4) we will have:

LU ≤

√

√

√

√

m

∑
i=1

(

n

∑
k=1

tki

)2
xmax

u−
min

⎛

⎝

√
m +

xmax

̺xmin

m,n

∑
i=1,j=1

t2
ij

⎞

⎠ ,

LV ≤

√

√

√

√

m

∑
i=1

(

n

∑
k=1

tki

)2
xmax

(xmin ̺)

√

√

√

√

m,n

∑
i=1,j=1

t2
ij. (5.54)

5.3 Boundedness of the normalized entropy operator

Let us consider the normalized entropy operator (5.11, 5.19, 5.20), the parameters of which
u ∈ Um

+(u
−, u+) and , v ∈ Vn

+(v
−, v+).

Rewrite the equations (5.19, 5.20) in respect to the exponential Lagrange multipliers zj =
exp(−λj):

xi(z, u) = ui

n

∏
j=1

z
tji

j , 1, m, (5.55)

Ψk[z, u] =
m

∑
i=1

tki ui

n

∏
j=1

z
tji

j = vk, z ≥ 0, k = 1, n. (5.56)

It is known some properties of the operator (5.55, 5.56) are defined by the Jacobians of the
functions x(z, u) and Φ(z, u) in respect to the variables z, u.

Consider the function x(z, u). We have the Jacobians:

- Gz with the elements

gz
ik = uitki

1

zk

n

∏
j=1

z
tji

j ≥ 0, i = 1, m, k = 1, n; (5.57)

and

- Gu with the elements

gu
is =

n

∏
j=1

z
tji

j ≥ 0, (i, s) = 1, m (5.58)
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We can see that the elements of these Jacobians are nonnegative for all z ≥ 0 and u ∈
Um
+(u

−, u+), where u−
> 0, u+ ≤ 1. Thus the functions x(z, u) increase in a monotone

way on these sets.

Now consider the function Ψ(z, u) and its the Jacobians:

- Pz with the elements

pz
kl =

m

∑
i=1

uitki
1

zl

n

∏
j=1

z
tji

j ≥ 0, (k, l) = 1, n; (5.59)

and

- Pu with the elements

pu
ks = tks

n

∏
j=1

z
tjs

j ≥ 0, k = 1, n, s = 1, m. (5.60)

The elements of the matrix Pz and Pu are nonnegative. Thus, the function Ψ(z, u) increase in
a monotone way on the sets z ≥ 0 and u ∈ Um

+(u
−, u+).

According to (5.55) the function x(z, u) is analytical one. The system of the equations define
the unique differentiable implicit function z(u, v) on the sets Um

+(u
−, u+) and Vn

+(v
−, v+) (see

theorem 5, pp. 91-92; theorems 1, 2, pp. 95-96, Popkov (1995)).

1. Estimation of the minimum value of the normalized 〈HD, B, Eq, Plh〉-entropy operator.
The solution of the problem can be represented by the following theorem.

Theorem 2.Let the matrix T (5.11) has a full rank and u ∈ Um
+(u

−, u+).

Then xmin = mini xi(u
−, zmin), where:

zmin = min
j

z̃j, j = 1, n,

and z̃1, . . . , z̃n are the components of the solution of the equation

Ψ(z, u−) = v−,

and the vectors u−, v− have enough small components.

Proof. According to (5.55) x(z, 0) = 0 and x(z1, . . . , zi−1, 0, zi+1, . . . , zn; u) = 0. As the function
(5.55) increases in a monotone way and analytical one, then xmin = mini xi(u

−, zmin) for
enough small components u−.

Consider the equations (5.56). We have Ψ(z, 0),= Ψ(z1, . . . , zi−1, 0, zi+1, . . . , zn;
u) = 0. As the function Ψ(z, u) increase in a monotone way and analytical one, then the
proposition of the theorem is valid.

2. Estimation of the maximum value of the normalized 〈HD, B, Eq, Plh〉-entropy operator.
This problem is more complicated then the previous one. So, at the beginning we describe the
general procedure of the estimation forming.

On the first step we reduce the equations (5.56) to the equations with a monotone operator,
which also depends on the variable z and parameters u, v.
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On the second step we define the variable z0
< zmin, where the vector zmin has the components

zmin (theorem 2). The vector z0 = {z0, . . . , z0} such that the values of the monotone operator
at the point z0 is more or equal to z0.

On the third, we define the vector zmax = {zmax, . . . , zmax} such that the monotone operator is
less then zmax. For determination of the zmax we use the majorant of the monotone operator.

Consider each of the steps in detail.

2.1. Transformation of the equations (5.56). Introduce the monotone increasing operator
A(z, u, v) with the components:

Ak(z, u, v) =
zk

vk
Ψk[z, u], k = 1, n. (5.61)

Represent the equations (5.56) in the form:

A(z, u, v) = z. (5.62)

This equation has the unique zero-solution z∗[u, v] ≡ 0 and the unique nonnegative solution
z∗[u, v] ≥ 0. Also recall that the elements of the matrix T and of the vector v in (5.39) are
nonnegative.

2.2. Choice z0. According to the theorem 2 z̃ is the solution of the equation (5.62) for u−, v−.
So,

∂

∂zj
Ak(z, u−, v−) |z̃ < 1,

It is follows that there exists the vector

z0 = z̃ − ε, (5.63)

where ε is a vector with small components εk > 0, such that in the ε-neighborhood z̃ is valid
the following inequality:

A(z0, u−, v− − ε) > z0. (5.64)

2.3. Choice zmax. Exact value of zmax is defined by the solution of the global optimization
problem Strongin & Sergeev (2000):

zmax = arg max
u∈Um

+ , v∈Vn
+ ,j∈[1,n]

z∗j (u, v),

where z∗(u, v) is a solution of the equation:

Ψ(z, u) = v.

However this problem is very complicated. So we will calculate an upper estimation of the
value zmax.

Let us assume that we can find the vector ẑ such that

A(ẑ, u, v) ≤ ẑ.

Choice zmax is equal to maxj ẑj. Then the nonzero-solution z∗ of the equation (5.62) will belong
to the following vector interval (see Krasnoselskii et al. (1969)):

zmin ≤ z∗ ≤ zmax, (5.65)
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where the vector zmax has the components zmax.

For realization of the this way it is necessary to construct the majorant of the operator (5.61,
5.62). We use the following inequality Bellman (1961):

n

∏
j=1

h
αj

j ≤
n

∑
j=1

αjhj, (αj, hj) ≥ 0,
n

∑
j=1

αj = 1. (5.66)

Then for the operator (5.62) the following estimate is valid:

A(z, u, v) ≤ v−1 ⊗ C z, (5.67)

where the matrix C has the elements

ckj = max
u

m

∑
i=1

uitki tji =
m

∑
i=1

tki tji, (k, j) = 1, n. (5.68)

It is follows from (5.68) that the matrix C takes a form:

C = T T′, (5.69)

Thus, we can consider in the capacity of ẑ the nonnegative solution of the equation:

Cz = v, z ≥ 0. (5.70)

The general solution of the equation (5.70) can be represented in the following form:

ẑk(v) =
det Ck

det C
≥ 0, k = 1, n, (5.71)

where
det C 
= 0, (5.72)

as the matrix T has the full rank, and

det Ck =
n

∑
j=1

akjvj, k = 1, n, (5.73)

where
akj = (−1)(k+j)Mkj, (5.74)

and Mkj is the (k, j)-minor of the matrix C.

Introduce the following polyhedral sets:

W+ =

⎧

⎨

⎩

v :
n

∑
j=1

akjvj ≥ 0, k = 1, n

⎫

⎬

⎭

,

W− =

⎧

⎨

⎩

v :
n

∑
j=1

akjvj < 0, k = 1, n

⎫

⎬

⎭

. (5.75)
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and the set

Q =

{

Vn
+
⋂

W+, if det C ≥ 0,

Vn
+
⋂

W−, if det C < 0.
(5.76)

From this definition it follows that the set Q is the set of the vectors v for which the equation
(5.70) has the nonnegative solutions. Therefore

zmax = max
j

max
v∈Q

ẑj(v). (5.77)

Thus we proved the following theorem 3: Let the matrix T (5.11) has a full rank and v ∈ Q (5.76).

Then xmax = maxi xi(1, zmax), where:

zmax = max
j

max
v∈Q

ẑj(v),

and ẑj(v) are the solution of the linear equation

(T′ T)z = v.

6. Conclusions

Many applied problems can be formulated as the ELP or EQP, models of which it is proposed

in the paper. The multiplicative algorithms with p-active variables and feedback are the

effective methods of their solution. The dynamic procedure of the image restoration from

projections (IRP) increase appreciably the quality of the restored image in the presence of

noise in the measurements. It is represented a classification of the dynamic procedures and

it is investigated a stability of the procedure with I-feedback. Also it is shown that in general

case the dynamic procedure of the IRP is the dynamic system with entropy operator (EO).

The analytical- numerical methods investigation the problem of the EO-boundedness and

calculation of the Lipschitz constant for EO are proposed.
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